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A NOTE ON LIGHTLIKE HYPERSURFACES
OF A GRW SPACE-TIME

TAE Ho KANG

ABSTRACT. This note provides a study of lightlike hypersurfaces of a gen-
eralized Robertson-Walker(GRW) space-time with a certain screen distri-
bution, which are integrable and have good properties. Focus is to investi-
gate geometric features from the relation of the second fundamental forms
between lightlike hypersurfaces and leaves of the integrable screen distri-
bution. Also, we shall apply those results on lightlike hypersurfaces of a
GRW space-time to lightlike hypersurfaces of a Robertson-Walker(RW)
space-time.

1. Introduction

A generalized Robertson-Walker(GRW) space-time is a Lorentzian warped
product of an open interval I and a riemannian manifold (F, gr) with Lorent-
zian metric § = —dt* + f?(t)gr, which is denoted by M := (I x s F, g), where f
is a differentiable positive function defined on I. When F has constant curva-
ture ¢, M is called a Robertson-Walker(RW) space-time, which will be denoted
by M{(c, f). In this article we will give a study of lightlike hypersurfaces with
a specific screen distribution of a GRW space-time. There are difficulties to
study lightlike geometries since the induced metrics are degenerate. This leads
to the fact that the tangent bundle TM of a lightlike hypersurface M and its
normal bundle TM~ intersect each other, which generates a distribution called
radical distribution along M. Moreover the screen distribution is not unique
and the lightlike geometry depends on its choice. Fortunately, the second fun-
damental form is independent of the choice of screen distributions and so the
results on totally geodesic and totally umbilical lightlike hypersurfaces. It is,
therefore, worthy to look for a screen distribution with good properties. Re-
cently some authors dealt with the construction of relevant screen distributions
and acquired useful and desirable results ([5, 6]).
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In this point of view we construct an integrable screen distribution, which
leads the first coordinate vector field 9; on a GRW space-time to lie in a hyper-
bolic plane spanned by lightlike vector fields £ and N (see (4.2)). As a result
we can obtain a relation between the second fundamental forms of lightlike
hypersurfaces of a GRW space-time and leaves of the screen distribution. The
relation plays an important role throughout this paper.

2. A brief review on GRW space-times

Consider an (n 4 2)-dimensional GRW space-time
M = (I xs F,g),g = —dt* + f*(t)gr,

where f is a smooth positive function on I, and (F, gr) is an (n+1)-dimensional
riemannian manifold with riemannian metric gg.

Let m and o be the natural projections of I x F onto I and F| respectively.
Let £(I) and £(F) be the set of horizontal and vertical lifts of vector fields on
I and F to I x F, respectively. Let 9, € £(I) denote the horizontal lift vector
field to I x ¢ F' of the standard vector field % on I.

For each vector X tangent to M we put

(2.1) X = ¢x0; + X,

where ¢x = —g(X,8;) and X is the vertical component of X.
The following lemma is well-known ([10]).

Lemma 2.1. Let V be the Levi-Civita connection of M. For vectors fields
X,Y on £(F) we have

(1) v_at at = 07_

(ii) Vo, X = Vx0; = (In f)' X,

(i) §(Vx,0,) = —g(X,Y)(In )"

Using this lemma and (2.1), we obtain for any vector field X on M
(2.2) Vx(=fX,
where ¢ = f0;. In particular Lcg = 2f'g, where L is the Lie derivative along
¢. Hence ( is a conformal Killing vector field. -

When F has constant curvature ¢, we denoted the RW space-time by M (c, f)
and Sy, := 7 1(tg) is called be a spacelike slice which is a riemannian hyper-
surface of constant curvature in M(c, f) with metric f2(to)g.. The standard

choices for F are _S”, E™ and H", with curvature 1, 0,—1, respectively. The
curvature tensor R of M (c, f) is given as follows ([7]):

Lemma 2.2. For any vector fields X,Y,Z on M(c, f)
(23) R(X,Y)Z = a{g(V, 2)X — §(X, Z)Y'}
+B8{dx9zY — vy oz X + (6x9(Y, Z) — v g(X, 2))0},

I g= £ =(f%+c)
- f2 ) - f2 .

where a
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Remark 2.3. (i) M(c, f) is of constant curvature if and only if 8 = 0,
(ii) M(c, f) is flat if and only if f(t) = at + b(c = —a?),
(iii) M(c, f) has constant curvature k? > 0 if and only if f(t) = ae* +
be*t ¢ = 4k2ab,
(iv) M/(c, f) has constant curvature —k? < 0 if and only if f(t) = asin(kt)+
beos(kt), c = —4k?(a® + b?),
where (i) follows from Lemma 2.2 and (ii) ~ (iv) follow from solutions of the
differential equation g = 0.

3. Basics on lightlike hypersurfaces

In this section, we review some results from the general theory of lightlike
hypersurfaces of a semi-riemannian manifold (cf. [4,7]).

Let (M,g) be an (n + 1)-dimensional lightlike hypersurface of an (n + 2)-
dimensional semi-riemannian manifold (M, §) with constant index ¢(1 < ¢ <
n + 1). Then the so called radical distribution Rad(TM) = TM NTM= is of
rank one (therefore Rad(TM) = TM*'), and the induced metric g on M is
degenerate and has constant rank n, where TM~+ denotes the normal bundle
over M. Also, a complementary vector bundle of Rad(TM) in TM is a non-
degenerate distribution of rank n(called a screen distribution) over M, denoted
by S(T'M). Thus we have the orthogonal direct sum

(3.1) TM = S(TM) L Rad(TM).

Let tr(T'M) be a complementary (but not orthogonal) vector bundle (called a
transversal vector bundle) to TM in TM | M. It is known that for any non-
zero section £ € I'(T M) on a coordinate neighborhood U C M there exists a
unique null section N of the transversal vector bundle tr(T'M) on U such that

(32) g(Nvg):1’§(N7N):g(NvX):O7 VXEF(S(TM) |Z/l)a

where I'(e) denotes the module of smooth sections of the vector bundle o. Thus
we have the decomposition.

(3.3) TM = S(TM) L (TM* @ tr(TM)) = TM & tr(TM).

Throughout the paper the manifolds we consider are supposed to be para-
compact, smooth and connected. Now let V be the Levi-Civita connection of
M and P be the projection morphism of T'(T'M) on I'(S(TM)). According to
the decomposition (3.3) and (3.1), we write the local Gauss and Weingarten
formulas as follows. For any X,Y € I'(TM) and N € I'(¢tr(T'M))

(34) VxY=VxY +h(X,Y)=VxY+B(X,Y)N,B(X,Y) = g(h(X,Y),&),
(3.5) VxN=—AnyX + V4XN=—AnNX + 7(X)N, 7(X) := g(V5 N, ),

(3.6) VxPY=V5PY + h*(X,PY)=V5PY + C(X,PY),

(3.7) Vx{=—A;X —7(X)E,
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where h and h* are the second fundamental forms of M and S(T'M), B and
C' are the local second fundamental forms on I'(T'M) and T'(S(T'M)), respec-
tively, V* is a metric connection on I'(S(T'M)), Ag the local shape operator on
I'(S(T'M)) and 7 is a 1-form on T'M. Note that the local second fundamental
form B is independent of the choice of screen distribution S(TM). The two
local second fundamental forms of M and S(T'M) are related to their shape
operators by

(3-8) B(X,Y) = g(A4:X,Y), g(A{X,N) =0,

(3.9) C(X,PY) = g(ANX,PY), g(AnX,N)=0.

Note that in general, Ay is not symmetric with respect to g and the local
second fundamental form B satisfies

(3.10) B(X,6)=0, VX eI(TM).
A lightlike hypersurface M is totally wumbilical in M if there is a smooth
function A such that
B(X,Y)=X(X,Y), VXY e I(TM).
A screen distribution S(TM) is totally umbilical in M if there exists a smooth
function p such that
C(X,PY) = pug(X, PY), ¥VX,Y € T(TM).

In case p = 0 (resp. A = 0) we say that S(T'M) (resp. M) is totally geodesic in
M (resp. M) ([3,4,7,9]). The results on totally geodesic and totally umbilical
lightlike hypersurfaces do not depend on the screen distribution of M.

From (3.8) and (3.10), we see that Az§ = 0. Hence in terms of the shape

operators, we may state as follows (cf. [3]);

Remark 3.1. (i) M is totally umbilical if and only if there exists a function A
such that A X = AX for every X € I'(S(T'M)),

(ii) S(T'M) is totally umbilical in M if and only if there is a function p such
that Ay X = pX for every X € I'(S(T'M)) and Ax& = 0.

Furthermore, the induced linear connection V is not a metric connection.
Indeed we have

(3.11) (Vxg)(Y, Z) = B(X,Y)n(Z) + B(X, Z)n(Y)
for any X,Y € I'(T'M), where n is a differential 1-form locally defined on M
by
§(X) = §(X,N), VX € T(TM).
Denote by R and R the curvature tensor of V and V, respectively. Then
the Gauss and Weingarten formulas in (3.4) and (3.5) imply

(3.12) R(X,Y)Z
= R(X,Y)Z+ B(X,Z)ANY — B(Y, Z))AxX

+{(VxB)(Y, Z2) = (Vy B)(X, Z) + B(Y, Z)7(X) = B(X, Z)7(Y)} N
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for any vector fields X,Y, Z € T'(T' M), where we set
(VxB)(Y,Z)=XB(Y,Z) - B(VxY,Z) - B(Y,VxZ).
Also we obtain from (3.6) and (3.7)
(3.13)
R(X,Y)PZ
— R*(X,Y)PZ + C(X, PZ) ALY — C(Y,PZ)A; X
+{(VxC)Y,PZ)— (VyC)X,PZ)+ C(X,PZ)r(Y) - C(Y,PZ)T(X)}¢
where we set
(3.14) (VxC)Y,PZ)=XC(Y,PZ)—-C(VxY,PZ)—-C(Y,VxPZ),

and R* denotes the curvature tensor with respect to the metric connection V*
on I'(S(TM)).
From (3.12) we get

(3.15) G(R(X,Y)Z,N) = g(R(X,Y)Z,N).
By using (3.7) and calculating the right hand side of (3.15) we obtain
(3.16) GR(X,Y)E,N) = C(Y, A{X) — C(X, AfY) — 2d7(X,Y).

4. Lightlike hypersurfaces with a specific screen distribution

A. Let M be an (n + 1)-dimensional lightlike hypersurface of an (n + 2)-
dimensional GRW space-time M = (I x ¢ F,g). Note that 9, ™+ is spacelike. We
consider the screen distribution of rank n over M given by 9" NT'M, which we
denote it by S(9;). Then we can take the unique null vector field £ € T'(T' M)
such that

(4.1) 9(0,8) =1

(for details see [6]). Moreover the lightlike transversal vector field to S(9;) is
given by ([4])

(4.2) N=d+ %g.

Then a pair (£, N) satisfies (3.2).
Multiplying (4.2) by f and differentiating in the direction X € I'(T'M), we
have

(4.3) (XFIN+ f(=ANX +7(X)N) = ['X + %{(Xf) + (A X —T(X))JE,
where we have used (2.2).

Proposition 4.1. Let (M, g,S(0;)) be a lightlike hypersurface of M. Then we
have for any X € I'(T'M)

(i) 7(X) = (In f)'n(X),

(i) ANX = —(In f)' PX + A; X,

(ili) px = —n(X).
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Proof. Comparing the transversal part and radical part in (4.3) yields
Xf+ fr(X) =0, 2f'n(X) + Xf - fr(X) =0,

respectively. From these equations we have

(4.4) 7(X) = (In f)'n(X), X e I(TM).

Since AyX € T'(S(0:)) for any X € I'(TM), (ii) follows from taking the
screen distribution part in (4.3).
Substituting (4.2) into ¢x = —g(X, 9;) gives

(4.5) ¢ox = -—n(X), VX eT(TM). O

Corollary 4.2. Let (M,g,S(0;)) be a lightlike hypersurface of M. Then

(i) g = —1 and ¢y = 3,

(ii) AN =0,

(i) px = 0, X € T'(S(0%)), i.e., the screen distribution S(0;) is tangent to
spacelike slices of M.

Proof. From (4.5) we get ¢¢ = —n(§) = —1. On the other hand, from (4.2) we
have ¢y = 1+ 2¢¢. Hence ¢y = 1. (ii) and (iii) follow from (ii) and (iii) in
Proposition 4.1, respectively. O

Theorem 4.3. Let (M, g, S(0;)) be a lightlike hypersurface of M. Then
(i) The screen distribution S(0) is integrable,
~ (ii) S(9) is totally umbilical in M if and only if M is totally umbilical in

Proof. It follows from (ii) in Proposition 4.1 that the shape operator of M is
symmetric with respect to g, i.e., g(AnX,Y) = g(AnY, X) for any X,Y €
T'(S(0)). This is equivalent to the integrability of S(9;) (see [4]). The state-
ment (ii) is also obtained from Proposition 4.1(ii) and Corollary 4.2(ii). O

Theorem 4.4. Let (M,g,S(9;)) be a lightlike hypersurface of M. Then
(i) M is totally umbilical in M if and only if any leaf M" of S(0;) is totally
umbilical in a spacelike slice Sy of M,

(i) ApX = A;X + AxyX, X € T(S(0y)).

Proof. Let E be a unit normal to M’ in S;. Then from the decomposition (3.3)
E lies in span{¢, N}. Noting that g(F,0;) = 0 and g(F, E) = 1, we obtain

(4.6) E= %5 +N.

For any X,Y € I'(S(9)), define hi(X,Y) = g(VxY,E)E and hy(X,Y) =
—g(VxY,0;)0; by the second fundamental forms of M’ in S; and S; in M,
respectively. Then for any X,Y € T'(S(9;))

(4.7) B (X,Y) + h(X,Y) = h(X,Y) + ha(X, V).
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Using (3.8) and (3.9), comparing both sides with respect to the decomposition
(3.3) we get

(4.8) ApX =2AnX +(nf)'X, ApX= A — (Inf)X, X eT(S(0)),
where we have used that hy(X,Y) = (In f)'g(X,Y)0;, which is obtained from

(2) in Lemma 2.1. (i) follows from the second equation. (ii) follows from adding
two equations. O

Theorem 4.5. Let (M,g,S(0;)) be a lightlike hypersurface of M. Then M is
totally umbilical in M if and only if any leaf M’ of S(0;) is totally umbilical
in M in such a way that M’ is immersed in M as a spacelike submanifold of
codimension 2.

Proof. Note that M " lies in a spacelike slice and any spacelike slice is totally
umbilcal in M, i.e.,

(4.9) Ap, X = —(In f)' X, VX € T(S(d,)).

Let n be a unit normal to M’ in M. Then n € span{F,d,}. Putting
n = aF + bO; for some functions on M’, we have

AnX = aApX 4+ bAs X, VX € T(S(,)).
Substituting (4.8) and (4.9) into this equation, we obtain
ApnX = aA{X — (a+b)(In f) X,
which completes the proof. O

Proposition 4.6. Let (M, g,S(0;)) be a lightlike hypersurface of M. Ifn is
parallel, i.e., Vxn = 0 for any X € T(TM), then the warping function f is
constant.

Proof. Differentiating n(Y) = g(Y, N) in the direction X and our assumption
yield

(4.10) —g(YV,AnX)+7(X)g(Y,N) =0, VX, Y eT(TM).
Putting X = £ = Y in this equation, we have 7(¢) = 0. But 7(¢) = (In f)’.
Hence f is constant. O

Corollary 4.7. Let (M,g,S(0;)) be a lightlike hypersurface of M. Ifn is
parallel, then S(0¢) and M are both totally geodesic in M and M, respectively.

Proof. Since the warping function f is constant, it follows from (i) in Propo-
sition 4.1 that 7(X) = 0 for any X € I'(T'M). Hence we obtain from (4.10)
that Ay X = 0, which and (ii) in Proposition 4.1 imply that A7 X = 0 for any
X € T(T'M). Therefore we complete the proof. O
Remark 4.8. If the warping function f is constant, then Proposition 4.1(ii)
shows that Ay X = %AEX, X € I(TM), ie., (M,S(d)) is screen globally

conformal with constant conformal weight % In this case, M is globally a
product C x M’, where C is a null curve and M’ is a leaf of S(9;) ([1]).
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B. If we take a vector field ¢ = f0; instead of J;, then we can also take the
unique null vector field £ € T(T'M) such that

(4.11) 9(¢,&) = 1.

Moreover the lightlike transversal vector field denoted by N corresponding
to £ is given by

_ 1 .-

(4.12) N=(+ §f2§.

Differentiating (4.11) in the direction X € I'(T'M), we have

_ -1

(4.13) —AgX +7(X)N = f'X + f(X )€ - §f2(AE’X +7(X)¢),
where we have used (2.2) and 7 is a 1-form with respect to &.

Proposition 4.9. Let (M, g,S(0:)) be a lightlike hypersurface of M. Then we
have for the pair (£, N) and for any X € T(TM)

(i) 7(X) =0,

(i) AyX = —f'PX + %fQAEX,

(i) fox = —n(X).
Proof. The proof is similar to that of Proposition 4.1. O

Corollary 4.10. Let (M,g,S(0;)) be a lightlike hypersurface of M. Then for
the pair (£, N) the Ricci tensor of the induced connection is symmetric.

Proof. The proof follows from (i) in Proposition 4.8. O

Remark 4.11. (i) The Ricci tensor does not depend on the choice of the lightlike
section ¢ ([2]). B

(ii) We note that B and 7 depend on the section &, in our case £ = %{, it
follows that N = fN and B = %B and 7(X) = 7(X) + (In f)'n(X).

Proposition 4.12. Let (M, g,S(0:)) be a lightlike hypersurface of M. For the
pair (§, N) if 77 is parallel, then S(0;) is totally geodesic in M and M is totally
umbilical in M.

Proof. The proof is similar to that of Corollary 4.7. (]

5. Applications to lightlike hypersurfaces of a RW spacetime

In this section we shall investigate the structure equations of lightlike hy-
persurfaces with a specific screen distribution S(9) of a Robertson-Walker
space-time M (c, f) and apply those results acquired in the previous section to
lightlike hypersurfaces of M(c, f).

Substituting (2.2) into (3.12), we have respectively

(5.1) R(X,Y)Z = alg(Y,2)X — g(X,2)Y) + B(Y, Z)AxnX — B(X,Z)ANY

+B{ox02Y — vz X — S(6x9(Y,2) — bvo(X, 2))E},
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(5.2) BLg(Y,Z)px — 9(X, Z)opy}
= (VxB)(Y, Z) — (VyB)(X, Z) + B(Y, Z)7(X) — B(X, Z)r(Y)

for any vector fields X,Y,Z € I'(T'M).
Also from (3.13) and (5.1) we obtain respectively

(5.3) R (X, Y)PZ=0a(g(Y,Z)PX — g(X,Z)PY)+ B(Y,Z)AnX
- B(X,2)ANY + C(Y,PZ)A; X — C(X, PZ) ALY,
B

(54)  (a+3)g(Y, Z)n(X) — g(X, Z)n(Y))

= (VxC)Y,PZ)— (VyCO)X,PZ)+ C(X,PZ)r(Y) - C(Y,PZ)T(X)
for any vector fields X,Y,Z € I'(TM), where we have used Proposition 4.1
(iii).
Proposition 5.1. Let (M, g,S(0;)) be a lightlike hypersurface of M(c, f). If

the second fundamental form h of M is parallel, i.e., Vxh =0 for any tangent
vector field X to M, then 8 =0, i.e., M(c, f) is of constant curvature.

Proof. Since (Vxh)(Y,Z) =0 for any X,Y,Z € T'(T'M) is equivalent to
(VxB)(Y,Z)+ B(Y,Z)r(X) =0,

it follows from (5.2) that
Bla(Y, Z2)px — 9(X, Z)dy} = 0.

This equation with Y = Z = PZ # 0 and X = ¢ gives § = 0. Hence Remark
2.3(i) shows that M (c, f) is of constant curvature. O

Proposition 5.2. Let (M, g, S(0;)) be a lightlike hypersurface of M(c, f). If
the screen second fundamental form h* is parallel, i.e., Vxh* = 0 for any
tangent vector field X to M, then 2a+ 3 = 0.

Proof. Assume that the screen second fundamental form h* is parallel, i.e.,

(Vxh)(Y,PZ) =0 for any X,Y,Z € I'(TM), which is equivalent to
(VxC)Y,PZ)—-C(Y,PZ)T(X) = 0.

It follows from (5.4) that

(0 + )oY, 2)n(X) — g(X, Z)n(¥)) =0,

from which putting Y = Z = PZ # 0 and X = ¢ gives 2a + 5 = 0. O

Proposition 5.3. Let (M,g,S(0;)) be a lightlike hypersurface of M(c, f).
Then each 1-form 7 induced by S(0;) is closed, i.e., dT = 0.
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Proof. From (5.1) we have
GR(X,Y)EN) =0
with the aid of (iii) in Proposition 4.1. Also Proposition 4.1(ii) gives
C(X,AFY) = C(Y, Ag X).
Hence (3.16) with these results shows that dr = 0. O

Proposition 5.4. Let (M,g,S(0;)) be a lightlike hypersurface of M(c, f).
Then
(VxB)(Y,Z) = (VyB)(X,Z), YX,Y €T(8(8,)),¥Z € T(TM),
(VxO)Y,2) = (VyC)(X, 2Z), VXY, Z eT(5(9)).
Proof. These are clear from (5.2) and (5.4), respectively. O
Proposition 5.5. Let (M,g,S(0;)) be a lightlike hypersurface of M(c, f).

Then M is totally umbilical, then each leaf M' (dim M’ > 2) of the distribution
S(0:) as a submanifold of each slice (S, f?(t)ge) is of constant curvature.

Proof. The assumption and Theorem 4.4(i) implies that each leaf M’ of S(9;)
is totally umbilical in a spacelike slice S;. But S; is of constant curvature for
each t € I. Hence Schur’s theorem shows M’ is of constant curvature. In fact,
putting B(X,Y) = Ag(X,Y) for some smooth function A andV X, Y € T'(TM).
Then from (5.3) and (ii) in Proposition 4.1 we obtain

R*(va)Z = C(ta )‘){Q(Ya Z)X - g(X7 Z)Y}7 VX,Y, Z € F(S(at))v
where C(t,A) = A% — 2(In f)’\ + a. C(t, \) is constant for a fixed . O

Theorem 5.6. Let (M,g,S(0;)) be a lightlike hypersurface of M(c, f) with
dim M > 2. If M(c, f) is a space of constant curvature, i.e., § =0 and M is
totally umbilical, then M is FEinstein.

Proof. For any X,Y € I'(TM) the Ricci tensor on M is given by
Rice(X,Y) =) g(R(E:i, X)Y, E;) + g(R(¢, X)Y, N),
i=1

where {{, E1, ..., E,} is an orthonormal frame field in M adapted to S(0;), that
is, {E1,...,En} (n > 1) is the orthonormal frame field of S(9;). Substituting
(2.3) and (5.10) into the equation, we obtain

Ric(X,Y) = (n+2)ag(X,Y) + B(X,Y)trAn — g(A{Y, AN X).
Putting B(X,Y) = A\g(X,Y) in this equation, we have from Proposition 4.1(ii)
Ric(X,Y) = Ag(X,Y),

where A = (n+ 2)a+ (n — 1)Ap, p = 3 — (Inf)’. Thus we complete the
proof. (I
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Remark 5.7. In [8], the authors define a new lightlike hypersurface of a

Ro

bertson-Walker space-time M (c, f) as follows:
A lightlike hypersurface (M, g, S(TM)) of M(c, f) is said to be horizontally

lightlike hypersurface if O; lies in span{{, N'}.

This note shows that it is possible for a lightlike hypersurface M to be a

horizontally lightlike hypersurface M(c, f) by choosing an appropriate screen
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