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NON-ZERO CONSTANT CURVATURE FACTORABLE

SURFACES IN PSEUDO-GALILEAN SPACE

Muhittin Evren Aydin, Mihriban Kulahci, and Alper Osman Ogrenmis

Abstract. Factorable surfaces, i.e. graphs associated with the product

of two functions of one variable, constitute a wide class of surfaces in
differential geometry. Such surfaces in the pseudo-Galilean space with

zero Gaussian and mean curvature were obtained in [2]. In this study,
we provide new results relating to the factorable surfaces with non-zero

constant Gaussian and mean curvature.

1. Introduction

One of challenging problems in classical differential geometry has been ob-
taining surfaces with prescribed Gaussian (K) and mean curvature (H). Let
E3 (x, y, z) be a Euclidean 3-space and z = z (x, y) a real-valued smooth func-
tion of two independent variables. In particular, for the immersed graph of z
into E3, such a problem is reduced to solve the Monge-Ampère equation given
by ([25, 28])

det

(
∂z

∂ui∂uj

)
= K

(
1 + |∇z|2

)2
, u1 = x, u2 = y

and the equation of mean curvature type in divergence form

div

 ∇z√
1 + |∇z|2

 = H,

where ∇ denotes the gradient of E2 ([17, 26, 27]). These equations are also
related to the branches such as economics, meteorology, oceanography etc.
[4, 5, 6, 7, 8].

Recall that the graph surfaces are also known as Monge surfaces (see [14],
p. 398). In this study, we deal with a special Monge surface, namely factorable
surface that is graph of the form z (x, y) = f (x) g (y) for smooth functions f, g.
Such surfaces in various ambient spaces with K,H = const. have been classified
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in [3, 13, 15, 18, 19, 29, 32, 33]. Our purpose is to analyze the factorable surfaces
in the pseudo-Galilean space G1

3 that is one of real Cayley-Klein spaces (for
details, see [12, 16, 24, 30]). As distinct from the other ambient spaces, there
exist two different kinds of factorable surfaces arising from the absolute figure
of G1

3. Explicitly, a Monge surface in G1
3 is said to be factorable if it is given in

one of the explicit forms

Ω1 : z (x, y) = f (x) g (y) and Ω2 : x (y, z) = f (y) g (z) .

We call Ω1 and Ω2 the factorable surface of first and second kind, respectively.
Note that these surfaces have different geometric structures in G1

3 (such as
metric, curvature etc.). Flat and minimal (K,H = 0) factorable surfaces in G1

3

were presented in [2]. Still, obtaining such surfaces with K,H = const. 6= 0 is
an open problem. The present paper is devoted to solve this problem.

2. Preliminaries

In this section, some basics of the pseudo-Galilean geometry shall be pro-
vided from [1, 9, 10, 11, 20, 21, 31]. In particular, the local theory of immersed
surfaces into a pseudo-Galilean space was well-structured in [22].

Let P3 (R) denote the real projective 3-space and (u0 : u1 : u2 : u3) the ho-
mogeneous coordinates in P3 (R) . The pseudo-Galilean 3-space G1

3 is a met-
ric space constructed within P3 (R) having the absolute figure {σ, l, ε} , where
σ implies the absolute plane of G1

3, l absolute line in σ and ε is the hyper-
bolic involution of the points of l. These arguments are given by σ : u0 = 0,
l : u0 = u1 = 0 and

ε : (u0 : u1 : u2 : u3) 7−→ (u0 : u1 : u3 : u2) .

The affine model of G1
3 can be introduced by changing homogenous coordinates

with affine coordinates:

(u0 : u1 : u2 : u3) = (1 : x : y : z) .

In terms of the affine coordinates, the group of motions is defined by

(2.1)

 x′ = a1 + x,
y′ = a2 + a3x+ (cosh θ) y + (sinh θ) z,
z′ = a4 + a5x+ (sinh θ) y + (cosh θ) z,

where ai, i ∈ {1, . . . , 5} and θ are some constants. The pseudo-Galilean distance
is introduced with respect to the absolute figure, namely

d (x, y) =


|x2 − x1| , if x1 6= x2,√∣∣∣(y2 − y1)

2 − (z2 − z1)
2
∣∣∣, if x1 = x2,

where x = (x1, y1, z1) and y = (x2, y2, z2) . Note that this metric (also the
absolute figure) is invariant under (2.1).

A plane is said to be pseudo-Euclidean if it satisfies the equation x = const.
Otherwise, it is called isotropic plane. A pseudo-Euclidean plane basically has
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Minkowskian metric while an isotropic plane has Galilean metric, i.e., parabolic
measures of distances and angles. Contrary to its denotation, the isotropic
vectors are contained in the pseudo-Euclidean plane x = 0 and, up to the
induced Minkowskian metric on this plane, such vectors are categorized by
their causal characters, i.e., spacelike, timelike and lightlike. For further details
of the Minkowskian geometry, see [23].

An immersed surface into G1
3 is given by the mapping

r : D ⊆ R2 −→ G1
3, (u1, u2) 7−→ (x (u1, u2) , y (u1, u2) , z (u1, u2))

and such a surface is said to be admissible (i.e., without pseudo-Euclidean
tangent plane) if x,i = ∂x

∂ui
6= 0 for some i = 1, 2. The first fundamental form

is given by

ds2 = (g1du1 + g2du2)
2

+ ω
(
h11du

2
1 + 2h12du1du2 + h22du

2
2

)
,

where gi = x,i, hij = y,iy,j + z,iz,j , i, j = 1, 2, and

ω =

{
0, if du1 : du2 is non-isotropic direction,
1, if du1 : du2 is isotropic direction.

A side tangent vector field in the tangent plane of the surface r is of the
form x,1r,2 − x,2r,1. Its pseudo-Galilean norm corresponds to

W =

√∣∣∣(x,1y,2 − x,2y,1)
2 − (x,1z,2 − x,2z,1)

2
∣∣∣.

A surface with W = 0 is said to be lightlike. Throughout the study, all im-
mersed admissible surfaces shall be assumed to be non-lightlike. Then the
vector given by

S =
x,1r,2 − x,2r,1

W
=

1

W
(0, x,1y,2 − x,2y,1, x,1z,2 − x,2z,1) ,

satisfies S · S = ε = {−1, 1} , where “ · ” denotes the Minkowskian scalar
product. Hence a surface is said to be spacelike (timelike) if ε = 1 (ε = −1).
The normal vector field is defined as

N =
1

W
(0, x,1z,2 − x,2z,1, x,1y,2 − x,2y,1)

such that N ·N = −ε. The second fundamental form is II =
∑2
i,j=1 Lijduiduj ,

where if g1 6= 0

Lij =
ε

g1
(g1 (0, y,ij , z,ij)− gi,j (0, y,1, z,1)) ·N,

otherwise
Lij =

ε

g2
(g2 (0, y,ij , z,ij)− gi,j (0, y,2, z,2)) ·N

for y,ij = ∂2y
∂ui∂uj

, 1 ≤ i, j ≤ 2. Consequently, the Gaussian and mean curvature

are defined as

K = −εL11L22 − L2
12

W 2
and H = −εg

2
2L11 − 2g1g2L12 + g21L22

2W 2
.



250 M. E. AYDIN, M. KULAHCI, AND A. O. OGRENMIS

A surface is said to have constant Gaussian (resp. mean) curvature if K (resp.
H) is a constant function identically. In particular, it is said to be flat (resp.
minimal) if the constant function vanishes.

3. Factorable surfaces of first kind

Let us consider the factorable surface of first kind in G1
3 given in explicit

form Ω1 : z (x, y) = f (x) g (y) . Our purpose is to describe such a surface with
K = const. 6= 0 and H = const. 6= 0. For this, firstly we can give the following
result:

Theorem 3.1. Let a factorable surface of first kind in G1
3 have non-zero con-

stant Gaussian curvature K0. Then we have:

z (x, y) = tanh
(
±
√
|K0|x+ λ1

)
(y + λ2) , λ1, λ2 ∈ R.

Proof. Assume that Ω1 has non-zero constant Gaussian curvature K0. Hence,
we get a relation as follows:

(3.1) K0 =
fgf ′′g′′ − (f ′g′)

2[
1− (fg′)

2
]2 ,

where f ′ = df
dx , g

′ = dg
dy , etc. K0 vanishes identically when f or g is a constant

function. Then f and g must be non-constant functions. We distinguish two
cases for the equation (3.1):

Case a. f ′ = f0, f0 ∈ R−{0} . Thereby (3.1) turns into the following polynomial
equation on (g′):

K0 +
(
f20 − 2K0f

2
)

(g′)
2

+K0f
4 (g′)

4
= 0,

which yields a contradiction.
Case b. f ′′ 6= 0. We have again two cases:

Case b.1. g′ = g0, g0 ∈ R− {0} . Then (3.1) leads to

(3.2) ±
√
|K0| =

g0f
′

1− (g0f)
2 .

After solving (3.2), we obtain

f (x) =
1

g0
tanh

(
±
√
|K0|x+ λ1

)
, λ1 ∈ R.

Case b.2. g′′ 6= 0. Then (3.1) can be arranged as follows:

(3.3)
K0

[
1− (fg′)

2
]2

ff ′′ (g′)
2 =

gg′′

(g′)
2 −

(f ′)
2

ff ′′
.
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The partial derivative of (3.2) with respect to x and y leads to a
polynomial equation on (g′):

(3.4) −
(

1

ff ′′

)′
+

(
f3

f ′′

)′
(g′)

4
= 0.

Since all coefficients must vanish in (3.4), the contradiction f ′ = 0
is obtained. Therefore the proof is completed. �

Theorem 3.2. Let a factorable surface of first kind in G1
3 have non-zero con-

stant mean curvature H0. Then the following occurs:

z (x, y) = f0g (y) =
1

2H0

√
(2H0y + λ1)

2 ± 1 + λ2,

where “ ± ” happens plus (resp. minus) when the surface is spacelike (resp.
timelike). Further, f0 is non-zero constant and λ1, λ2 some constants.

Proof. Relating to the mean curvature, we get

(3.5) H0 =
fg′′

2
∣∣∣1− (fg′)

2
∣∣∣ 32 .

It is clear from (3.5) that g is a non-linear function. By taking partial derivative
of (3.5) with respect to x, we deduce

(3.6) f ′
∣∣∣1− (fg′)

2
∣∣∣− 3f

∣∣∣ff ′ (g′)2∣∣∣ = 0,

which yields two cases:

Case a. f = f0 6= 0, f0 ∈ R, is a solution for (3.6). If the surface is spacelike,
then (3.5) turns to

(3.7) −2H0 =
f0g
′′[

1− (f0g′)
2
] 3

2

.

By solving (3.7), we find

g (y) =
1

2f0H0

√
(2H0y + λ1)

2
+ 1 + λ2,

where λ1 and λ2 are some constants. Otherwise, i.e., timelike situation
yields

(3.8) 2H0 =
f0g
′′[

(f0g′)
2 − 1

] 3
2

.

After solving (3.8), we obtain

g (y) =
1

2f0H0

√
(2H0y + λ3)

2 − 1 + λ4

for some constants λ3, λ4.
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Case b. f ′ 6= 0. If the surface is spacelike or timelike, then (3.6) implies

1 + 2 (fg′)
2

= 0,

which is not possible. �

4. Factorable surfaces of second kind

As in previous section we try to describe the factorable graph surfaces of
second kind in G1

3 given in explicit form Ω2 : x (y, z) = f (y) g (z), assuming
K = const. 6= 0 and H = const. 6= 0. Therefore the following non-existence
result can be stated:

Theorem 4.1. There does not exist a factorable surface of second kind in G1
3

having non-zero constant Gaussian curvature.

Proof. It is proved by contradiction. Then we suppose that Ω2 has the Gaussian
curvature K0 6= 0 in G1

3. By a calculation, relating to the Gaussian curvature,
we get

(4.1) K0 =
fgf ′′g′′ − (f ′g′)

2[
(fg′)

2 − (f ′g)
2
]2 ,

where f ′ = df
dy , g

′ = dg
dz and so on. Hereinafter f and g must be non-constant

functions so that K0 does not vanish. Point that the roles of f and g are
symmetric and it is sufficient to discuss the cases depending on f. Thus, if
f ′′ = 0, i.e., f ′ = f0 6= 0, then (4.1) turns to a polynomial equation on (f):

(4.2)
[
K0 (g′)

4
]
f4 −

[
2K0 (f0gg

′)
2
]
f2 +K0 (f0g)

4
+ (f0g

′)
2

= 0.

The fact that the coefficients must be zero yields the contradiction g′ = 0.
Hence f is a non-linear function and by symmetry, so is g. By dividing (4.1)

with ff ′′ (g′)
2
, we can write

(4.3) K0

[
f3

f ′′
(g′)

2 − 2
f (f ′)

2

f ′′
g2 +

(f ′)
4

ff ′′

(
g2

g′

)2
]

=
gg′′

(g′)
2 −

(f ′)
2

ff ′′
.

Put f ′ = p, ṗ = dp
df = f ′′

f ′ and g′ = r, ṙ = dr
dg = g′′

g′ in (4.3). Then the partial

derivative of (4.3) with respect to g gives

(4.4) K0

[
2
f3

pṗ
rṙ − 4

fp

ṗ
g + 2

p3

fṗ

(
g2

r

){
d

dg

(
g2

r

)}]
=

d

dg

(
gṙ

r

)
.

The partial derivative of (4.4) with respect to f yields

(4.5) rṙ

[
d

df

(
f3

pṗ

)]
− 2g

[
d

df

(
fp

ṗ

)]
+

[
d

df

(
p3

fṗ

)][(
g2

r

)
d

dg

(
g2

r

)]
= 0.
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By dividing (4.5) with g and taking partial derivative with respect to g, we
derive

(4.6)

[
d

df

(
f3

pṗ

)]
︸ ︷︷ ︸

F1(f)

G1(g)︷ ︸︸ ︷[
d

dg

(
rṙ

g

)]
+

[
d

df

(
p3

fṗ

)]
︸ ︷︷ ︸

F2(f)

G2(g)︷ ︸︸ ︷[
d

dg

{(g
r

) d

dg

(
g2

r

)}]
= 0.

We have to distinguish several cases:

Case a. F1 = 0. Then f3 = λ1pṗ, λ1 ∈ R, λ1 6= 0. We have again two cases:
Case a.1. F2 = 0, namely p3 = λ2fṗ, λ2 ∈ R, λ2 6= 0. Considering these in

(4.5) implies fp = λ3ṗ, λ3 ∈ R, λ3 6= 0. Substituting these into
(4.3) yields

(4.7) K0

[
λ1r

2 − 2λ3g
2 + λ2

(
g2

r

)2
]
− gṙ

r
=
−λ2
p2

.

The left side of (4.7) is either a function of g or a constant, however
other side is a non-constant function of f. This is not possible.

Case a.2. G2 = 0. It implies d
dg

(
g2

r

)
= λ4r

g , λ4 ∈ R. By considering this one

into (4.5) together with the assumption of Case a, we conclude

(4.8)

[
d

df

(
p

f

)][
1− λ4

(
p

f

)2
]

= 0.

If p = λ5f, λ5 ∈ R, λ5 6= 0, in (4.8) then we have ṗ = λ5.
Combining it with the assumption of Case a gives f2 = λ1λ

2
5 that

contradicts with K0 6= 0.
Case b. G1 = 0. Hence rṙ = λ1g, λ1 ∈ R, λ1 6= 0. We have two cases:

Case b.1. F2 = 0, i.e., p3 = λ2fṗ, λ2 ∈ R, λ2 6= 0. Then (4.5) follows

(4.9)

[
d

df

(
f

p

)][
λ1

(
f

p

)2

− 1

]
= 0.

If p = λ3f, λ3 ∈ R, λ3 6= 0 in (4.8), then we get ṗ = λ3. Comparing
this one with the assumption of Case b.1 gives f2 = λ2

λ2
3
, which is

no possible since K0 6= 0.
Case b.2. G2 = 0. It follows

(4.10)
(g
r

) d

dg

(
g2

r

)
= λ4, λ4 ∈ R.

An integration of (4.10) with respect to g gives

(4.11) r = ± g2√
λ4g2 + λ5

, λ5 ∈ R,
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where λ4 and λ5 are not equal to zero together. After taking
derivative of (4.11) with respect to g and producting with r, we
conclude

(4.12) rṙ =
λ4g

5 + 2λ5g
3

(λ4g2 + λ5)
2 .

Due to the assumption of the Case b, (4.12) turns to the following
polynomial equation on g :

(4.13)
(
λ4 − λ1λ24

)
g5 + 2 (λ5 − λ1λ4λ5) g3 −

(
λ1λ

2
5

)
g = 0.

Since λ1 6= 0, we get 1 = λ1λ4 and λ5 = 0. It follows from (4.11)

that r = (λ4)
−1
2 g. Then by substituting it into (4.3), we obtain

(4.14) K0

[
f3

λ4pṗ
− 2

fp

ṗ
+ λ4

p3

fṗ

]
g2 +

p

fṗ
− 1 = 0.

This polynomial equation leads to

(4.15) fṗ = p

and

(4.16)
f3

λ4pṗ
− 2

fp

ṗ
+ λ4

p3

fṗ
= 0.

Substituting (4.15) into (4.16) gives p = ± (λ4)
−1
2 f or f (y)

= λ6 exp
(
± (λ4)

−1
2 y
)
, λ6 ∈ R, λ6 6= 0. Further, since r =

(λ4)
−1
2 g, we have g (z) = λ7 exp

(
(λ4)

−1
2 z
)
, λ7 ∈ R, λ7 6= 0.

However these lead the surface to be flat, i.e., K0 = 0, which is
not our case.

Case c. F1G1 6= 0. Then (4.6) can be rewritten as

(4.17)
F1 (f)

F2 (f)
+
G2 (g)

G1 (g)
= 0,

which implies

(4.18)
f3

pṗ
= λ1

p3

fṗ
+ λ2, and

(g
r

) d

dg

(
g2

r

)
= −λ1

rṙ

g
+ λ3,

where λ1, λ2, λ3 ∈ R, λ1 6= 0. Substituting (4.18) into (4.5) gives

(4.19) 2
fp

ṗ
= λ3

p3

fṗ
+ λ4, λ4 ∈ R.

Comparing (4.19) with the first equality in (4.18) leads to

(4.20)

{
f4 − λ1p4 = λ2fpṗ
2f2p2 − λ3p4 = λ4fpṗ.

By (4.20), we derive an equation as follows:

(4.21) λ4f
4 − 2λ2f

2p2 + (λ2λ3 − λ1λ4) p4 = 0
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or

(4.22) λ4

(
f

p

)2

+ (λ2λ3 − λ1λ4)

(
f

p

)−2
= 2λ2.

Taking derivative of (4.22) with respect to f leads to

(4.23)
d

df

(
f

p

)[
1− (λ2λ3 − λ1)

(
f

p

)−4]
= 0,

which yields that the ratio f/p is constant, i.e., p = λ5f, λ5 ∈ R,
λ5 6= 0. Substituting this one into (4.3) gives the following polynomial
equation on (f) :

K0

[
r2

λ25
− 2g2 + λ25

(
g2

r

)2
]
f2 − gṙ

r
+ 1 = 0,

which implies

r2

λ25
− 2g2 + λ25

(
g2

r

)2

= 0

and r = gṙ. Solving this one leads to r = λ6g, λ6 ∈ R, λ6 6= 0. However,
this is not possible since K0 6= 0. This completes the proof. �

Theorem 4.2. Let a factorable surface of second kind in G1
3 have non-zero

constant mean curvature H0. Then we have:

x (y, z) = λ1 exp

(
λ2y +

λ2
2H0

√
(2H0z + λ3)

2 ± 1

)
,

where “ ± ” happens plus (resp. minus) when the surface is timelike (resp.
spacelike). Further, λ1, λ2 are non-zero constants and λ3 some constant.

Proof. It is only proved for spacelike situation since the calculations are almost
same for other situation. Then we have

(fg′)
2 − (f ′g)

2
> 0

for all pairs (y, z) . Since the mean curvature is constant H0 6= 0, by a calcula-
tion, we deduce

(4.24) 2H0

[
(fg′)

2 − (f ′g)
2
] 3

2

= (fg′)
2
f ′′g − 2fg (f ′g′)

2
+ (f ′g)

2
fg′′.

Note that f is not a constant function since H0 6= 0 and, by symmetry, neither

is g. Then dividing (4.24) with fg (f ′g′)
2

yields

(4.25) 2H0

[(
f

f ′

) 4
3
(
g′

g

) 2
3

−
(
f ′

f

) 2
3
(
g

g′

) 4
3

] 3
2

=
ff ′′

(f ′)
2 +

gg′′

(g′)
2 − 2.
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Let us put f ′ = p, ṗ = dp
df = f ′′

f ′ and g′ = r, ṙ = dr
dg = g′′

g′ in (4.25). Thus (4.25)

can be rewritten as

(4.26) 2H0

[(
f

p

) 4
3
(
r

g

) 2
3

−
(
p

f

) 2
3 (g

r

) 4
3

] 3
2

=
fṗ

p
+
gṙ

r
− 2.

The partial derivative of (4.26) with respect to f gives
(4.27)

2H0

[(
f

p

) 4
3
(
r

g

) 2
3

−
(
p

f

) 2
3 (g

r

) 4
3

] 1
2
[

2

(
r

g

) 2
3

+

(
p

f

)2 (g
r

) 4
3

]
d

df

(
f

p

)

=
d

df

(
fṗ

p

)(
p

f

) 1
3

.

If ṗ = 0, then (4.27) reduces to

2 +

(
p

f

)2 (g
r

)2
= 0,

which is not possible. Thus p is not constant function and, by symmetry, so is
r. In addition, we have to consider two cases in order to solve (4.27):

Case a. p = λ1f, λ1 6= 0, is a solution for (4.27). Substituting this one into
(4.26) gives

2H0

[
λ
− 4

3
1

(
r

g

) 2
3

− λ
2
3
1

(g
r

) 4
3

] 3
2

=
gṙ

r
− 1

or

2H0

[(
r

g

)2

− λ21

] 3
2

= λ21

[
rṙ

g
−
(
r

g

)2
]
.

The last equality can be rearranged as

(4.28) 2H0 =

λ21

(
g′

g

)′
[(

g′

g

)2

− λ21

] 3
2

.

An integration of (4.28) with respect to z yields

2H0z + λ2 =

−g
′

g√(
g′

g

)2

− λ21
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or

(4.29)
g′

g
=

λ1 (2H0z + λ2)√
(2H0z + λ2)

2 − 1
.

An again integration of (4.29) with respect to z leads to

g (z) = λ3 exp

(
λ1

2H0

√
(2H0z + λ2)

2 − 1

)
, λ3 6= 0.

Due to the assumption of Case a, we conclude f (y) = λ4 exp (λ1y) ,
λ4 6= 0, which gives the assertion of the theorem.

Case b. d
df

(
f
p

)
6= 0. By symmetry, we deduce d

dg

(
g
r

)
6= 0. Then (4.27) can be

rewritten as

(4.30)

[(
r

g

)2

−
(
p

f

)2
] 1

2
[

2 +

(
p

f

)2(
r

g

)−2]
=

d
df

(
fṗ

p

)(
p

f

)
2H0

d
df

(
f

p

) .

The partial derivative of (4.30) with respect to g leads to

2

(
r

g

)4

−
(
r

g

)2(
p

f

)2

+ 2

(
p

f

)4

= 0,

or [(
r

g

)2

−
(
p

f

)2
]2

+
3

2

(
r

g

)2(
p

f

)2

= 0,

which yields a contradiction. Therefore the proof is completed. �
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