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ON GENERALIZED SUBWAY METRIC†
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Abstract. The Euclid metric is well-known and there are many results on

the space with that metric. But there are many other metrics which gives

more practical and useful results in the plane. In this paper, we introduce
new metric function in the plane, which is more useful in city with subway.

Finally we generalize to the general metric space and introduce a new

metric on Rn.
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1. Introduction

It is much helpful to understand geometric properties of spaces to adopt metric
function. Euclid metric is easy to understand and useful but it is not practical
to guide to the distance of route in city. To improve this fact, taxicab distance
was introduced for taxi-moving route [5,7] and, α-metric as a generalization of
taxicab distance was studied[2,3,4]. Nowadays, there are many papers[1,6,7] that
adopt new metrics to reflect more reality in the modern city and study geometric
properties of metric given spaces. There are not only taxis but subways, and
not only straight street but curved road in modern city. So it is meaningful to
introduce new metric with reality. There are some studies about subway metric
but there are some problems more such as to force to use subway when it is not
efficient. In this point of view, we introduce a new metric in the modern city
with subway, and we call it a generalized subway metric in the plane. Finally
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we suggest and generalized it to the general metirc space and introduce a new
metric on Rn.

2. Generalized Subway metric

Subway distance[1,6,7] was defined to think about distance between two point
P (x1, y1), Q(x2, y2) in city. It is given by

d(P,Q) = min(dT (P,Q), dT (A,L) + dT (B,L))

where dT is taxicab metric.
In this paper, we define a new metric on the plane with subway like as follow:

Let m = max(|x1 − x2|, |y1 − y2|), n = min(|x1 − x2|, |y1 − y2|), and let α, with
0 ≤ α ≤ π

4 , dα = m+ n(secα− tanα) be an α-distance function.

Let A,B ∈ R2 and line subway route S which containe station P , Q. Con-
sider a set M(A,B) as

M(A,B) = {d|P ∈ S,Q ∈ S, d(A,B) = dα(A,P ) + kdE(P,Q) + dα(Q,B)}
where 0<k<1 and dE is an Euclid metric. In this paper, we assume that the
route of subway is parallel to x-axis. Let us define the function dS′ as

dS′ : R2 ×R2 → R, dS′(A,B) = min{minM(A,B), dα(A,B)}.
Hereafter, we denote minM(A,B) by dS(A,B). Then we have

Theorem 2.1. dS′ is a distrance function

Proof. Since minM(A, B) ≥ 0, and dα(A, B) ≥ 0, we see that dS′(A,B) ≥ 0.
If the starting point and terminal point are determined, then minM(A,B) is
fixed. Let us check the conditions of distance function.

(1) dS′(A,A) = 0 and dS′(A,B) = 0 ⇔ minM(A,B) = dα(A,B) = 0 ⇔
A= B.

(2) From the definition of M(A,B) and the fact that dα is a distance func-
tion, we see that dS′(A,B) = dS′(B,A).

(3) Divide by 6 cases to prove triangle inequality.
1) AB, AC, BC are more shorter α distance than dS :

Trivially dα(A,B) ≤ dα(A,C) + dα(B,C).

2) If minM(A,B) ≤ dα(A,B) and the other path are more shorter α
distance than dS :
In this case, since dS(A,B) ≤ dα(A,B) ≤ dα(A,C) +dα(B,C), the
triangle inequality can be satisfied.

3) Only one of the distance ds′ of AC or BC is shorter dS′ than α
distance and another is longer than α distance. Then we get:
dα(A,C) + dα(B,P ) + kdE(P,Q) + dα(Q,P )
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≥ dα(A,Q) + kdE(P,Q) + dα(Q,P )
≥ dS(A,B) ≥ dα(A,B).
Hence triangle inequality is satisfied.

4) Only one of the α distance of BC or AC is shorter α distance than
dS′ and another is longer than dS . Then we get:
dS(A,C)+dα(B,C) = dα(A,P )+kdE(P,Q)+dα(Q,C)+dα(B,C)
≥ dα(A,P ) + kdE(P,Q) + dα(B,Q) ≥ dS(A,B),
so we get desired resilt.

5) If the dS of AC and BC are shorter than α distance, and another
is longer than α distance, then we see that
dα(A,C)+kdE(P,Q)+dα(Q,C)+dα(C,P ′)+kdE(P ′, Q′)+dα(Q′, B)
≥ dα(A,C) + kdE(P,Q) + dα(Q,P ′) + kdE(P ′, Q′) + dα(Q′, B)
= dα(A,C) + kdE(P,Q) + dE(Q,P ′) + kdE(P ′, Q′) + dα(Q′, B)
≥ dα(A,C) + kdE(P,Q′) + dα(Q′, B) ≥ dS(A,B) ≥ dα(A,B),
hence the triangle is proved.

6) If all of the dS of AB, AC and BC are shorter than α distance.
Then we can prove by the similar method of 5).

�

Definition 2.2. We call the function dS′ by generalized subway metric.

Let A be a starting point, B be a terminal point and the line subway route
l and station exist continuous on l, P and Q are two point on l. Then we can
assume A(0, 0), B(x0, y0) (x0 > 0, y0 > 0 ), l : y = m (m is a constant). Let
P ′(x′1,m), Q′(x′2,m) is points that satisfies minM(A,B).

Theorem 2.3. The x-coordinate is monotonic when they are moving. That is
0 < x′1 < x′2 < x0.

Proof. Loss of generality it is sufficient to prove the monotonic increasing case.
First We prove for the case P ′, Q′ is the point between 0 and x0.

1 When x′1 < −x0: It is longer than when 0 < x′1 < x0. And distance
between x′1 and 0 is larger than x0. It means that it is always true for
any point P ′ and Q′. So P ′ is not minimized point, it is a contradiction.

2 When −x0 < x′1 < 0: Let P ′′ be a symmetric point to y-axis of P ′.
Then, the distance between the starting point and P ′ is the same with
the distance between starting point and P ′′. But distance between P ′′

and Q is not longer than distance between P ′ and Q′. So P ′ is not
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minimized point, it is a contradiction.

3 When x′1 > x0, 0 < x′2 < x0 : We can prove similar method as above.

Let x′1 > x′2. In this case, if we change the position of P ′ and Q′, then the
distance is more shorten than before. So it is a contradiction. Hence we complete
a proof. Then do not go back through x-axis.

�

Theorem 2.4. The first movement with α distance is parallel to y-axis.

Proof. Geomatically prove that it is not need to consider if first-moving is parallel
to x-axis. Distance difference of dα and dS′′ of origin to point on subway is
(1− k)dS(P,Q). So if first moving is parallel to x-axis, then the point must be
the closer (m, m) to be shorter distance. Hence dα((0, 0), (m,m)) is minimum
distance.

Let us consider the case of the first moving is parallel to y-axis.
If the positions which get into subway are (t1, m),(t2, m) (Assume, t1 < t2),
then the distance difference is (m + (secα - tanα)t2) - (m + (secα - tanα)t1 +
k(t2− t1)) = (secα - tanα - k)(t2− t1). In this case, we divide into two cases by
the magnitude of secα− tanα and k.

Then, divide a case which is larger secα− tanα or k .

1) secα − tanα > k: Riding on foot of perpendicular on subway line from
starting point (If origin starts, it is (0,m)) makes generalized subway
metric minimized. So (1 + k)m is the minimum distance. But since
dα((0, 0), (m,m)) = (secα− tanα+ 1)m > (1 + k)m, first moving must
be parallel to y-axis.

2) secα− tanα < k: If the starting point is origin, then riding on (m,m) is
maximum. But dα((0, 0), (m,m)) is equal unrelated what first moving
direction is to x-axis or y-axis.

Hence we complete the proof. �

Theorem 2.5. If x0 > m+ |y0 −m|, then dS′ is given is follows.

(1) x0 > y0:
To calculating minM(A,B), consider Q and B. And let X be a point
with coordinate(x0−y0+m,m). Q is toward (based on x-axis)X because
first moving must be parallel to y-axis. By the similar method, T (m,m)
and P must be more left than T by theorem 2.4. Then Q must exist
more right than X. Hence we have
dα(Q,B) = |y0−m| + (secα−tanα)(x0−x2) and

√
2−1 < secα−tanα

< 1 at 0 ≤ α ≤ π
4 .
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Considering E(x3,m), F (x4,m), difference distance between E, B and dis-
tance between F , B is (secα − tanα)(x4 − x3). So, divide case by two cases to
get P,Q which make to minimize minM(A,B) by k as

1) secα− tanα < k : minQ is X(x0 − y0 +m,m) and minP is T (m,m).
2) secα− tanα > k : minQ is (x0,m) and minP is (0,m).

Then we can get generalized subway metric regarding secα − tanα and k as
follows:

1) secα− tanα > k:
since P is (0,m), Q is (x0,m), dS(A,B) = min(x0+(secα−tanα)y0,m+
|y0 −m|+ kx0). Then we can divide into two cases as follows.

1 m < y0 < 2m:
Since x0 + (secα − tanα)y0 −m − |y0 −m| − kx0 = x0 + (secα +
tanα)y0−y0−kx0 = (1−k)(x0−y0) > 0, dS′ is m+ |y0−m|+kx0.

2 0 < y0 < m:
Since x0 + (secα − tanα)y0 −m − |y0 −m| − kx0 = x0 + (secα +
tanα + 1)y0 − 2m − kx0 = (1 − k)x0 + (secα − tanα)y0 − 2m, we
get dS′ as follows.

i) if y0 >
2m−(1−k)x0

secα+tanα+1 , then dS′ = m+ |y0 −m|+ kx0

ii) if y0 <
2m−(1−k)x0

secα+tanα+1 , then dS′ = x0 + (secα+ tanα)y0.

2) secα− tanα < k:

Since P is (m, m), Q is (x0 − y0 + m,m), dS′ = min(x0 + (secα −
tanα)y0, (secα−tanα−k)m+(m+kx0)+ |y0−m|(1−k+secα−tanα)).
Hence we get dS′ divide by two cases.

1 If m < y0 < 2m, then x0 + (secα− tanα)y0− (secα+ tanα−k)m−
(m+kx0)−|y0−m|(1−k+secα− tanα) = x0 +(secα− tanα)y0−
(secα+ tanα− k)m− (m+ kx0)− (y0 −m)(1− k + secα− tanα)
= −y0 + (1 − k)x0 − (secα + tanα − k)y0 + (secα + tanα)y0 =
(1− k)(x0 − y0) > 0.
So dS′ = (secα+ tanα−k)m+(m+kx0)+ |y0−m|((1−k+secα+
tanα).

2 If 0 < y0 < m, then it occurs two cases.

i) y0 > (1−k)(2m−x0)+2m(secα−tanα)
1−k+2(secα−tanα) : dS′ = (secα − tanα −

k)m+ (m+ kx0) + |y0 −m|(1− k + secα− tanα).

ii) y0 <
(1−k)(2m−x0)+2m(secα−tanα)

1−k+2(secα−tanα) : dS′ = x0+(secα−tanα)y0.
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(2) x0 < y0 : Since x0 > m + |y0 − m|, y0 > m. Then the quantity of
minM is fixed and only dα(A,B) is change from x0 +(secα− tanα)y0 to
y0 + (secα− tanα)x0. Hence by the similar method of the case x0 > y0,
we get dS′ as follows:

1) secα− tanα > k:
dS′ = min(y0 + (secα− tanα)x0,m+ |y0 −m|+ kx0)
In this case, y0 + (secα− tanα)x0−m− |y0−m| − kx0 > y0−m−
|y0 −m| > 0, so dS′ = m+ |y0 −m|+ kx0 = y0 + kx0.
Hence we dS′ is given as

1 y0 >
2m−(1−k)x0

secα−tanα+1 : m+ |y0 −m|+ kx0.

2 y0 <
2m−(1−k)x0

secα−tanα+1 : x0 + (secα− tanα)y0.

2) secα− tanα < k:
dS′ = min(y0 + (secα− tanα)x0, (secα− tanα−k)m+ (m+kx0) +
|y0−m|(1−k+ secα− tanα)) = (secα− tanα−k)m+ (m+kx0) +
|y0 −m|(1− k + secα− tanα).
Hence we get dS′ as follows:

1 y0 >
(1−k)(2m−x0)+2m(secα−tanα)

1−k+2(secα−tanα) :

(secα−tanα−k)m+(m+kx0)+ |y0−m|(1−k+secα−tanα).

2 y < (1−k)(2m−x0)+2m(secα−tanα)
1−k+2(secα−tanα) : y0 + (secα− tanα)x0.

Theorem 2.6. If m+ |y0 −m| > x0, then dS′ is given as follows.

Since P is boarding gate and Q is outing gate, P must exist more right than
Q. But it is contradicts to Theorem 2.3. So minM(A,B) is determined when Q
is boarding subway point and P is boarding subway point. Then, it needs to a
difference formula.

Let starting at A(0, 0) and riding at T (xt,m), getting off at W (xw,m) and
end point be B(x0, y0). Let fixed terminal point and change starting point to
get minM(A,B). Let us consider dS′ by dividing three cases:

(1) x0 > y0:
Decide two boarding points. Let T1(xt1 ,m)andT2(xt2 ,m) are station,

and let xt1 < xt2 . Then, distance difference between dropping by T1 and
T2, fixed getting-off-point (xw,m), is

m+ (secα− tanα)xt2 + k(xw − xt2) + |y0 −m|+ (x0 − xw)(secα− tanα)−
(m+ (secα− tanα)xt1 + k(xw − xt1) + |y0 −m|+ (x0 − xw)(secα− tanα))

= (secα− tanα− k)(xt2 − xt1).

Hence we see that if the boarding point is more closer to (0,m) then
dS′ is minimized, when secα − tanα > k. On the other hand if the
boarding point is more closer to (m,m), then dS′ is minimized when
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secα− tanα < k. Boaring point cannot exist more right than (m,m) by
Theorem 2.3. Hence we see that if the boarding point is closer to (x0,m),
then dS′ is minimized when secα− tanα > k. On the other hand, if the
boarding point is more closer to (x0 − |y0 − m|, 0), then dS′ is mini-
mized when secα− tanα < k. Hence we get dS′ = m+ |y0−m|+ kx0 if

y0 >
2m−(1−k)x0

secα−tanα+1 and dS′ = x0+(secα−tanα)y0 if 0 < y0 <
2m−(1−k)x0

secα−tanα+1 .
But if secα− tanα < k, then it occurs a unusual case. In this case, the
distance difference is given by (k − secα − tanα)(dw + dt) > 0 if the
boarding and getting off points are (xt,m), (xw,m) and (xt + dt,m),
(xw − dw,m) respectively. After all minM(A,B) is occured if xt = xw,
that is dS′ = dα, it is a case of nonusing subway.

(2) |y0 −m| < x0 < y0 : In this case we see that dS′ is same of the case (1)
by the similar way of (1).

(3) If x0 < |y0 −m|, we can get dS′ dividing by three cases
1) x0 > y0: Then y0 < m.

So we consider two cases
1 secα−tanα > k: The boarding and getting off points must be

(0,m) and (x0,m) respectively to minimize M(A,B). Then
the distance difference of minM(A,B) and dα(A,B) is 2m−
y0 + kx0 − (x0 + (secα− tanα)y0) and which is smaller than
(1 − (secα − tanα))y0 − (1 − k)x0 < (1 − k)(y0 − x0) < 0.
Hence dS′ = minM(A,B)

2 secα− tanα < k: In this case, the boarding point and getting
off point must be (0,m) and (x0,m) respectively to minimize
M(A,B). Hence we get dS′ = dα.

2) x0 < y0: By the smilar way of the above case, we get dS′ from two
cases.

1 secα− tanα < k: dS′ = dα
2 secα− tanα > k: the distance difference of minM(A,B) and
dα(A,B) is m + |y0 −m| + kx0 − (y0 + (secα − tanα)x0) =
m − y0 + |y0 − m| − (secα − tanα)x0. Hence we get dS′ =
minM(A,B).

3. New metrics on metirc spaces

3.1. New metrics on a metric space using generalized subway metirc.
In this section, it will be shown to be able to construct new metric function from
given metric function on X.

Suppose that there is a metric function d defined on X and the other metric
function dS defined on a finite set S ⊂ X. If dS(P,Q) ≤ d(P,Q) for all P,Q ∈ S,
define ms : X ×X → R+

0 and d � ds as

ms(x, y) = min{d(x, P ) + ds(P,Q) + d(Q, y)|P,Q ∈ S}
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d � ds(x, y) = min{d(x, y),ms(x, y)}

Then we see that

d � ds(x, y) = d(x, y) or d � ds(x, y) = ms(x, y)

d � ds(x, y) ≤ d(x, y), d � ds(x, y) ≤ ms(x, y)

Since S is finite, there exists P,Q ∈ S satisfying ms(x, y) = d(x, P ) +ds(P,Q) +
d(Q, y).

Theorem 3.1. d � ds is a metric function on X.

Proof.
(1) Claim : d � ds(x, y) = 0 iff x = y.
If d � ds(x, y) = 0, d(x, y) = 0 or ms(x, y) = 0.
If d(x, y) = 0, then x = y because d is an metric function.
If ms(x, y) = 0, there exists P,Q ∈ S which satisfies d(x, P ) + ds(P,Q) +
d(Q, y) = 0. But every term in ms(x, y) is non-negative thus they are 0. Now
d(x, P ) = ds(P,Q) = d(Q, y) = 0 so x = P = Q = y.

Conversely if x = y, then d(x, y) = 0. So d � ds(x, y) = min{0,ms(x, y)} = 0.

(2) symmetry : d � ds(x, y) = d � ds(y, x)
Suppose that ms(x, y) 6= mx(y, x).
Then we can assume that ms(x, y) < ms(y, x) without lost of generality.
So there are P,Q ∈ S which satisfy ms(x, y) = d(x, P ) + ds(P,Q) + d(Q, y) <
ms(y, x), and ms(x, y) = d(y,Q) + ds(Q,P ) + d(P, x) < ms(y, x) by the defini-
tion of metric function. But it violates definition of ms(y, x). It is contradiction
and now it is true that ms(x, y) = ms(y, x).

(3) triangle inequality
It is divided into four cases to show d � ds(x, y) + d � ds(y, x) ≥ d � ds(x, z).

1) d � ds(x, y) = d(x, y), d � ds(y, z) = d(y, z):

d � ds(x, y) + d � ds(y, x) = d(x, y) + d(y, x) ≥ d(x, z) ≥ d � ds(x, z)

2) d � ds(x, y) = d(x, y), d � ds(y, z) = ms(y, z) = d(y, P ) + ds(P,Q) +
d(Q, z)(P,Q ∈ S):

d � ds(x, y) + d � ds(y, x)

= d(x, y) + d(y, P ) + ds(P,Q) + d(Q, z)

≥ d(x, P ) + ds(P,Q) + d(Q, z)

≥ ms(x, z)

≥ d � ds(x, z)

3) d�ds(x, y) = ms(x, y) = d(x, P )+ds(P,Q)+d(Q, y), d�ds(y, z) = d(x, y).
So, we can prove by the similar way of the case 2).
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4) If d � ds(x, y) = ms(x, y) = d(x, P ) + ds(P,Q) + d(Q, y)(P,Q ∈ S) and
d � ds(y, z) = ms(y, z) = d(y,R) + ds(R, T ) + d(T, z)(R, T ∈ S), then

d � ds(x, y) + d � ds(y, z)
= ms(x, y) +ms(y, z)

= d(x, P ) + ds(P,Q) + d(Q, y) + d(y,R) + ds(R,S) + d(S, z)

≥ d(x, P ) + ds(P,Q) + ds(Q, y) + d(y,R) + ds(R,S) + d(S, z)

≥ d(x, P ) + ds(P,R) + ds(R,S) + d(S, z)

≥ ms(x, z)

≥ d � ds(x, z)

3.2. New metric on Rn. For angles 0 ≤ α1 ≤ α2 ≤ . . . ≤ αn <
π
2 and points

X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , yn) ∈ Rn, assume that

|xi1 − yi1 | ≥ |xi2 − yi2 | ≥ . . . ≥ |xin − yin |

are satisfied for {i1, i2, . . . , in} = {1, 2, . . . , n}. Define the function d{αh} :

(Rn)2 → R by

d{αh}(X,Y ) := dα1,α2,...,αn
(X,Y ) =

n∑
k=1

(secαk − tanαk)|xik − yik |

Then we have

Theorem 3.2. The function d{αh} becomes a distance function

Proof Since f(x) = secx− tanx satisfies f(0) = 1 and

f ′(x) = secxtanx− sec2x = −secxf(x) < 0

on x ∈
[
0, π2

]
, f(x) is a monotone decreasing function. Moreover we see that

(1) d{αk}(X,Y ) ≥ 0 is trivial because f(αk) > 0.
(2) Since f(αk) > 0 for all 1 ≤ k ≤ n,

d{αk}(X,Y ) = 0 iff ∀1≤i≤n : xi = yi, that is X = Y.

(3) d{αk}(X,Y ) = d{αk}(Y,X) is trivial.
(4) For arbitrary points X = (x1, x2, . . . , xn), Y = (y1, y2, . . . , yn),
Z = (z1, z2, . . . , zn), if we assume that

|xi1 − yi1 | ≥ |xi2 − yi2 | ≥ . . . ≥ |xin − yin |, {i1, i2, . . . , in} = {1, 2, . . . , n},
|xj1 − zj1 | ≥ |xj2 − zj2 | ≥ . . . ≥ |xjn − zjn |, {j1, j2, . . . , jn} = {1, 2, . . . , n},
|yk1 − zk1 | ≥ |yk2 − zk2 | ≥ . . . ≥ |ykn − zkn |, {k1, k2, . . . , kn} = {1, 2, . . . , n},

then by the rearrangement inequality we see that

d{αh}(X,Z)
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=

n∑
h=1

(secαh − tanαh)|xjh − zjh |

≤
n∑
h=1

(secαh − tanαh)|xjh − yjh |+
n∑
h=1

(secαh − tanαh)|yjh − zjh |

≤
n∑
h=1

(secαh − tanαh)|xih − yih |+
n∑
h=1

(secαh − tanαh)|ykh − zkh |(∵)

= d{αh}(X,Y ) + d{αk}(Y, z).

Hence the function d{αh} : (Rn)2 → R becomes a distance function.

Remark 3.3. In Theorem 3.2, if we consider the function f(x) as a positive
monotone decreasing function instead of f(x) = secx − tanx ,then the theorem
is also true.
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