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A NOTE ON LIGHTLIKE HYPERSURFACES

OF A GRW SPACE-TIME

Tae Ho Kang

Abstract. This note provides a study of lightlike hypersurfaces of a gen-

eralized Robertson-Walker(GRW) space-time with a certain screen distri-
bution, which are integrable and have good properties. Focus is to investi-

gate geometric features from the relation of the second fundamental forms
between lightlike hypersurfaces and leaves of the integrable screen distri-

bution. Also, we shall apply those results on lightlike hypersurfaces of a

GRW space-time to lightlike hypersurfaces of a Robertson-Walker(RW)
space-time.

1. Introduction

A generalized Robertson-Walker(GRW) space-time is a Lorentzian warped
product of an open interval I and a riemannian manifold (F, gF ) with Lorent-
zian metric ḡ = −dt2 +f2(t)gF , which is denoted by M̄ := (I×f F, ḡ), where f
is a differentiable positive function defined on I. When F has constant curva-
ture c, M̄ is called a Robertson-Walker(RW) space-time, which will be denoted
by M̄(c, f). In this article we will give a study of lightlike hypersurfaces with
a specific screen distribution of a GRW space-time. There are difficulties to
study lightlike geometries since the induced metrics are degenerate. This leads
to the fact that the tangent bundle TM of a lightlike hypersurface M and its
normal bundle TM⊥ intersect each other, which generates a distribution called
radical distribution along M . Moreover the screen distribution is not unique
and the lightlike geometry depends on its choice. Fortunately, the second fun-
damental form is independent of the choice of screen distributions and so the
results on totally geodesic and totally umbilical lightlike hypersurfaces. It is,
therefore, worthy to look for a screen distribution with good properties. Re-
cently some authors dealt with the construction of relevant screen distributions
and acquired useful and desirable results ([5, 6]).
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In this point of view we construct an integrable screen distribution, which
leads the first coordinate vector field ∂t on a GRW space-time to lie in a hyper-
bolic plane spanned by lightlike vector fields ξ and N (see (4.2)). As a result
we can obtain a relation between the second fundamental forms of lightlike
hypersurfaces of a GRW space-time and leaves of the screen distribution. The
relation plays an important role throughout this paper.

2. A brief review on GRW space-times

Consider an (n+ 2)-dimensional GRW space-time

M̄ := (I ×f F, ḡ), ḡ = −dt2 + f2(t)gF ,

where f is a smooth positive function on I, and (F, gF ) is an (n+1)-dimensional
riemannian manifold with riemannian metric gF .

Let π and σ be the natural projections of I × F onto I and F, respectively.
Let L(I) and L(F ) be the set of horizontal and vertical lifts of vector fields on
I and F to I ×f F, respectively. Let ∂t ∈ L(I) denote the horizontal lift vector

field to I ×f F of the standard vector field d
dt on I.

For each vector X tangent to M̄ we put

(2.1) X = φX∂t + X̂,

where φX = −ḡ(X, ∂t) and X̂ is the vertical component of X.
The following lemma is well-known ([10]).

Lemma 2.1. Let ∇̄ be the Levi-Civita connection of M̄ . For vectors fields
X,Y on L(F ) we have

(i) ∇̄∂t∂t = 0,
(ii) ∇̄∂tX = ∇̄X∂t = (ln f)′X,
(iii) ḡ(∇̄XY, ∂t) = −ḡ(X,Y )(ln f)′.

Using this lemma and (2.1), we obtain for any vector field X on M̄

(2.2) ∇̄Xζ = f ′X,

where ζ = f∂t. In particular Lζg = 2f ′g, where Lζ is the Lie derivative along
ζ. Hence ζ is a conformal Killing vector field.

When F has constant curvature c, we denoted the RW space-time by M̄(c, f)
and St0 := π−1(t0) is called be a spacelike slice which is a riemannian hyper-
surface of constant curvature in M̄(c, f) with metric f2(t0)gc. The standard
choices for F are Sn, En and Hn, with curvature 1, 0,−1, respectively. The
curvature tensor R̄ of M̄(c, f) is given as follows ([7]):

Lemma 2.2. For any vector fields X,Y, Z on M̄(c, f)

R̄(X,Y )Z = α{ḡ(Y,Z)X − ḡ(X,Z)Y }(2.3)

+ β{φXφZY − φY φZX + (φX ḡ(Y, Z)− φY ḡ(X,Z))∂t},

where α = f ′2+c
f2 , β = ff ′′−(f ′2+c)

f2 .
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Remark 2.3. (i) M̄(c, f) is of constant curvature if and only if β = 0,
(ii) M̄(c, f) is flat if and only if f(t) = at+ b(c = −a2),
(iii) M̄(c, f) has constant curvature k2 > 0 if and only if f(t) = aekt +

be−kt, c = 4k2ab,
(iv) M̄(c, f) has constant curvature −k2 < 0 if and only if f(t) = a sin(kt)+

b cos(kt), c = −4k2(a2 + b2),
where (i) follows from Lemma 2.2 and (ii) ∼ (iv) follow from solutions of the
differential equation β = 0.

3. Basics on lightlike hypersurfaces

In this section, we review some results from the general theory of lightlike
hypersurfaces of a semi-riemannian manifold (cf. [4, 7]).

Let (M, g) be an (n + 1)-dimensional lightlike hypersurface of an (n + 2)-
dimensional semi-riemannian manifold (M̄, ḡ) with constant index q(1 ≤ q ≤
n + 1). Then the so called radical distribution Rad(TM) = TM ∩ TM⊥ is of
rank one (therefore Rad(TM) = TM⊥), and the induced metric g on M is
degenerate and has constant rank n, where TM⊥ denotes the normal bundle
over M. Also, a complementary vector bundle of Rad(TM) in TM is a non-
degenerate distribution of rank n(called a screen distribution) over M, denoted
by S(TM). Thus we have the orthogonal direct sum

(3.1) TM = S(TM) ⊥ Rad(TM).

Let tr(TM) be a complementary (but not orthogonal) vector bundle (called a
transversal vector bundle) to TM in TM̄ | M. It is known that for any non-
zero section ξ ∈ Γ(TM⊥) on a coordinate neighborhood U ⊂M there exists a
unique null section N of the transversal vector bundle tr(TM) on U such that

(3.2) ḡ(N, ξ) = 1, ḡ(N,N) = ḡ(N,X) = 0, ∀X ∈ Γ(S(TM) |U ),

where Γ(•) denotes the module of smooth sections of the vector bundle •. Thus
we have the decomposition.

(3.3) TM̄ = S(TM) ⊥ (TM⊥ ⊕ tr(TM)) = TM ⊕ tr(TM).

Throughout the paper the manifolds we consider are supposed to be para-
compact, smooth and connected. Now let ∇̄ be the Levi-Civita connection of
M̄ and P be the projection morphism of Γ(TM) on Γ(S(TM)). According to
the decomposition (3.3) and (3.1), we write the local Gauss and Weingarten
formulas as follows. For any X,Y ∈ Γ (TM) and N ∈ Γ(tr(TM))

∇̄XY =∇XY + h(X,Y )=∇XY +B(X,Y )N,B(X,Y ) := ḡ(h(X,Y ), ξ),(3.4)

∇̄XN=−ANX +∇tXN=−ANX + τ(X)N, τ(X) := ḡ(∇tXN, ξ),(3.5)

∇XPY =∇∗XPY + h∗(X,PY )=∇∗XPY + C(X,PY )ξ,(3.6)

∇Xξ=−A∗ξX − τ(X)ξ,(3.7)
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where h and h∗ are the second fundamental forms of M and S(TM), B and
C are the local second fundamental forms on Γ(TM) and Γ(S(TM)), respec-
tively, ∇∗ is a metric connection on Γ(S(TM)), A∗ξ the local shape operator on

Γ(S(TM)) and τ is a 1-form on TM. Note that the local second fundamental
form B is independent of the choice of screen distribution S(TM). The two
local second fundamental forms of M and S(TM) are related to their shape
operators by

B(X,Y ) = g(A∗ξX,Y ), ḡ(A∗ξX,N) = 0,(3.8)

C(X,PY ) = g(ANX,PY ), ḡ(ANX,N) = 0.(3.9)

Note that in general, AN is not symmetric with respect to g and the local
second fundamental form B satisfies

(3.10) B(X, ξ) = 0, ∀X ∈ Γ(TM).

A lightlike hypersurface M is totally umbilical in M̄ if there is a smooth
function λ such that

B(X,Y ) = λg(X,Y ), ∀X,Y ∈ Γ(TM).

A screen distribution S(TM) is totally umbilical inM if there exists a smooth
function µ such that

C(X,PY ) = µg(X,PY ), ∀X,Y ∈ Γ(TM).

In case µ = 0 (resp. λ = 0) we say that S(TM) (resp. M) is totally geodesic in
M (resp. M̄) ([3, 4, 7, 9]). The results on totally geodesic and totally umbilical
lightlike hypersurfaces do not depend on the screen distribution of M .

From (3.8) and (3.10), we see that A∗ξξ = 0. Hence in terms of the shape

operators, we may state as follows (cf. [3]);

Remark 3.1. (i) M is totally umbilical if and only if there exists a function λ
such that A∗ξX = λX for every X ∈ Γ(S(TM)),

(ii) S(TM) is totally umbilical in M if and only if there is a function µ such
that ANX = µX for every X ∈ Γ(S(TM)) and ANξ = 0.

Furthermore, the induced linear connection ∇ is not a metric connection.
Indeed we have

(3.11) (∇Xg)(Y,Z) = B(X,Y )η(Z) +B(X,Z)η(Y )

for any X,Y ∈ Γ(TM), where η is a differential 1-form locally defined on M
by

η(X) = ḡ(X,N), ∀X ∈ Γ(TM).

Denote by R̄ and R the curvature tensor of ∇̄ and ∇, respectively. Then
the Gauss and Weingarten formulas in (3.4) and (3.5) imply

R̄(X,Y )Z(3.12)

= R(X,Y )Z +B(X,Z)ANY −B(Y,Z))ANX

+ {(∇XB)(Y, Z)− (∇YB)(X,Z) +B(Y,Z)τ(X)−B(X,Z)τ(Y )}N
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for any vector fields X,Y, Z ∈ Γ(TM), where we set

(∇XB)(Y, Z) = XB(Y, Z)−B(∇XY,Z)−B(Y,∇XZ).

Also we obtain from (3.6) and (3.7)

R(X,Y )PZ

(3.13)

= R∗(X,Y )PZ + C(X,PZ)A∗ξY − C(Y, PZ)A∗ξX

+ {(∇XC)(Y, PZ)− (∇Y C)(X,PZ) + C(X,PZ)τ(Y )− C(Y, PZ)τ(X)}ξ
where we set

(3.14) (∇XC)(Y, PZ) = XC(Y, PZ)− C(∇XY, PZ)− C(Y,∇∗XPZ),

and R∗ denotes the curvature tensor with respect to the metric connection ∇∗
on Γ(S(TM)).

From (3.12) we get

(3.15) ḡ(R̄(X,Y )Z,N) = g(R(X,Y )Z,N).

By using (3.7) and calculating the right hand side of (3.15) we obtain

(3.16) ḡ(R̄(X,Y )ξ,N) = C(Y,A∗ξX)− C(X,A∗ξY )− 2dτ(X,Y ).

4. Lightlike hypersurfaces with a specific screen distribution

A. Let M be an (n + 1)-dimensional lightlike hypersurface of an (n + 2)-

dimensional GRW space-time M̄ = (I ×f F, ḡ). Note that ∂t
⊥ is spacelike. We

consider the screen distribution of rank n over M given by ∂t
⊥∩TM , which we

denote it by S(∂t). Then we can take the unique null vector field ξ ∈ Γ(TM)
such that

(4.1) ḡ(∂t, ξ) = 1

(for details see [6]). Moreover the lightlike transversal vector field to S(∂t) is
given by ([4])

(4.2) N = ∂t +
1

2
ξ.

Then a pair (ξ,N) satisfies (3.2).
Multiplying (4.2) by f and differentiating in the direction X ∈ Γ(TM), we

have

(4.3) (Xf)N + f(−ANX + τ(X)N) = f ′X +
1

2
{(Xf) + f(−A∗ξX − τ(X))}ξ,

where we have used (2.2).

Proposition 4.1. Let (M, g, S(∂t)) be a lightlike hypersurface of M̄ . Then we
have for any X ∈ Γ(TM)

(i) τ(X) = (ln f)′η(X),
(ii) ANX = −(ln f)′PX + 1

2A
∗
ξX,

(iii) φX = −η(X).
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Proof. Comparing the transversal part and radical part in (4.3) yields

Xf + fτ(X) = 0, 2f ′η(X) +Xf − fτ(X) = 0,

respectively. From these equations we have

(4.4) τ(X) = (ln f)′η(X), X ∈ Γ(TM).

Since ANX ∈ Γ(S(∂t)) for any X ∈ Γ(TM), (ii) follows from taking the
screen distribution part in (4.3).

Substituting (4.2) into φX = −ḡ(X, ∂t) gives

(4.5) φX = −η(X), ∀X ∈ Γ(TM). �

Corollary 4.2. Let (M, g, S(∂t)) be a lightlike hypersurface of M̄ . Then
(i) φξ = −1 and φN = 1

2 ,
(ii) ANξ = 0,
(iii) φX = 0, X ∈ Γ(S(∂t)), i.e., the screen distribution S(∂t) is tangent to

spacelike slices of M̄ .

Proof. From (4.5) we get φξ = −η(ξ) = −1. On the other hand, from (4.2) we
have φN = 1 + 1

2φξ. Hence φN = 1
2 . (ii) and (iii) follow from (ii) and (iii) in

Proposition 4.1, respectively. �

Theorem 4.3. Let (M, g, S(∂t)) be a lightlike hypersurface of M̄ . Then
(i) The screen distribution S(∂t) is integrable,
(ii) S(∂t) is totally umbilical in M if and only if M is totally umbilical in

M̄ .

Proof. It follows from (ii) in Proposition 4.1 that the shape operator of M is
symmetric with respect to g, i.e., g(ANX,Y ) = g(ANY,X) for any X,Y ∈
Γ(S(∂t)). This is equivalent to the integrability of S(∂t) (see [4]). The state-
ment (ii) is also obtained from Proposition 4.1(ii) and Corollary 4.2(ii). �

Theorem 4.4. Let (M, g, S(∂t)) be a lightlike hypersurface of M̄ . Then
(i) M is totally umbilical in M̄ if and only if any leaf M ′ of S(∂t) is totally

umbilical in a spacelike slice St of M̄ ,
(ii) AEX = A∗ξX +ANX, X ∈ Γ(S(∂t)).

Proof. Let E be a unit normal to M ′ in St. Then from the decomposition (3.3)
E lies in span{ξ,N}. Noting that ḡ(E, ∂t) = 0 and ḡ(E,E) = 1, we obtain

(4.6) E =
1

2
ξ +N.

For any X,Y ∈ Γ(S(∂t)), define h1(X,Y ) = ḡ(∇̄XY,E)E and h2(X,Y ) =
−ḡ(∇̄XY, ∂t)∂t by the second fundamental forms of M ′ in St and St in M̄ ,
respectively. Then for any X,Y ∈ Γ(S(∂t))

(4.7) h∗(X,Y ) + h(X,Y ) = h1(X,Y ) + h2(X,Y ).
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Using (3.8) and (3.9), comparing both sides with respect to the decomposition
(3.3) we get

(4.8) AEX = 2ANX + (ln f)′X, AEX = A∗ξ − (ln f)′X, X ∈ Γ(S(∂t)),

where we have used that h2(X,Y ) = (ln f)′ḡ(X,Y )∂t, which is obtained from
(2) in Lemma 2.1. (i) follows from the second equation. (ii) follows from adding
two equations. �

Theorem 4.5. Let (M, g, S(∂t)) be a lightlike hypersurface of M̄ . Then M is
totally umbilical in M̄ if and only if any leaf M ′ of S(∂t) is totally umbilical
in M̄ in such a way that M ′ is immersed in M̄ as a spacelike submanifold of
codimension 2.

Proof. Note that M ′ lies in a spacelike slice and any spacelike slice is totally
umbilcal in M̄ , i.e.,

(4.9) A∂tX = −(ln f)′X, ∀X ∈ Γ(S(∂t)).

Let n be a unit normal to M ′ in M̄ . Then n ∈ span{E, ∂t}. Putting
n = aE + b∂t for some functions on M ′, we have

AnX = aAEX + bA∂tX, ∀X ∈ Γ(S(∂t)).

Substituting (4.8) and (4.9) into this equation, we obtain

AnX = aA∗ξX − (a+ b)(ln f)′X,

which completes the proof. �

Proposition 4.6. Let (M, g, S(∂t)) be a lightlike hypersurface of M̄ . If η is
parallel, i.e., ∇̄Xη = 0 for any X ∈ Γ(TM), then the warping function f is
constant.

Proof. Differentiating η(Y ) = ḡ(Y,N) in the direction X and our assumption
yield

(4.10) −ḡ(Y,ANX) + τ(X)ḡ(Y,N) = 0, ∀X,Y ∈ Γ(TM).

Putting X = ξ = Y in this equation, we have τ(ξ) = 0. But τ(ξ) = (ln f)′.
Hence f is constant. �

Corollary 4.7. Let (M, g, S(∂t)) be a lightlike hypersurface of M̄ . If η is
parallel, then S(∂t) and M are both totally geodesic in M and M̄ , respectively.

Proof. Since the warping function f is constant, it follows from (i) in Propo-
sition 4.1 that τ(X) = 0 for any X ∈ Γ(TM). Hence we obtain from (4.10)
that ANX = 0, which and (ii) in Proposition 4.1 imply that A∗ξX = 0 for any

X ∈ Γ(TM). Therefore we complete the proof. �

Remark 4.8. If the warping function f is constant, then Proposition 4.1(ii)
shows that ANX = 1

2A
∗
ξX, X ∈ Γ(TM), i.e., (M,S(∂t)) is screen globally

conformal with constant conformal weight 1
2 . In this case, M is globally a

product C ×M ′, where C is a null curve and M ′ is a leaf of S(∂t) ([1]).
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B. If we take a vector field ζ = f∂t instead of ∂t, then we can also take the
unique null vector field ξ̄ ∈ Γ(TM) such that

(4.11) ḡ(ζ, ξ̄) = 1.

Moreover the lightlike transversal vector field denoted by N̄ corresponding
to ξ̄ is given by

(4.12) N̄ = ζ +
1

2
f2ξ̄.

Differentiating (4.11) in the direction X ∈ Γ(TM), we have

(4.13) −AN̄X + τ̄(X)N̄ = f ′X + f(Xf)ξ̄ − 1

2
f2(A∗ξ̄X + τ̄(X)ξ),

where we have used (2.2) and τ̄ is a 1-form with respect to ξ̄.

Proposition 4.9. Let (M, g, S(∂t)) be a lightlike hypersurface of M̄ . Then we
have for the pair (ξ̄, N̄) and for any X ∈ Γ(TM)

(i) τ̄(X) = 0,
(ii) AN̄X = −f ′PX + 1

2f
2A∗

ξ̄
X,

(iii) fφX = −η̄(X).

Proof. The proof is similar to that of Proposition 4.1. �

Corollary 4.10. Let (M, g, S(∂t)) be a lightlike hypersurface of M̄ . Then for
the pair (ξ̄, N̄) the Ricci tensor of the induced connection is symmetric.

Proof. The proof follows from (i) in Proposition 4.8. �

Remark 4.11. (i) The Ricci tensor does not depend on the choice of the lightlike
section ξ ([2]).

(ii) We note that B and τ depend on the section ξ, in our case ξ̄ = 1
f ξ, it

follows that N̄ = fN and B̄ = 1
fB and τ(X) = τ̄(X) + (ln f)′η(X).

Proposition 4.12. Let (M, g, S(∂t)) be a lightlike hypersurface of M̄ . For the
pair (ξ̄, N̄) if η̄ is parallel, then S(∂t) is totally geodesic in M and M is totally
umbilical in M̄ .

Proof. The proof is similar to that of Corollary 4.7. �

5. Applications to lightlike hypersurfaces of a RW spacetime

In this section we shall investigate the structure equations of lightlike hy-
persurfaces with a specific screen distribution S(∂t) of a Robertson-Walker
space-time M̄(c, f) and apply those results acquired in the previous section to
lightlike hypersurfaces of M̄(c, f).

Substituting (2.2) into (3.12), we have respectively

R(X,Y )Z = α(g(Y,Z)X − g(X,Z)Y ) +B(Y,Z)ANX −B(X,Z)ANY(5.1)

+ β{φXφZY − φY φZX −
1

2
(φXg(Y,Z)− φY g(X,Z))ξ},
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β{g(Y, Z)φX − g(X,Z)φY }(5.2)

= (∇XB)(Y,Z)− (∇YB)(X,Z) +B(Y,Z)τ(X)−B(X,Z)τ(Y )

for any vector fields X,Y, Z ∈ Γ(TM).
Also from (3.13) and (5.1) we obtain respectively

R∗(X,Y )PZ = α(g(Y,Z)PX − g(X,Z)PY ) +B(Y,Z)ANX(5.3)

−B(X,Z)ANY + C(Y, PZ)A∗ξX − C(X,PZ)A∗ξY,

(α+
β

2
)(g(Y,Z)η(X)− g(X,Z)η(Y ))(5.4)

= (∇XC)(Y, PZ)− (∇Y C)(X,PZ) + C(X,PZ)τ(Y )− C(Y, PZ)τ(X)

for any vector fields X,Y, Z ∈ Γ(TM), where we have used Proposition 4.1
(iii).

Proposition 5.1. Let (M, g, S(∂t)) be a lightlike hypersurface of M̄(c, f). If
the second fundamental form h of M is parallel, i.e., ∇Xh = 0 for any tangent
vector field X to M , then β = 0, i.e., M̄(c, f) is of constant curvature.

Proof. Since (∇Xh)(Y,Z) = 0 for any X,Y, Z ∈ Γ(TM) is equivalent to

(∇XB)(Y,Z) +B(Y, Z)τ(X) = 0,

it follows from (5.2) that

β{g(Y,Z)φX − g(X,Z)φY } = 0.

This equation with Y = Z = PZ 6= 0 and X = ξ gives β = 0. Hence Remark
2.3(i) shows that M̄(c, f) is of constant curvature. �

Proposition 5.2. Let (M, g, S(∂t)) be a lightlike hypersurface of M̄(c, f). If
the screen second fundamental form h∗ is parallel, i.e., ∇Xh∗ = 0 for any
tangent vector field X to M , then 2α+ β = 0.

Proof. Assume that the screen second fundamental form h∗ is parallel, i.e.,
(∇Xh)(Y, PZ) = 0 for any X,Y, Z ∈ Γ(TM), which is equivalent to

(∇XC)(Y, PZ)− C(Y, PZ)τ(X) = 0.

It follows from (5.4) that

(α+
β

2
)(g(Y,Z)η(X)− g(X,Z)η(Y )) = 0,

from which putting Y = Z = PZ 6= 0 and X = ξ gives 2α+ β = 0. �

Proposition 5.3. Let (M, g, S(∂t)) be a lightlike hypersurface of M̄(c, f).
Then each 1-form τ induced by S(∂t) is closed, i.e., dτ = 0.
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Proof. From (5.1) we have

ḡ(R(X,Y )ξ,N) = 0

with the aid of (iii) in Proposition 4.1. Also Proposition 4.1(ii) gives

C(X,A∗ξY ) = C(Y,A∗ξX).

Hence (3.16) with these results shows that dτ = 0. �

Proposition 5.4. Let (M, g, S(∂t)) be a lightlike hypersurface of M̄(c, f).
Then

(∇XB)(Y,Z) = (∇YB)(X,Z), ∀X,Y ∈ Γ(S(∂t)),∀Z ∈ Γ(TM),

(∇XC)(Y, Z) = (∇Y C)(X,Z), ∀X,Y, Z ∈ Γ(S(∂t)).

Proof. These are clear from (5.2) and (5.4), respectively. �

Proposition 5.5. Let (M, g, S(∂t)) be a lightlike hypersurface of M̄(c, f).
Then M is totally umbilical, then each leaf M ′ (dimM ′ > 2) of the distribution
S(∂t) as a submanifold of each slice (St, f

2(t)gc) is of constant curvature.

Proof. The assumption and Theorem 4.4(i) implies that each leaf M ′ of S(∂t)
is totally umbilical in a spacelike slice St. But St is of constant curvature for
each t ∈ I. Hence Schur’s theorem shows M ′ is of constant curvature. In fact,
putting B(X,Y ) = λg(X,Y ) for some smooth function λ and ∀X,Y ∈ Γ(TM).
Then from (5.3) and (ii) in Proposition 4.1 we obtain

R∗(X,Y )Z = C(t, λ){g(Y, Z)X − g(X,Z)Y }, ∀X,Y, Z ∈ Γ(S(∂t)),

where C(t, λ) = λ2 − 2(ln f)′λ+ α. C(t, λ) is constant for a fixed t. �

Theorem 5.6. Let (M, g, S(∂t)) be a lightlike hypersurface of M̄(c, f) with
dimM > 2. If M̄(c, f) is a space of constant curvature, i.e., β = 0 and M is
totally umbilical, then M is Einstein.

Proof. For any X,Y ∈ Γ(TM) the Ricci tensor on M is given by

Ric(X,Y ) =

n∑
i=1

g(R(Ei, X)Y,Ei) + ḡ(R̄(ξ,X)Y,N),

where {ξ, E1, . . . , En} is an orthonormal frame field inM adapted to S(∂t), that
is, {E1, . . . , En} (n > 1) is the orthonormal frame field of S(∂t). Substituting
(2.3) and (5.10) into the equation, we obtain

Ric(X,Y ) = (n+ 2)αg(X,Y ) +B(X,Y )trAN − g(A∗ξY,ANX).

Putting B(X,Y ) = λg(X,Y ) in this equation, we have from Proposition 4.1(ii)

Ric(X,Y ) = Λg(X,Y ),

where Λ = (n + 2)α + (n − 1)λµ, µ = λ
2 − (ln f)′. Thus we complete the

proof. �
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Remark 5.7. In [8], the authors define a new lightlike hypersurface of a
Robertson-Walker space-time M̄(c, f) as follows:

A lightlike hypersurface (M, g, S(TM)) of M̄(c, f) is said to be horizontally
lightlike hypersurface if ∂t lies in span{ξ,N}.

This note shows that it is possible for a lightlike hypersurface M to be a
horizontally lightlike hypersurface M̄(c, f) by choosing an appropriate screen
distribution.
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