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ON SLANT CURVES IN S-MANIFOLDS

Şaban Güvenç and Cihan Özgür

Abstract. In this paper, we consider biharmonic slant curves in S-space

forms. We obtain a main theorem, which gives us four different cases to

find curvature conditions for these curves. We also give examples of slant
curves in R2n+s(−3s).

1. Introduction

J. Eells and L. Maire suggested k-harmonic maps in 1983 [6]. Following
their idea, G. Y. Jiang obtained bitension field equation in 1986 [11]. On the
other hand, in [4], Chen defined a biharmonic submanifold of Euclidean space
as ∆H = 0, where H is the mean curvature vector field and ∆ is the Laplace
operator. If the ambient space is Euclidean, then Jiang’s and Chen’s results
coincide.

J. T. Cho, J. Inoguchi and J. E. Lee defined slant curves in Sasakian man-
ifolds as a generalization of Legendre curves in 2006 [5]. In a 3-dimensional
Sasakian manifold, they proved that a non-geodesic curve is slant if and only if
the ratio of (τ ± 1) and k is constant, where k and τ are the geodesic curvature
and torsion of the curve, respectively. In their study, they also gave examples
of a slant helix and a non-helix slant curve.

D. Fetcu studied biharmonic Legendre curves in Sasakian space forms in 2008
[8]. He proved the non-existence of such a curve in 7-dimensional 3-Sasakian
manifold. In the same paper, he also obtained parametric equations for some
biharmonic Legendre curves in 7-dimensional sphere. Furthermore, D. Fetcu
and C. Oniciuc considered biharmonic submanifolds of Sasakian space forms
in 2009 [9]. Their method of studying Legendre curves leads the idea of four
cases in our present paper.

Motivated by these studies, we focus our interest on biharmonic slant curves
in S-space forms. We obtain curvature characterizations of these kinds of
curves. The paper is organized as follows: In Section 2, we give brief introduc-
tion about biharmonic maps and S-space forms. In Section 3, we define slant
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curves of S-manifolds and give two non-trivial examples. Finally, in Section 4,
we find curvature characterizations of slant curves in S-space forms.

2. Biharmonic maps and S-space forms

Let φ : (M, g) → (N,h) be a smooth map between two Riemannian mani-
folds (M, g) and (N,h). The energy functional of φ is given by

E(φ) =
1

2

∫
M

|dφ|2 υg.

φ is called harmonic if it is a critical point of its energy functional [7]. Moreover,
φ is said to be a biharmonic map if it is a critical point of its bienergy functional

E2(φ) =
1

2

∫
M

|τ(φ)|2 υg.

Here, τ(φ) is the first tension field of φ given by τ(φ) = trace∇dφ. The bihar-
monic map equation [11]

τ2(φ) = −Jφ(τ(φ)) = −∆τ(φ)− traceRN (dφ, τ(φ))dφ = 0,

is derived using the Euler-Lagrange equation of the bienergy functional E2(φ),
where Jφ denotes the Jacobi operator of φ. Harmonic maps are directly bihar-
monic. Thus, we call non-harmonic biharmonic maps proper biharmonic.

Let (M, g) be a (2m+ s)-dimensional Riemann manifold. It is called framed
metric manifold [16] with a framed metric structure (ϕ, ξα, η

α, g), α∈{1, . . . , s},
if it satisfies the following equations:

(2.1) ϕ2 = −I +
s∑

α=1
ηα ⊗ ξα, ηα(ξβ) = δαβ , ϕ (ξα) = 0, ηα ◦ ϕ = 0,

(2.2) g(ϕX,ϕY ) = g(X,Y )−
s∑

α=1

ηα(X)ηα(Y ),

(2.3) dηα(X,Y ) = g(X,ϕY ) = −dηα(Y,X), ηα(X) = g(X, ξ).

Here, ϕ is a (1, 1) tensor field of rank 2m; ξ1, . . . , ξs are vector fields; η1, . . . , ηs

are 1-forms and g is a Riemannian metric on M ; X,Y ∈ TM and α, β ∈
{1, . . . , s}. (M2m+s, ϕ, ξα, η

α, g) is also said to be framed ϕ-manifold [13] or
almost r-contact metric manifold [15]. (ϕ, ξα, η

α, g) is called S-structure, when
the Nijenhuis tensor of ϕ is equal to −2dηα ⊗ ξα for all α ∈ {1, . . . , s} [2].

In case of s = 1, a framed metric structure becomes an almost contact metric
structure and an S-structure becomes a Sasakian structure. For an S-structure,
the following equations are valid [2]:

(2.4) (∇Xϕ)Y =

s∑
α=1

{
g(ϕX,ϕY )ξα + ηα(Y )ϕ2X

}
,

(2.5) ∇ξα = −ϕ, α ∈ {1, . . . , s} .
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In Sasakian case (s = 1), (2.5) can be directly obtained from (2.4).
A plane section in TpM is called a ϕ-section if there exists a vector X ∈ TpM

orthogonal to ξ1, . . . , ξs such that {X,ϕX} span the section. The sectional
curvature of a ϕ-section is called a ϕ-sectional curvature. An S-manifold of
constant ϕ-sectional curvature has the curvature tensor R given by

(2.6)

R(X,Y )Z =
∑
α,β

{
ηα(X)ηβ(Z)ϕ2Y − ηα(Y )ηβ(Z)ϕ2X

−g(ϕX,ϕZ)ηα(Y )ξβ + g(ϕY, ϕZ)ηα(X)ξβ}

+
c+ 3s

4

{
−g(ϕY, ϕZ)ϕ2X + g(ϕX,ϕZ)ϕ2Y

}
+
c− s

4
{g(X,ϕZ)ϕY − g(Y, ϕZ)ϕX + 2g(X,ϕY )ϕZ}

for X,Y, Z ∈ TM [3]. An S-manifold of constant ϕ-sectional curvature c is
called an S-space form and it is denoted by M(c). If s = 1, an S-space form
turns into a Sasakian space form [1].

3. Slant curves of S-manifolds

Let γ : I → M be a unit-speed curve in an n-dimensional Riemannian
manifold (M, g). γ is called a Frenet curve of osculating order r; if there exist
orthonormal vector fields v1, v2, . . . , vr along γ satisfying Frenet equations given
by

v1 = γ′,

∇v1v1 = k1v2,

∇v1v2 = −k1v1 + k2v3,(3.1)

· · ·
∇v1vr = −kr−1vr−1,

where k1, . . . , kr−1 are positive functions and 1 ≤ r ≤ n.
i) A geodesic is a Frenet curve of osculating order 1.
ii) A circle is a Frenet curve of osculating order 2 if k1 is a non-zero positive

constant.
iii) A helix of order r is a Frenet curve of osculating order r ≥ 3 if k1, . . . , kr−1

are non-zero positive constants. A helix of order 3 is shortly called a helix.

A submanifold of an S-manifold is called an integral submanifold if ηα(X) =
0, α ∈ {1, . . . , s} , where X denotes tangent vectors of the submanifold [12].
A 1-dimensional integral submanifold of an S-space form (M2m+s, ϕ, ξα, η

α, g)
is called a Legendre curve of M . More precisely, a curve γ : I → M =
(M2m+s, ϕ, ξα, η

α, g) is a Legendre curve if v1 ⊥ ξα for all α = 1, . . . , s, where
v1 is the tangent vector field of γ [14].

Now, we can give the following new definition:
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Definition 3.1. Let γ be a unit-speed curve in an S-manifold

M = (M2m+s, ϕ, ξα, η
α, g).

We call γ a slant curve, if there exists a constant angle θ such that ηα(v1) =
cos θ for all α = 1, . . . , s. Here θ is called the contact angle of γ.

From the definition, it is obvious that every Legendre curve is slant with
contact angle π

2 .
We can state the following essential proposition for slant curves:

Proposition 3.1. Let M = (M2m+s, ϕ, ξα, η
α, g) be an S-manifold. If θ is the

contact angle of a non-geodesic unit-speed slant curve in M , then

−1√
s
< cos θ <

1√
s
.

Proof. Let γ be a non-geodesic unit-speed slant curve with contact angle θ in
M . Using equation (2.2), we find

g(ϕv1, ϕv1) = g(v1, v1)−
s∑

α=1

ηα(v1)ηα(v1)

= 1− s cos2 θ.

Since g is non-degenerate, we have 1− s cos2 θ ≥ 0. The equality case leads to
a contradiction since γ is non-geodesic. Thus, we have

cos2 θ <
1

s
.

�

Now, we will obtain non-trivial examples of slant curves in R2n+s(−3s). Let
us consider M = R2n+s with coordinate functions {x1, . . . , xn, y1, . . . , yn, z1 ,
, . . . zs} and define

ξα = 2
∂

∂zα
, α = 1, . . . , s,

ηα =
1

2

(
dzα −

n∑
i=1

yidxi

)
, α = 1, . . . , s,

ϕX =

n∑
i=1

Yi
∂

∂xi
−

n∑
i=1

Xi
∂

∂yi
+

(
n∑
i=1

Yiyi

)(
s∑

α=1

∂

∂zα

)
,

g =

s∑
α=1

ηα ⊗ ηα +
1

4

n∑
i=1

(dxi ⊗ dxi + dyi ⊗ dyi) ,

where

X =

n∑
i=1

(
Xi

∂

∂xi
+ Yi

∂

∂yi

)
+

s∑
α=1

(
Zα

∂

∂zα

)
∈ χ(M).



ON SLANT CURVES IN S-MANIFOLDS 297

It is known that
(
R2n+s, ϕ, ξα, η

α, g
)

is an S-space form with constant ϕ-

sectional curvature c = −3s and it is denoted by R2n+s(−3s) [10]. The vector
fields

Xi = 2
∂

∂yi
, Xn+i = ϕXi = 2(

∂

∂xi
+ yi

s∑
α=1

∂

∂zα
), ξα = 2

∂

∂zα

form a g-orthonormal basis and the Levi-Civita connection is calculated as

∇XiXj = ∇Xn+iXn+j = 0,∇XiXn+j = δij

s∑
α=1

ξα,∇Xn+iXj = −δij
s∑

α=1

ξα,

∇Xiξα = ∇ξαXi = −Xn+i,∇Xn+i
ξα = ∇ξαXn+i = Xi

(see [10]). Let γ : I → R2n+s(−3s) be a slant curve with contact angle θ. Let
us denote

γ(t) = (γ1(t), . . . , γn(t), γn+1(t), . . . , γ2n(t), γ2n+1(t), . . . , γ2n+s(t)) ,

where t is the arc-length parameter. The tangent vector field of γ is

v1 = γ′1
∂

∂x1
+· · ·+γ′n

∂

∂xn
+γ′n+1

∂

∂y1
+· · ·+γ′2n

∂

∂yn
+γ′2n+1

∂

∂z1
+· · ·+γ′2n+s

∂

∂zα
.

In terms of the g-orthonormal basis, v1 can be written as

v1 =
1

2

[
γ′n+1X1 + · · ·+ γ′2nXn + γ′1Xn+1 + · · ·+ γ′nX2n

+
(
γ′2n+1 − γ′1γn+1 − · · · − γ′nγ2n

)
ξ1 + · · ·

+
(
γ′2n+s − γ′1γn+1 − · · · − γ′nγ2n

)
ξs
]
.

Since γ is slant, we obtain

ηα(v1) =
1

2

(
γ′2n+α − γ′1γn+1 − · · · − γ′nγ2n

)
= cos θ

for all α = 1, . . . , s. Thus, we have

γ′2n+1 = · · · = γ′2n+s = γ′1γn+1 + · · ·+ γ′nγ2n + 2 cos θ.

Since γ is a unit-speed curve, we can write

(γ′1)
2

+ · · ·+ (γ′2n)
2

= 4
(
1− s cos2 θ

)
.

So, we have the following examples:

Example 3.1. Let n = 1 and s = 2. Then, γ : I → R4(−6), γ(t) =(√
2t, 0, t, t

)
is a slant circle with k1 =

√
2 and its contact angle is π

3 .

Example 3.2. The curve γ : I → R4(−6), γ(t) = (γ1(t), γ2(t), γ3(t), γ4(t)) is
a slant curve with contact angle θ, where

γ1(t) = c1 + 2
√
− cos 2θ

∫ t

t0

cosu(p)dp,
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γ2(t) = c2 + 2
√
− cos 2θ

∫ t

t0

sinu(p)dp,

γ3(t) = γ4(t) + c3

= c4 + 2t cos θ

+ 2
√
− cos 2θ

∫ t

t0

cosu(q)

(
c2 + 2

√
− cos 2θ

∫ q

t0

sinu(p)dp

)
dq,

cos θ ∈
(
−1/
√

2, 1/
√

2
)
,

t0 ∈ I, c1, c2, c3 and c4 are arbitrary constants.

4. Biharmonic slant curves in S-space forms

Now, let us take an S-space form (M2m+s, ϕ, ξα, η
α, g) and a curve γ : I →

M which is a slant Frenet curve of osculating order r. Differentiating

(4.1) ηα(v1) = cos θ

and using (3.1), we find

(4.2) ηα(v2) = 0, α ∈ {1, . . . , s} .

Then, (2.1) and (4.2) give us

(4.3) ϕ2v2 = −v2.

Using equations (2.1), (2.2), (2.3), (2.6), (3.1), (4.2) and (4.3), we can easily
calculate

∇v1∇v1v1 = − k2
1v1 + k′1v2 + k1k2v3,

∇v1∇v1∇v1v1 = − 3k1k
′
1v1 +

(
k′′1 − k3

1 − k1k
2
2

)
v2

+ (2k′1k2 + k1k
′
2) v3 + k1k2k3v4,

R(v1,∇v1v1)v1 = − k1

[
s2 cos2 θ +

c+ 3s

4
(1− s cos2 θ)

]
v2

− 3k1
(c− s)

4
g(ϕv1, v2)ϕv1.

So, we get

τ2(γ) = ∇v1∇v1∇v1v1 −R(v1,∇v1v1)v1

= − 3k1k
′
1v1

+

(
k′′1 − k3

1 − k1k
2
2 + k1

[
s2 cos2 θ +

c+ 3s

4
(1− s cos2 θ)

])
v2(4.4)

+ (2k′1k2 + k1k
′
2)v3 + k1k2k3v4

+ 3k1
(c− s)

4
g(ϕv1, v2)ϕv1.
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Let k = min {r, 4}. From (4.4), the curve γ is proper biharmonic if and only if
k1 > 0 and

(1) c = s or ϕv1 ⊥ v2 or ϕv1 ∈ span {v2, . . . , vk}; and
(2) g(τ2(γ), vi) = 0 for any i = 1, . . . , k.
So we can state the following theorem:

Theorem 4.1. Let γ be a slant curve of osculating order r in an S-space form
(M2m+s, ϕ, ξα, η

α, g), α ∈ {1, . . . , s} and k = min {r, 4}. Then γ is proper
biharmonic if and only if

(1) c = s or ϕv1 ⊥ v2 or ϕv1 ∈ span {v2, . . . , vk}; and
(2) the first k of the following equations are satisfied (replacing kk = 0):

k1 = constant > 0,

k2
1 + k2

2 = s2 cos2 θ +
c+ 3s

4
(1− s cos2 θ) +

3(c− s)
4

[g(ϕv1, v2)]
2

,

k′2 +
3(c− s)

4
g(ϕv1, v2)g(ϕv1, v3) = 0,

k2k3 +
3(c− s)

4
g(ϕv1, v2)g(ϕv1, v4) = 0.

We have four cases to investigate results of Theorem 4.1.

Case I. c = s.
Let c = s. Then, γ is proper biharmonic if and only if following equations

hold:
k1 = constant > 0,

k2
1 + k2

2 = s,

k2 = constant,

k2k3 = 0.

Using these last four equations, we can state the following theorem:

Theorem 4.2. Let γ be a slant curve in an S-space form (M2m+s, ϕ, ξα, η
α, g),

α ∈ {1, . . . , s} , c = s. Then γ is proper biharmonic if and only if either γ is a
circle with k1 =

√
s, or a helix with k2

1 + k2
2 = s. Moreover, if γ is Legendre,

then 2m+ s > 3.

Remark 4.1. If 2m+s = 3, then m = s = 1. So M is a 3-dimensional Sasakian
space form. Since a Legendre curve in a Sasakian 3-manifold has torsion 1 (see
[1]), we can write k1 > 0 and k2 = 1, which contradicts k2

1 +k2
2 = s = 1. Hence

γ cannot be proper biharmonic.

Case II. c 6= s, ϕv1 ⊥ v2.
Let us assume that g(ϕv1, v2) = 0. Theorem 4.1 gives us

k1 = constant > 0,(4.5)

k2
1 + k2

2 = s2 cos2 θ +
c+ 3s

4
(1− s cos2 θ),
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k2 = constant,

k2k3 = 0.

We have the following proposition in this case:

Proposition 4.1. Let γ be a slant curve of osculating order 3 in an S-space
form (M2m+s, ϕ, ξα, η

α, g), α ∈ {1, . . . , s} and ϕv1 ⊥ v2. Then {v1, v2, v3, ϕv1,
∇v1ϕv1, ξ1, . . . , ξs} is linearly independent at any point of γ. Hence m ≥ 3.

Therefore, we can give the following theorem:

Theorem 4.3. Let γ be a slant curve in an S-space form (M2m+s, ϕ, ξα, η
α, g),

α ∈ {1, . . . , s} , c 6= s and ϕv1 ⊥ v2. Then γ is proper biharmonic if and only
if either

(1) m ≥ 2 and γ is a circle with k1 = 1
2

√
c+ 3s− (c− s)s cos2 θ, where

c > −3s + (c − s)s cos2 θ and {v1 = v1, v2, ϕv1,∇v1ϕv1, ξ1, . . . , ξs} is linearly
independent; or

(2) m ≥ 3 and γ is a helix with k2
1 +k2

2 = c+3s−(c−s)s cos2 θ
4 , where c > −3s+

(c− s)s cos2 θ and {v1, v2, v3, ϕv1,∇v1ϕv1, ξ1, . . . , ξs} is linearly independent.

Case III. c 6= s, ϕv1 ‖ v2.

In this case, ϕv1 = ±
√

1− s cos2 θv2, g(ϕv1, v2) = ±(1−s cos2 θ), g(ϕv1, v3)
= 0 and g(ϕv1, v4) = 0. Using Theorem 4.1, γ is biharmonic if and only if

k1 = constant > 0,

k2
1 + k2

2 = c− s cos2 θ(c− s),
k2 = constant,

k2k3 = 0.

Let us choose ϕv1 =
√

1− s cos2 θv2. Equation (2.1) gives us

(4.6)
√

1− s cos2 θϕv2 = ϕ2v1 = −v1 +

s∑
α=1

ηα(v1)ξα = −v1 + cos θ

s∑
α=1

ξα.

Using (2.1), (2.2), (2.3) and (2.4), we find

(4.7) ∇v1ϕv1 = −s cos θv1 +
s∑

α=1

ξα + k1ϕv2.

From (4.6) and (4.7), we have

∇v1ϕv1 = −s cos θv1 +

s∑
α=1

ξα + k1

[
−1√

1− s cos2 θ
v1 +

cos θ√
1− s cos2 θ

s∑
α=1

ξα

]
=
√

1− s cos2 θ(−k1v1 + k2v3).(4.8)

Using (3.1) and (4.8), we can write

(4.9)

(
1 +

k1 cos θ√
1− s cos2 θ

)(
−s cos θv1 +

s∑
α=1

ξα

)
= k2

√
1− s cos2 θv3,
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which gives us the following theorem:

Theorem 4.4. Let γ be a slant curve in an S-space form (M2m+s, ϕ, ξα, η
α, g),

α ∈ {1, . . . , s} , c 6= s and ϕv1 ‖ v2. Then γ is proper biharmonic if and only if
it is one of the following:

i) a Legendre helix with the Frenet frame field{
v1, ϕv1,

1√
s

s∑
α=1

ξα

}
and k1 =

√
c− s and k2 =

√
s, where c > s;

ii) a non-Legendre slant circle with the Frenet frame field{
v1,

ϕv1√
1− s cos2 θ

}
and

k1 =
−
√

1− s cos2 θ

cos θ
=
√
c− s cos2 θ(c− s);

iii) a non-Legendre slant helix with the Frenet frame field{
v1,

ϕv1√
1− s cos2 θ

,
1

√
s
√

1− s cos2 θ

(
s∑

α=1

ξα − s cos θv1

)}
and

k2
1 + k2

2 = c− s cos2 θ(c− s).

Case IV. c 6= s, ϕv1 / v2 and g(ϕv1, v2) 6= 0.
Finally, let (M2m+s, ϕ, ξα, η

α, g) be an S-space form, α ∈ {1, . . . , s} and
γ : I →M a slant curve of osculating order r, where 4 ≤ r ≤ 2m+s and m ≥ 2.
In this case, γ is biharmonic if and only if ϕv1 ∈ span {v2, v3, v4} . We denote
the angle function between ϕv1 and v2 by µ(t); which means g(ϕv1, v2) =√

1− s cos2 θ cosµ(t). If we differentiate g(ϕv1, v2) along γ and use (2.1), (2.3),
(3.1), (4.7), we obtain

−
√

1− s cos2 θµ′(t) sinµ(t) = ∇v1g(ϕv1, v2) = g(∇v1ϕv1, v2) + g(ϕv1,∇v1v2)

= g(−s cos θv1 +

s∑
α=1

ξα + k1ϕv2, v2)(4.10)

+ g(ϕv1,−k1v1 + k2v3)

= k2g(ϕv1, v3).

We can write ϕv1 = g(ϕv1, v2)v2+g(ϕv1, v3)v3+g(ϕv1, v4)v4. So, the equations
in Theorem 4.1 become

k1 = constant > 0,

k2
1 + k2

2 = s2 cos2 θ +
c+ 3s

4
(1− s cos2 θ) +

3(c− s)
4

[g(ϕv1, v2)]
2

,
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k′2 +
3(c− s)

4
g(ϕv1, v2)g(ϕv1, v3) = 0,

k2k3 +
3(c− s)

4
g(ϕv1, v2)g(ϕv1, v4) = 0.

Multiplying the third equation of the above system with 2k2 and using (4.10),
we have

2k2k
′
2 +

√
1− s cos2 θ

3(c− s)
4

(−2µ′ cosµ sinµ) = 0,

which gives us

(4.11) k2
2 = −

√
1− s cos2 θ

3(c− s)
4

cos2 µ+ ω0,

where ω0 is a constant. If we write (4.11) in the second equation, we have

k2
1 = s2 cos2 θ +

c+ 3s

4
(1− s cos2 θ) +

3(c− s)
4

(
1− s cos2 θ

+
√

1− s cos2 θ
)

cos2 µ+ ω0.

Hence µ is a constant. From (4.10) and (4.11), we have g(ϕv1, v3) = 0 and

k2 =constant> 0. Since ‖ϕv1‖ =
√

1− s cos2 θ and ϕv1 =
√

1− s cos2 θ cosµv2

+g(ϕv1, v4)v4, we obtain g(ϕv1, v4) =
√

1− s cos2 θ sinµ. Because of the fact
that ϕv1 / v2 and g(ϕv1, v2) 6= 0, it is obvious that µ ∈ (0, 2π)\

{
π
2 , π,

3π
2

}
. As

a result, we can give the following theorem:

Theorem 4.5. Let γ : I → M be a slant curve of osculating order r in an
S-space form (M2m+s, ϕ, ξα, η

α, g), α ∈ {1, . . . , s} , where r ≥ 4, m ≥ 2, c 6= s,
ϕv1 / v2 and g(ϕv1, v2) 6= 0. Then γ is proper biharmonic if and only if

kλ = constant > 0, λ ∈ {1, 2, 3} ,

k2
1 + k2

2 = s2 cos2 θ +
c+ 3s

4
(1− s cos2 θ)

+
3(c− s)

4
(1− s cos2 θ) cos2 µ,

k2k3 =
3(s− c)

8
(1− s cos2 θ) sin 2µ,

where ϕv1 =
√

1− s cos2 θ cosµv2+
√

1− s cos2 θ sinµv4, µ ∈ (0, 2π)\
{
π
2 , π,

3π
2

}
is a constant.
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