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VARIOUS CENTROIDS AND SOME CHARACTERIZATIONS

OF CATENARY CURVES

Shin-Ok Bang, Dong-Soo Kim, and Dae Won Yoon

Abstract. For every interval [a, b], we denote by (x̄A, ȳA) and (x̄L, ȳL)
the geometric centroid of the area under a catenary curve y = k cosh((x−
c)/k) defined on this interval and the centroid of the curve itself, respec-

tively. Then, it is well-known that x̄L = x̄A and ȳL = 2ȳA.
In this paper, we fix an end point, say 0, and we show that one of x̄L =

x̄A and ȳL = 2ȳA for every interval with an end point 0 characterizes the

family of catenaries among nonconstant C2 functions.

1. Introduction

For the catenary given by f(x) = k cosh((x− c)/k) with a positive constant
k, it is well-known that the ratio of the area under the curve to the arc length
of the curve is independent of the interval over which these quantities are
concurrently measured. For a positive C1 function f(x) defined on an interval
I and an interval [a, b] ⊂ I, we consider the area A(a, b) over the interval [a, b]
and the arc length L(a, b) of the graph of f(x). Then, the function f(x) =
k cosh((x− c)/k), k > 0 satisfies for every interval [a, b] ⊂ I, A(a, b) = kL(a, b).
This property characterizes the family of catenaries among nonconstant C2

functions ([13]). Thus, we have the following.

Proposition 1.1. For a nonconstant positive C2 function f(x) defined on an
interval I, the followings are equivalent.

(1) There exists a positive constant k such that for every interval [a, b] ⊂ I,
A(a, b) = kL(a, b).

(2) The function f(x) satisfies f(x) = k
√

1 + f ′(x)2, where k is a positive
constant.
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(3) For some k > 0 and c ∈ R,

f(x) = k cosh

(
x− c
k

)
.

For a positive C1 function f(x) defined on an interval I and an inter-
val [a, b] ⊂ I, we denote by (x̄A, ȳA) = (x̄A(a, b), ȳA(a, b)) and (x̄L, ȳL) =
(x̄L(a, b), ȳL(a, b)) the geometric centroid of the area under the graph of f(x)
defined on this interval and the centroid of the graph itself, respectively. Then,
for a catenary curve we have the following ([13]).

Proposition 1.2. A catenary curve f(x) = k cosh((x − c)/k) satisfies the
following properties.

(1) For every interval [a, b] ⊂ I, x̄L(a, b) = x̄A(a, b).
(2) For every interval [a, b] ⊂ I, ȳL(a, b) = 2ȳA(a, b).

Conversely, in a recent paper [10], it was shown that one of x̄L = x̄A and
ȳL = 2ȳA for all interval [a, b] characterizes the family of catenaries among
nonconstant C2 functions as follows.

Proposition 1.3. For a nonconstant positive C2 function f(x) defined on an
interval I, the followings are equivalent.

(1) For every interval [a, b] ⊂ I, x̄L(a, b) = x̄A(a, b).
(2) For every interval [a, b] ⊂ I, ȳL(a, b) = 2ȳA(a, b).
(3) For some k > 0 and c ∈ R,

f(x) = k cosh

(
x− c
k

)
.

In this paper, we consider intervals with a fixed end point, say 0. For a
nonzero real number x, we denote by Ix the interval defined by

(1.1) Ix =

{
[0, x], if x > 0,

[x, 0], if x < 0.

We also denote by A(x), L(x), (x̄A(x), ȳA(x)) and (x̄L(x), ȳL(x)) the area under
the graph of f(x), the arc length of the graph of f(x), the geometric centroid
of the area under the graph of f(x) and the centroid of the graph itself over
the interval Ix, respectively. Then, it is trivial to show the following.

Proposition 1.4. For a nonconstant positive C2 function f(x) defined on an
interval I containing 0, the followings are equivalent.

(1) There exists a positive constant k such that for every nonzero real num-
ber x, A(x) = kL(x).

(2) The function f(x) satisfies f(x) = k
√

1 + f ′(x)2, where k is a positive
constant.

(3) For some k > 0 and c ∈ R,

f(x) = k cosh

(
x− c
k

)
.
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As a result, in Section 3 we establish the following characterization theorem
for catenary curves.

Theorem 1.5. For a nonconstant positive C2 function f(x) defined on an
interval I containing 0, the followings are equivalent.

(1) For every nonzero real number x ∈ I, x̄L(x) = x̄A(x).
(2) For every nonzero real number x ∈ I, ȳL(x) = 2ȳA(x).
(3) For some k > 0 and c ∈ R,

f(x) = k cosh

(
x− c
k

)
.

In order to prove the above mentioned main theorem, first of all in Section
2 we prove some lemmas. In particular, Lemma 2.1 establishes a sufficient and
necessary condition for two positive C2 functions to be proportional.

To find the centroid of polygons, see [3]. For the perimeter centroid of a
polygon, we refer [2]. In [11], mathematical definitions of centroid of planar
bounded domains were given. For various centroids of higher dimensional sim-
plexes, see [12]. The relationships between various centroids of a quadrangle
were given in [5, 9].

Archimedes proved the area properties of parabolic sections and then for-
mulated the centroid of parabolic sections ([14]). Some characterizations of
parabolas using these properties were given in [4, 6, 7].

Two higher dimensional generalizations of Proposition 1.1 were established
in [1]. In [8], it was shown that among nonconstant C2 functions f : R2 → R
with isolated singularities, S = kV , k ∈ R characterizes the family of catenary
rotation surfaces f(x, y) = k cosh(r/k), r = |(x, y)|, where V and S denote
the volume and the surface area of the graph of z = f(x, y) over a rectangular
domain.

2. Some lemmas

In this section, first of all we prove the following lemma which is useful in
the proof of Theorems stated in Section 1.

Lemma 2.1. We denote by f(x) and g(x) two positive C2 functions defined
on an interval I containing 0 ∈ R. Suppose that f(x) and g(x) satisfy the
following property:

(2.1)

∫ x

0
tf(t)dt∫ x

0
f(t)dt

=

∫ x

0
tg(t)dt∫ x

0
g(t)dt

, x ∈ I, x 6= 0.

Then the ratio of f(x) and g(x) is constant, that is, for some constant k ∈ R
we have f(x) = kg(x).

Proof. Suppose that f(x) and g(x) satisfy (2.1). Then for all x ∈ I we get

(2.2)

∫ x

0

g(t)dt

∫ x

0

tf(t)dt =

∫ x

0

f(t)dt

∫ x

0

tg(t)dt.
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By differentiating (2.2) with respect to the variable x, we obtain

(2.3) g(x)

∫ x

0

tf(t)dt+ xf(x)

∫ x

0

g(t)dt = f(x)

∫ x

0

tg(t)dt+ xg(x)

∫ x

0

f(t)dt.

We denote by k(x) the ratio of f(x) and g(x), that is, we let

(2.4) k(x) =
f(x)

g(x)
.

Then the function k(x) is a C2 function on the interval I. It follows from (2.3)
that

(2.5)

∫ x

0

tf(t)dt+ xk(x)

∫ x

0

g(t)dt = k(x)

∫ x

0

tg(t)dt+ x

∫ x

0

f(t)dt.

Differentiating (2.5) with respect to x gives

(2.6) (xk(x))
′
∫ x

0

g(t)dt = k′(x)

∫ x

0

tg(t)dt+

∫ x

0

f(t)dt.

By differentiating (2.6) with respect to x once more, we obtain

(2.7) (xk(x))
′′
∫ x

0

g(t)dt = k′′(x)

∫ x

0

tg(t)dt.

First, suppose that the open set I1 defined by I1 = {x ∈ I | k′′(x) 6= 0, x 6= 0}
is nonempty. Then, on the open set I1, from (2.7) we get

(2.8)

∫ x

0

tg(t)dt = h(x)

∫ x

0

g(t)dt,

where

(2.9) h(x) =
(xk(x))

′′

k′′(x)
.

It follows from (2.8) that the function h(x) is a C2 function on the open set I1.
Differentiating (2.8) with respect to x shows that

(2.10) xg(x)− h(x)g(x) = h′(x)

∫ x

0

g(t)dt.

Second, suppose that the open set I2 defined by I2 = {x ∈ I1 |h′(x) 6= 0, x 6=
0} is nonempty. Then, on the open set I2, from (2.10) we get

(2.11) (j(x)g(x))
′

= g(x),

where

(2.12) j(x) =
x− h(x)

h′(x)
.

It also follows from (2.10) that the function j(x) is a C2 function on the open
set I2.
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On the other hand, together with (2.8), (2.1) implies

(2.13)

∫ x

0

tf(t)dt = h(x)

∫ x

0

f(t)dt, x ∈ I1,

where h(x) is given in (2.9). Differentiating (2.13) with respect to x gives

(2.14) xf(x)− h(x)f(x) = h′(x)

∫ x

0

f(t)dt.

Hence as in the discussions above, on the open set I2, from (2.14) we obtain

(2.15) (j(x)f(x))
′

= f(x),

where j(x) is defined in (2.12).
It follows from (2.11) and (2.15) that

(2.16) j(x)g′(x) = g(x)− g(x)j′(x)

and

(2.17) j(x)f ′(x) = f(x)− f(x)j′(x),

respectively. For the function k(x) = f(x)/g(x), (2.16) and (2.17) show that
on the open set I2,

(2.18) j(x)k′(x) = 0.

Now, we claim that the derivative k′(x) of the function k(x) vanishes on
I2. Otherwise, on a nonempty open set I3 contained in I2, the function j(x)
vanishes. Then, it follows from (2.12) that on I3, h(x) = x. Hence (2.10)
shows that on I3,

∫ x

0
g(t)dt = 0, which is a contradiction. Thus, together with

(2.18), this contradiction yields that on the open set I2, k′(x) must vanish,
which completes the proof of the above claim.

But, the vanishing of the derivative k′(x) of k(x) on I2 contradicts to the
hypothesis on I1. Therefore, this contradiction implies that I2 is empty, that
is, on the open set I1, h′(x) must vanish. Hence, it follows from (2.10) that
h(x) = x on I1, which leads to a contradiction. This contradiction shows that
I1 is empty, that is, on the whole domain I, k′′(x) must vanish.

Since k′′(x) = 0 on I, (2.7) implies that (xk(x))
′′

= 2k′(x) + xk′′(x) also
vanishes on I. Combining them, we see that k′(x) = 0 on I. Thus the function
k(x) = f(x)/g(x) is a constant k. This completes the proof of Lemma 2.1. �

Now, we prove the following lemma which is crucial in the proof of Theorem
1.5.

Lemma 2.2. We consider two positive C2 functions f(x) and g(x) defined on
an interval I containing 0 ∈ R and denote by k(x) the ratio k(x) = f(x)/g(x)
of f(x) and g(x). Suppose that f(x) and g(x) satisfy the following:

(2.19)

∫ x

0
f(t)g(t)dt∫ x

0
f(t)dt

=

∫ x

0
g(t)2dt∫ x

0
g(t)dt

, x ∈ I, x 6= 0.

Then, on the open set I1 = {x ∈ I | k′(x) 6= 0}, we have g′(x) = 0.
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Proof. Suppose that f(x) and g(x) satisfy (2.19). Then for all x ∈ I we get

(2.20)

∫ x

0

g(t)dt

∫ x

0

f(t)g(t)dt =

∫ x

0

f(t)dt

∫ x

0

g(t)2dt.

By differentiating (2.20) with respect to the variable x, we obtain
(2.21)

g(x)

∫ x

0

f(t)g(t)dt+ f(x)g(x)

∫ x

0

g(t)dt = f(x)

∫ x

0

g(t)2dt+ g(x)2
∫ x

0

f(t)dt.

We denoted by k(x) the ratio of f(x) and g(x), that is, we put

(2.22) k(x) =
f(x)

g(x)
.

Then the function k(x) is a C2 function on the interval I. It follows from (2.21)
that

(2.23)

∫ x

0

f(t)g(t)dt+ f(x)

∫ x

0

g(t)dt = k(x)

∫ x

0

g(t)2dt+ g(x)

∫ x

0

f(t)dt.

Differentiating (2.23) with respect to x gives

(2.24) f ′(x)

∫ x

0

g(t)dt = k′(x)

∫ x

0

g(t)2dt+ g′(x)

∫ x

0

f(t)dt.

First, suppose that the open set I1 defined by I1 = {x ∈ I | k′(x) 6= 0} is
nonempty. Then, on the open set I1, from (2.24) we get

(2.25) φ(x)

∫ x

0

g(t)dt =

∫ x

0

g(t)2dt+ ψ(x)

∫ x

0

f(t)dt,

where we put

(2.26) φ(x) =
f ′(x)

k′(x)
, ψ(x) =

g′(x)

k′(x)
.

By differentiating (2.25) with respect to x, we obtain

(2.27) φ′(x)

∫ x

0

g(t)dt = ψ′(x)

∫ x

0

f(t)dt.

Next, suppose that the open set I2 defined by I2 = {x ∈ I1 |ψ′(x) 6= 0, x 6= 0}
is nonempty. Then, on the open set I2, from (2.27) we get

(2.28)

∫ x

0

g(t)dt = h(x)

∫ x

0

f(t)dt,

where

(2.29) h(x) =
ψ′(x)

φ′(x)
.

It follows from (2.28) that the function h(x) is a C2 function on the open set
I2. Differentiating (2.28) with respect to x shows that

(2.30) g(x)− h(x)f(x) = h′(x)

∫ x

0

f(t)dt.
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Finally, suppose that the open set I3 defined by I3 = {x ∈ I2 |h′(x) 6= 0, x 6=
0} is nonempty. Then, on the open set I3, from (2.30) we get

(2.31) (j(x)g(x))
′

= f(x),

where

(2.32) j(x) =
1− k(x)h(x)

h′(x)
.

It follows from (2.30) that the function j(x) is a C2 function on the open set
I3.

On the other hand, together with (2.28), (2.19) implies

(2.33)

∫ x

0

g(t)2dt = h(x)

∫ x

0

f(t)g(t)dt, x ∈ I2,

where h(x) is given in (2.29). Differentiating (2.33) with respect to x gives

(2.34) g(x)2 − h(x)f(x)g(x) = h′(x)

∫ x

0

f(t)g(t)dt.

Hence as in the discussions above, on the open set I3, from (2.34) we obtain

(2.35)
(
j(x)g(x)2

)′
= f(x)g(x),

where j(x) is defined in (2.32) and we use (2.22).
On the open set I3, it follows from (2.31) and (2.35) that

(2.36) j(x)g′(x) = 0,

and hence

(2.37) f(x) = (j(x)g(x))′ = j′(x)g(x).

Together with f(x) = k(x)g(x), this shows that

(2.38) j′(x) = k(x), x ∈ I3.

Since k(x) > 0, (2.36) and (2.38) imply that g′(x) vanishes on I3. This shows
that on I3, ψ(x) (and hence h(x)) vanishes, which contradicts to the hypothesis
on I2. This contradiction yields that I3 is empty, that is, on the open set I2,
h(x) is a constant h0.

It follows from (2.30) that on I2, k(x) = f(x)/g(x) = 1/h0 is constant, which
contradicts to the hypothesis on I1. This contradiction shows that I2 is empty,
that is, on the open set I1, ψ(x) is a constant b.

Since ψ′(x) = 0, it follows from (2.27) that on the open set I1, φ(x) is a
constant a. Hence, (2.26) yields that on the open set I1 for some constants c
and d

(2.39) f(x) = ak(x) + c, g(x) = bk(x) + d.

Thus, it follows from the definition of k(x) that k(x) is a root of the quadratic
polynomial q(t) = bt2 + (d − a)t − c = 0. If the quadratic polynomial q(t) =
bt2 + (d − a)t − c = 0 is nontrivial, then the ratio k(x) must be constant on
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the open set I1. This contradiction shows that q(t) is trivial. That is, we have
b = 0, d = a and c = 0, and hence from (2.39) we get on the open set I1

(2.40) f(x) = ak(x), g(x) = a.

This completes the proof of Lemma 2.2. �

3. Proof of Theorem 1.5

In this section, with the help of Lemmas in Section 2, we prove Theorem 1.5
stated in Section 1.

First, suppose that a positive nonconstant C2 function f(x) defined on an
interval I containing 0 ∈ R satisfies x̄L(x) = x̄A(x) for every nonzero real
number x. Then for all x ∈ I with x 6= 0, we have

(3.1)

∫ x

0
tw(t)dt∫ x

0
w(t)dt

=

∫ x

0
tf(t)dt∫ x

0
f(t)dt

,

where we put

(3.2) w(x) =
√

1 + f ′(x)2.

It follows from Lemma 2.1 that for some constant k ∈ R we have f(x) = kw(x).
Therefore Proposition 1.1 implies that for some c ∈ R,

f(x) = k cosh

(
x− c
k

)
.

This completes the proof of (1) ⇒ (3).
Next, suppose that a nonconstant positive C2 function f(x) defined on an

interval I containing 0 ∈ R satisfies ȳL(x) = 2ȳA(x) for every nonzero real
number x. Then for all x ∈ I with x 6= 0, we have

(3.3)

∫ x

0
f(t)w(t)dt∫ x

0
w(t)dt

=

∫ x

0
f(t)2dt∫ x

0
f(t)dt

,

where w(x) is given in (3.2). For the ratio k(x) = w(x)/f(x), we consider the
open set I1 = {x ∈ I | k′(x) 6= 0}. Then, it follows from Lemma 2.2 that on the
open set I1, we have f ′(x) = 0.

Suppose that the open set I1 is not empty. Then on a fixed connected
component I0 of I1, f(x) is a constant a. Therefore, we have w(x) = 1, and
hence on I0, k(x) = 1/a. This contradiction shows that the open set I1 must
be empty. That is, the ratio k(x) is a constant. Hence, for some constant k ∈ R
we have f(x) = kw(x). Therefore Proposition 1.1 implies that for some c ∈ R,

f(x) = k cosh

(
x− c
k

)
.

This completes the proof of (2) ⇒ (3).
Conversely, it follows from Proposition 1.2 that (3) ⇒ (1) and (2). This

completes the proof of Theorem 1.5.
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