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Abstract. There are many metric functions in the plane. In this paper

we are to classify the metric functions on the plane using two ways such
as using sum of distances between some points when start point and end

point is fixed, and using area of transferred triangle consisted of distances

between 3 points.
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1. Introduction

Recently there are many results about more practical metric functions than
Euclidean metric in the plane[1,2,3,4,5,6,7,8]. It is much helpful to understand
geometric properties and useful way in the plane. Euclid metric is easy to
understand and useful but is not proper to set as the distance of route in city.
To improve the metric, Manhattan metric[6] introduced for taxi-moving route
and its generalization, α-metric[2,3] are useful to grasp more practical route in
city. Nowadays, there are many researches that adopt new metrics to reflect
more reality and study properties of metric given spaces. In this paper we are
to classify the metric functions by two ways: The first method of classification
using sum of distances between some points when start point and end point is
fixed. The other method using area of transferred triangle consisted of distances
between three points.
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2. Classifications based on summation of distances between several
points

In this chapter we are going to classify the metric functions using summation
of distances between several points.

Definition 2.1. Let d and d̄ be two metrics on the same set X. If there exist
positive constant α, β such that αd(x, y) ≤ d̄(x, y) ≤ βd(x, y) for all x, y ∈ X,
then we say d is equivalent to d̄ [6].

Definition 2.2. If functions f(x) and g(x) satisfy 0 < lim
x→∞

| f(x)
g(x) | < ∞ , then

we say that f(x) = Θ(g(x)) . Also, if it satisfy lim
x→∞

| f(x)
g(x) | < ∞, then we write

f(x) = O(g(x)).

Let A0(x0, y0), A1(x1, y1), ..., An(xn, yn) be points on a plane which satisfy
x0 = y0 = 0, xi ≤ xi+1, yi ≤ yi+1(i = 0, 1, ..., n − 1), xn = yn = a. And for
function d : X ×X → [0,∞) on a set X, we can consider

m ≤ d(A0, A1) + d(A1, A2) + · · ·+ d(An−1, An) ≤M

Let dmin(n) be the maximum value of m and dmax(n) be the minimum value
of M .

We see that dmin(n), dmax(n) are function of n and d. Now, define a α-
classification αd(n) by

αd(n) =
dmax(n)

dmin(n)
, αd(n) = O(βd(n))

Example 2.3. Let us consider for the Euclidean metric function d. It is trivial
that dmin(n) =

∑
i d(Ai, Ai+1) = d(A0, An) =

√
2a. Let B1, ..., Bn be the points

which the summation of the distances is maximum. Since√
(xi − xi+1)2 + (yi − yi+1)2 ≤ |xi − xi+1|+ |yi − yi+1|,

dmax(n) =
∑
i

d(Ai, Ai+1) ≤
∑
i

(|xi − xi+1|+ |yi − yi+1|) = 2a

So, α-classification for Euclidean metric function is αd(n) =
√

2, βd(n) = 1.

Example 2.4. Let us apply the classification on a metric function d(x, y) =
|log( yx )|. It is trivial that dmin(n) = d(A0, An) = |log(xn

x0
)|.

dmax(n) =
∑
i

d(Ai, Ai+1) =
∑
i

log(xi+1

xi
) = log(xn

x0
). So, the α-classification is

αd(n) = 1, βd(n) = 1. For βd(n), we have

Theorem 2.5. If βd(n) = nc (c is a constant), then c ≥ 0

Proof. Assume that c < 0. Since lim
n→∞

βd(n) = lim
n→∞

nc = 0, we see that

lim
n→∞

αd(n) = 0. Now according to the definition of αd(n), the distance between
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two discrete points X,Y , d(X,Y ) satisfies d(X,Y ) ≤ d(A0, X) + d(X,Y ) +
d(Y,An) ≤ lim

n→∞
dmax(n) = 0. This contradicts the definition of the metric

function that d(X,Y ) ≤ 0 for two discrete points X,Y . �

Theorem 2.6. If βd(n) = nc (c is a constant), then c ≤ 1

Proof. Assume that c > 1. Since lim
n→∞

βd(n)
n = lim

n→∞
nc−1 = ∞, we see that

lim
n→∞

αd(n)
n = lim

n→∞
dmax(n)
ndmin(n) = lim

n→∞

∑
i
d(Ai,Ai+1)

ndmin(n) =∞. Here we know that there is

a maximum value among d(A0, A1), ..., d(An−1, An) as they are all real numbers.

Let d(Aj , Aj+1) be the maximum value thus having
d(Aj ,Aj+1)

n ≥
∑
i

d(Ai, Ai+1).

There exists a positive number δ > 0 for all positive number ε > 0. Since

d(Aj ,Aj+1)
dmin(n) >

∑
i

d(Ai,Ai+1)

ndmin(n) > ε
dmin(n) for all positive number r which satisfies r > δ,

we get d(Aj , Aj+1) > ε. This states that we can select two points so that the
distance between those two points would be bigger than random number. This
contradicts the fact that βd(n) = nc (c is a constant) because βd(n) would fixed
as ∞ . �

Remark 2.7. We have shown that if we can select two points so that the
distance between those two points would be bigger than random number, it
shows that dmax(n) → ∞ and βd(n) → ∞ . We see that α-classification would
fall in to two categories. First, βd(n) would be expressed as a function of n
and the second, βd(n)→∞. If βd(n)→∞, then dmin(n) is also limitless which
infers that two points exists so that the distance between those two points would
be bigger than random number. Hence we see that if βd(n) would be expressed
as a function of n, then the distance between any two points is bounded. For
example, for a fixed point A, if d(x,A) is continuous then we get βd(n) for all
points ∀x ∈ R2. Hence forth we will strong βd(n) for βd(n) can be expressed by
a function of n.

Theorem 2.8. For every c ∈ [0, 1], there exist a distance function d which
satisfies βd(n) = nc (c is a constant).

Proof. It is known that for the positive number k ≥ 1, it is known that e =
dE(X,Y )

1
k is also a distance function. Now lets prove that βd(n) = n1− 1

k . It

satisfies that αe(n) = emax(n)
emin(n) = emax(n)

e(A0,An) = emax(n)

(
√

2a)
1
k

. Let k be the summation of

euclidean distance between n number of points. For a fixed constant k, let we
consider the maximum for the summation of e-distance between n number of
points.

For dE(A0, A1) + dE(A1, A2) + ... + dE(An−1, An) = k, if we substitute
dE(Ai, Ai+1) = xi+1, we have

∑n
s=1 xs = k. The Cauchy-Schwarz inequality
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(
∑n
s=1 x

1
k
s )k ≤ (

∑n
s=1 xs)(

∑n
s=1 1)k−1 = k × nk−1. So implies

emax(n) =
n∑
s=1

e(As−1, As) =
n∑
s=1

x
1
k
s ≤ k × n1− 1

k

is vaild. Hence we have αe(n) = emax(n)

(
√

2a)
1
k

= C×n1− 1
k and proves the Theorem. �

Theorem 2.9. For a metric function d(X1, X2) = {|x1 − x2|k + |y1 − y2|k}
1
k ,

it satisfies βd(n) = 1.

Proof. It is know that d is a metric function.[6] Since (|x1−x2|k+ |y1−y2|k)
1
k ≤

|xi−xi+1|+ |yi−yi+1| for k > 1.
∑
i

d(Ai, Ai+1) =
∑
i

(|x1−x2|k+ |y1−y2|k)
1
k ≤

|xn−x0|+ |yn− y0| = 2a. So the α-classification of the metric function d would

be αd(n) = dmax(n)
dmin(n) = 2a

2
1
k a

= 21− 1
k and βd(n) = 1. �

Remark 2.10. We see that for a metric function d classified as βd(n) = 1, for
every two points upon a plane x, y, there should exist a point z which satisfies
d(x, z) + d(y, z) = d(x, y). According to Minkowski’s inequality we obtain

(|x1 − x2|k + |y1 − y2|k)
1
k + (|x2 − x3|k + |y2 − y3|k)

1
k ≥ (|x1 − x3|k + |y1 − y3|k)

1
k

That is, d(X,Y ) + d(Y,Z) = d(X,Z), if three point X,Y, Z on R2 should lie
on a straight line.

Theorem 2.11. If d and d′ is equivalent in [0, a]2, then αd(n) = Θ(αd
′(n)).

Proof. Because of equivalency between two metric functions, there are p, q, which
satisfy p · d(x, y) ≥ d′(x, y) ≥ q · d(x, y) for all x, y in [0, a]2. Since dmax(n) is
defined as sum of n distances, p ·dmax(n) ≥ d′max(n), d′max(n) ≥ q ·dmax(n) Hence
we get

αd(n)

α′d(n)
=
d′(O,A) · dmax(n)

d(O,A) · d′max(n)

d′(O,A)

d(O,A) · q
≤ αd(n)

αd′(n)
≤ d′(O,A)

d(O,A) · p
Thus αd(n) = θ(αd′(n)). �

Remark 2.12. A metric function dx|x|(P1, P2) = |x1|x1| − x2|x2|| + |y1|y1| −
y2|y2|| and Manhattan metric dT (P1, P2) = |x1−x2|+|y1−y2| are not equivalent
but αdx|x|(n) = Θ(αdT (n)). Hence we see that the converse of theorem 4.1.6 is
not true.

Theorem 2.13. For a metric function d and convex continuous function f :
R+

0 → R+
0 , if f(0) = 0, then

αf(d)(n) = O(
f(dm(n)) · αd(n)

dm(n)
),
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where dm(n) is smallest d(Ak, Ak+1) in (f ◦ d)max(n).

Proof. By Jensen inequality, f(0 + λx) ≥ λf(x) for 0 ≤ λ ≤ 1. So we get

f(λx)

λ
≥ f(x),

f(λx)

λx
≥ f(x)

x

and f(x)
x is an descent function. Thus,

(f ◦ d)min(n) = f(dmin(n))

(f ◦ d)max(n) =
n−1∑
k=0

f(d(Ak, Ak+1) ≥ f(dm(n))

dm(n)
·
n−1∑
k=0

d(Ak, Ak+1)

≥ f(dm(n))

dm(n)
· (f ◦ d)max(n)

αf(d)(n) =
(f ◦ d)max(n)

(f ◦ d)min(n)
≤

f(dm(n))
dm(n) · dmax(n)

f(dmin(n))
=
f(dm(n)) · dmax(n)

dm(n) · f(dmin(n))

so, αf(d)(n) = O( f(dm(n))·αd(n)
dm(n) ). �

3. Classification using the area of a triangle having distance
functions as length of edge

If d is given metric on R2 and three points X,Y, Z, then we can consider
triangle having d(X,Y ), d(Y,Z), d(Z,X) as length of the edges. (Let us consider
the case when the three points are on one line too.) Let us say the triangle is
∆X ′Y ′Z ′.

dE(X ′, Y ′) = d(X,Y ), dE(Y ′, Z ′) = d(Y,Z), dE(Z ′, X ′) = d(Z,X)

Let S the area of ∆XY Z be fixed and S′min is the minimum and S′max the
maximum of the area of ∆X ′Y ′Z ′. Now we can classify distance functions as
following.

Type1: S′min = 0, S′max =∞
Type2: S′min = 0, S′max <∞, (S′max, can be 0)
Type3: S′min > 0, S′max =∞
Type4: S′min > 0, S′max <∞

Example 3.1. d(X,Y ) = c > 0(X 6= Y ) and d(X,X) = 0: It is trivial that this
function is a distance function. If X,Y, Z are three different points, ∆X ′Y ′Z ′ is
a equilateral triangle with length of an edge c. So,

S′min = S′max =

√
3

4
c2

Example 3.2. d(X,Y ) = dE(X,Y ) : ∆X ′Y ′Z ′ ≡ ∆XY Z. So, S′min = S′max =
S
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Example 3.3. d(X,Y ) = dE(X,Y )c (0 < c < 1) : By Heron’s Formula we get

S =

√
(x+ y + z)

∏
cyc

(x+ y − z)

4
, S′ =

√
(xc + yc + zc)

∏
cyc

(xc + yc − zc)

4
,

where z = dE(X,Y ), y = dE(Z,X), x = dE(Y,Z). Now consider S′max. For fiexd
S, if we have z = x + y − ε(ε � x = y) and, ε is very small then we could get
x, y very big. In this case

xc + yc − zc > xc + yc − (x+ y)c = (2− 2c)xc,

and xc + yc + zc > xc, xc − yc + zc > xc,−xc + yc + zc > xc. Hence

S′max >

√
2− 2c

4
x2c.

If x→∞, then we see that S′max =∞
Now let us calculate S′min. We will show the existence of the lower bound of

S′min Let f(z) = xc+yc−zc
(x+y−c)c , then

f ′(z) = −c(x+ y − z)c−1 (xc + yc − zc)− (x+ y − z)zc−1

(x+ y − z)2c

= −cx
c + yc − zc−1(x+ y)

(x+ y − z)1+c
.

So, we get f(z) is minimum when z =
{
xc+yc

x+y

} 1
c−1

. In this case,

f((
xc + yc

x+ y
)

1
c−1 ) =

xc + yc − (x
c+yc

x+y )(x
c+yc

x+y )
1

c−1

(x+ y − (x
c+yc

x+y )
1

c−1 )
c =

xc + yc

(x+ y)(x+ y − (x
c+yc

x+y )
1

c−1 )c−1

and

xc + yc − zc

(x+ y − z)c
≥

xc+yc

x+y

(x+ y − (x
c+yc

x+y )
1

c−1 )c−1
=

1+tc

1+t

(1 + t− ( 1+tc

1+t )
1

c−1 )c−1
(t =

y

x
)

So, we get a lower bound given in a function of c. If we denote it by g(c), then

S′min ≥

√
(x+ y + z)cg(c)3

∏
cyc

(x+ y − z)3

4
=

√
g(c)3

4
(4S)3

(∵ xc + yc + zc ≥ (x+ y + z)c)

So, we get a lower bound of S′min.

Example 3.4. For an injective function f : R2 → R and d(X,Y ) = |f(X) −
f(Y )| is metric function [6]. For three different point X,Y, Z on R2, we can
assume that f(X) < f(Y ) < f(Z). Then

d(X,Z) = f(Z)− f(X) = f(Z)− f(Y ) + f(Y )− f(X) = d(X,Y ) + d(Y, Z).

So, we get the S′ always 0. Hence S′min = S′max = 0.
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Example 3.5. d(X,Y ) = dT (X,Y ): Let the coordinates of X,Y, Z be (a1, b1),
(a2, b2), (a3, b3) respectively. If a1 ≤ a2 ≤ a3, b1 ≤ b2 ≤ b3 then,

d(X,Z) = a3 − a1 + b3 − b1
= a3 − a2 + b3 − b2 + a2 − a1 + b2 − b1 = d(X,Y ) + d(Y, Z),

and we get S′ = 0, so, S′min = 0. Consider for the case of S′ > 0. Then without
loss of generality, we can say

a1 ≤ a2 ≤ a3, b1 ≤ b3 ≤ b2.

Then, if we let a2 − a1 = a, a3 − a2 = b, b3 − b1 = c, b2 − b3 = d, then

d(X,Y ) = a+ b+ c, d(Y, Z) = b+ d, d(Z,X) = a+ c+ d.

So, by Heron’s formula S′ =
√
bd(a+ c)(a+ c+ b+ d), S = bc+bd+ad

2 . If we
take a, b very big and c, d very small with S fixed,then we can get S′ very big.
So, S′max =∞

Lemma 3.6. All real number r can be expressed in the form of

r =

∞∑
i=−∞

ai10i(ai ∈ Z,−1 ≤ ai ≤ 8)

uniquely. In this case, this is pseudo-decimal expression. Here we consider
1.− 1− 1− 1− 1− 1... = 0.88888...as 8888....

Proof. For all real number r, prove the existence of sequence ai that satisfies

r =
∞∑

i=−∞
ai10i(ai ∈ Z,−1 ≤ ai ≤ 8).

First, consider a big natural number N that |r| < 10N−1. Then,

10N >
10N

9
+ r >

10N

9
− 10N−1 > 0.

So, if we get a decimal expression of 10N

9 + r,

10N

9
+ r =

N−1∑
k=−∞

xk10k(xk ∈ Z, 0 ≤ xk ≤ 9).

Then, we get

r =
N−1∑
k=−∞

xk10k −
N−1∑
k=−∞

10k =
N−1∑
k=−∞

(xk − 1)10k.

So, if we let

ai = 0 (i ≥ N), ai = xi − 1(i < N),
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then, r =
∞∑

i=−∞
ai10i(ai ∈ Z,−1 ≤ ai ≤ 8). So, if there is a real number r that

is expressed in two diffetent ways by

r =
∞∑

i=−∞
ai10i =

∞∑
i=−∞

bi10i(ai, bi ∈ Z,−1 ≤ ai, bi ≤ 8).

Then, if we let ri = ai− bi then, 0 =
∞∑

i=−∞
ri10i. Since −9 ≤ ri ≤ 9, for two sets

A = {i|1 ≤ ri ≤ 9}, B = {i|1 ≤ −ri ≤ 9},

t =
∑
i∈A

ri10i =
∑
j∈B

(−rj)10j . So A ∩ B = ∅ and by the uniqueness of the

decimal expression of t, we get A and B are empty. So, we get the uniqueness
of pseudo-decimal expression. �

Theorem 3.7. When using pseudo-decimal expression, if we define f : R2 → R
by

f(
∞∑

k=−∞

ak10k,
∞∑

k=−∞

bk10k) =
∞∑

k=−∞

(ak102k + bk102k+1),

then f is a bijective function.

Proof. For arbitrary x, y ∈ R, we know that pseudo-decimal expression is uniquely
exist. By the Theorem 3.6. �

Theorem 3.8. Since for all real number r, the pseudo decimal expression of

r =

∞∑
k=−∞

(ak102k + bk102k+1)

is unique, the corresponding

x =
∞∑

k=−∞

ak10k, y =
∞∑

k=−∞

bk10k

is also unique too. So, f is a bijective function.

Theorem 3.9. For ∅ 6= S0 ⊆ R+, there exist distance function d : R2 → R such
that

S0 = {d(X,Y )|X 6= Y }...(∗)

Proof. By Theorem 3.7, there exist a bijection f : R2 → R. Now, let us prove
the existence of surjective function g : R→ S0. First, s0 is a fixed element of S0

that satisfies the following conditions.

(1) When S0 is bounded below, let s0 be the greatest lower bound of S0

(2) When S0 is not bounded below, let s0 be an arbitrary element of S0.
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Then for s ∈ S0, g(s) = s and for all t /∈ S0, g(t) = s0. Then, we get that g
is a surjective function.

If we let h = f ◦ g : R2 → S0 then, h is a surjective function, and if

As = {x|h(x) = s, x ∈ R2} 6= ∅,
then, we get ⋃

s∈S0

As = R2,∀s1 6=s2∈S0
: As1 ∩As2 = ∅.

Construce d : R2 → R satisfying

1 d(x, x) = 0
2 d(x, y) = d(y, x) = max(s1, s2)(x ∈ As1 , y ∈ As2 , x 6= y)

For x ∈ As1 , y ∈ As2 , z ∈ As3 , if we assume s1 ≤ s2 ≤ s3, then

d(x, y) = max(s1, s2) = s2,

d(y, z) = max(s2, s3) = s3,

d(z, x) = max(s3, s1) = s3.

So, for all x, y, z, d(x, y), d(y, z), d(z, x) are the edges of a triangle and this means
d is a distance function. Now let’s prove that d satisfies (∗).

(1) When S0 is bounded below, for all t < s0, t /∈ S0. So, g(t) = s0 and that
means there are infinitely many x such that g(x) = s0. So, |As0 | = ∞
and for all x 6= y ∈ As0 , we get d(x, y) = s0, and for different s0 6= s ∈ S0,
x ∈ As0 , y ∈ As, we get d(x, y) = max(s, s0) = s. Hence S0 = {d(X,Y )|X 6=
Y }.

(2) When S0 is not bounded below, for all s ∈ S0 there exist s > s′ ∈ S0. So,
for x ∈ As, y ∈ As′

d(x, y) = max(s, s′) = s

So, we get

S0 = {d(X,Y )|X 6= Y }.
Hence we complete the proof.

�

Remark 3.10. If S0 is a form of [a, b], then we can divide R2 into

Aa = {(x, y)|x ≤ a}, Ac = {(x, y)|x = c}(a < c < b), Ab = {(x, y)|x ≥ b},
and we can construct a distance function d.

Theorem 3.11. For all real number α < β, there exist Type4 distance function
d that satisfies following condition

S′min = α, S′max = β.
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Proof. First, there exist a > b that satisfy

β =

√
3

4
a2, α =

b

4

√
4a2 − b2.

Then, if we think of distance function d that S0 = {a, b} in Theorem 4.8, then
actually the possibel S′ are α and β. So, S′min = α, S′max = β. �

Definition 3.12. For two distance function d, d′, we say d is half equivalent to

d′ if and only if there exist real number α that for all x, y, d(x,y)
d′(x,y) ≤ α.

Theorem 3.13. If Type4 distance function d is an isometric to dE, d is half
equivalent to dE.

Proof. Let say d(x, y) = dE(f(x), f(y)). First, if f(x), f(y), f(z) lies on a line,
S′ = 0 and we see that if S > 0 then, it contradicts to (S′min, S

′
max) is bounded.

So, S = 0 and that means x, y, z, has to lie on a line too. So, we get that a line
on f(R2) has to be on a line on R2 too.

Now, let’s show that f−1 is an affine transformation. Since f is injective and
the range of f is R2, f−1: R2 → R2 preserve the straight line. So, for points
x, y ∈ R2, the trails of point z ∈ R2 that the area of ∆xyz is S are two lines.
Also, for f(x), f(y) ∈ R2 the trails of point w ∈ R2 that the area of ∆f(x)f(y)w
is more than S′min and less than S′max is a form of two bands on both sides of

f(x)f(y). If S(∆xyz1) = S(∆xyz2) = S, then

S′min ≤ S(∆f(x)f(y)f(z1)), S(∆f(x)f(y)f(z2)) ≤ S′max,

Hence f(z1), f(z2) has to be in the form of band mentioned above. In this

case, the z ∈ R2 such that f(z) ∈
←−−−−−−→
f(z1)(f(z2) becomes to be z ∈ ←−→z1z2. Then

S(∆xyz) = S, and so

S′min ≤ S(∆f(x)f(y)f(z)) ≤ S′max.

But, since f is a bijective function, there exist z that f(z) becomes the intersec-

tion point of
←−−−−−−→
f(z1)f(z2) and

←−−−−→
f(x)f(y) and that is a contradiction because

S(∆f(x)f(y)f(z)) = 0

So,
←−−−−−−→
f(z1)f(z2) is parallel to

←−−−−→
f(x)f(y). That is, we proved that two parallel lines

transformed by f has to be parallel. Hence, f−1 becomes an affine transforma-
tion. If we think of the plane as a vector space then there exist matrix A and
vector B that f−1(x) = Ax+B. Also, since f−1 is a injective function, f has a
form of

f(x) = A−1x−BA−1

Now, if

f

((
x
y

))
=

(
a c
c d

)(
x
y

)
+

(
α
β

)
,
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then, f((x, y)) = (ax+ by + α, cx+ dy + β). So, for two points A(x, y), B(z, w).
Hence we get

dE(A,B) =
√

(x− z)2 + (y − w)2,

d(A,B) =
√
{a(x− z) + b(y − w)}2 + {c(x− z) + d(y − w)}2

≤
√

(a2 + c2 + |ab+ cd|)(x− z)2 + (b2 + d2 + |ab+ cd|)(y − w)2.

So, without loss of generality, if we let b2 + d2 ≥ a2 + c2, then we have

d(A,B)

dE(A,B)
≤
√
b2 + d2 + |ab+ cd|.

�

Definition 3.14. Let SE1 be the set of d : R2 → R such that there exists a
function f : R+ ∪ {0} → R+ ∪ {0} satisfies

(1) d(x, y) = f(dE(x, y))
(2) f(x) = 0⇔ x = 0
(3) f(x) + f(y) ≥ f(z) for all y + z ≥ x ≥ |y − z|

Theorem 3.15. For the function f in definition 3.13, d is a distance function.

Proof.

1) It is trivial that d(x, y) ≥ 0.
2) If d(x, y) = 0, f(dE(x, y)) = 0 so dE(x, y) = 0(∵ (2)) then, x = y.

Also, if x = y, dE(x, y) = 0 so, d(x, y) = 0. So, d(x, y) = 0⇔ x = y.
3) d(x, y) = f(dE(x, y)) = f(dE(y, x)) = d(y, x).
4) d(x, y) + d(y, z) = f(dE(x, y)) + f(dE(y, z)) ≥ f(dE(x, z)) = d(x, z).

�

Definition 3.16. The function f is call to pseudo polynomial if and only if
there exist a finite set A that satisfy f(x) =

∑
a∈A

g(a)xa(g(a) 6= 0) for some g.

Theorem 3.17. For a distance function d ∈ SE1
, if f is a pseudo polynomial,

then there exists real number c that f(x) = cx.

Proof. Let there is a Type4 distance function d ∈ SE1
that f is a pseudo poly-

nomial. In this case, for all positive real number x, f(x) ≥ 0.
If we let, dE(x, y) = c, dE(y, z) = a, dE(z, x) = b, then by Heron’s formula

S =
1

4

√
(a+ b+ c)(a+ b− c)(a+ c− b)(b+ c− a),

S′

=
1

4

√
(f(a) + f(b) + f(c))(f(a) + f(b)− f(c))(f(a) + f(c)− f(b))(f(b) + f(c)− f(a)).
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In this case S′ satisfies S′min > 0 and S′max <∞.
If b = c, then

S =
a

4

√
4b2 − a2, S′ =

f(a)

4

√
4f(b)2 − f(a)2 > >

f(a)

4
(2f(b)− f(a)).

Then, by condition (3) of definition 4.13 we get that for all x, y > 0, y ≤ 2x,

f(y) ≤ 2f(x)...(∗∗)
If the maximal element a0 of A is a0 > 1 and g(a0) > 0, then

lim
x→∞

f(2x)

f(x)
= 2a0 > 2.

It contradicts to (**). Also, if g(a0) < 0, then limx→∞ f(x) = −∞, and it is a
contradiction. So, we get g(a0) > 0 and a0 ≥ 1. Now if 2b− a = ε (S is fixed),
then

S =
2b− ε

4

√
ε(4b− ε < b

√
bε,

and we get

b >

(
S√
ε

) 2
3

Since f is a pseudo polynomial and g(a0) > 0, there exist some large N such
that f is an increasing function in x ∈ [N,∞). (Because, f ′(x) is also a pseudo
polynomial with positive leading coefficinet, there exist some large N that for
all x > N, f ′(x) > 0.)
Now consider the case when there is an element of A that is smaller than 1.
If a0 < 1, then

2f(b)− f(a) = 2f(b)− f(2b− ε) > 2f(b)− f(2b),

and

lim
b→∞

(2f(b)− f(2b− ε)) ≥ lim
b→∞

(2f(b)− f(2b)) = lim
b→∞

g(a0)(2− 2a0)ba0 =∞,

which contraicts to d is Type4.
Also, when a0 = 1, if we let

h(x) = f(x)− g(1)x,

by condition(*), if we let a1 is the biggest element of A except a0, then g(a1) > 0.
So,

2f(b)− f(a) = 2f(b)− f(2b− ε) > 2f(b)− f(2b),

and we get

lim
b→∞

(2f(b)− f(2b− ε)) ≥ lim
b→∞

(2h(b)− h(2b)) = lim
b→∞

g(a1)(2− 2a0)ba0 =∞,

and it contradicts to d is Type4.
So, if f(x) is a pseudo polynomial, then a0 = 1 and the only element of A has
to be 1. So, there exists real number c that f(x) = cx. �
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