PREGROUPS AND PRE-B-ALGEBRAS[†]

GANG WU AND YOUNG HEE KIM*

ABSTRACT. In this paper, we introduce the notions of pregroups, post-groups and pre-B-algebras, and we investigate their relations. Using this notions we give another proof that the notion of B-algebras coincides with the notion of pregroups.

AMS Mathematics Subject Classification: 06F35.

Key words and phrases: pregroup, postgroup, pre-B-algebra, B-algebra.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCKalgebras and BCI-algebras ([6, 7]). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In [3, 4], Q. P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. They have shown that the class of BCI-algebras is a proper subclass of the class of BCH-algebras. J. Neggers and H. S. Kim ([14]) introduced a new notion which appears to be of some interest, i.e., that of a B-algebra, and studied some of its properties. M. Kondo and Y. B. Jun ([12]) proved that the class of B-algebras is equivalent in one sense to the class of groups by using the property: x = 0 * (0 * x), for all $x \in X$. J. Neggers and H. S. Kim ([14]) argued slightly differently in taking their position. J. R. Cho and H. S. Kim ([2]) discussed further relations between B-algebras and other classes of algebras, such as quasigroups. It is well-known that every group determines a B-algebra, called a group-derived B-algebra. It is natural to consider the problem whether or not all B-algebras are so groupderived. J. Neggers and H. S. Kim ([15]) introduced the notion of normality in B-algebras, and obtained a fundamental theorem of B-homomorphism for Balgebras. C. B. Kim and H. S. Kim ([9]) introduced the notion of a BM-algebra which is a specialization of B-algebras, and they proved the following: the class of

Received September 28, 2017. Revised November 3, 2017. Accepted November 8, 2017. * Corresponding author.

 $^{^{\}dagger}$ This work was financially supported by the Research Year of Chungbuk National University in 2017.

^{© 2018} Korean SIGCAM and KSCAM.

BM-algebras is a proper subclass of B-algebras, and showed that a BM-algebra is equivalent to a 0-commutative B-algebra, and the class of Coxeter algebras is a proper subclass of BM-algebras. H. K. Park and H. S. Kim ([16]) introduced the notion of a quadratic B-algebra which is a medial quasigroup, and obtained that every quadratic B-algebra on a field X with |X| > x, is a BCI-algebra. Y. B. Jun et al. ([8]) considered the fuzzification of (normal) B-subalgebras, and investigated some related properties. They characterized fuzzy B-algebras. P. J. Allen et al. ([1]) gave another proof of the close relationship of B-algebras with groups using the zero adjoint mapping. H. S. Kim and H. G. Park ([11]) showed that if X is a 0-commutative B-algebra, then (x*a)*(y*b) = (b*a)*(y*x). Using this property they showed that the class of p-semisimple BCI-algebras is equivalent to the class of 0-commutative B-algebras. A. Walendziak ([17]) obtained some systems of axioms defining a B-algebra, and he also obtained a simplified axiomatization of 0-commutative B-algebras. C. B. Kim and H. S. Kim ([10]) introduced the notion of a BA-algebra, and showed that the class of BA-algebras is equivalent to the class of B-algebras. For general reference on BCK/BCI-algebra we refer to ([5, 13, 18]).

In this paper, we introduce the notions of pregroups, postgroups and pre-B-algebras, and we investigate their relations. Using this notions we give another proof that the notion of B-algebras coincides with the notion of pregroups.

2. Preliminaries

A B-algebra ([14]) is a non-empty set X with a constant 0 and a binary operation "*" satisfying the following axioms:

- (I) x * x = 0,
- (II) x * 0 = x,
- (III) (x * y) * z = x * (z * (0 * y)) for all x, y, z in X.

Example 2.1 ([14]). Let X be the set of all real numbers except for a negative integer -n. Define a binary operation * on X by

$$x * y := \frac{n(x - y)}{n + y}$$

Then (X, *, 0) is a *B*-algebra.

Example 2.2. Let $X := \{0, 1, 2, 3, 4, 5\}$ be a set with the following table:

Then (X, *, 0) is a *B*-algebra (see [14]).

Theorem 2.3 ([14, 17]). If (X, *, 0) is a B-algebra, then

- (1) x * (y * z) = (x * (0 * z)) * y,
- (2) 0*(0*x) = x,
- (3) $0*(x*y) = y*x \text{ for all } x, y, z \in X.$

Proposition 2.4 ([2, 14]). In any B-algebra, the left and the right cancelation laws hold.

Theorem 2.5 ([1]). Let (X, \bullet) be a group with identity e_X . If we define $x * y := x \bullet y^{-1}$, then $(X, *, e_X)$ is a B-algebra.

3. Pregroups and postgroups

Let (X, \bullet) be a group and let $\varphi : X \to X$ be a function. A groupoid (X, *) is said to be a *pregroup* of (X, \bullet) with respect to φ if $x \bullet y := x * \varphi(y)$ for all $x, y \in X$. Moreover, a groupoid (X, *) is said to be a *postgroup* of (X, \bullet) with respect to φ if $x * y := x \bullet \varphi(y)$ for all $x, y \in X$.

Example 3.1. Consider $X := \{0, 1, 2, 3\}$ with the following table:

Then (X, \bullet) is a group which is isomorphic with \mathbf{Z}_4 . If we define a map $\varphi : X \to X$ by $\varphi(0) = 0, \varphi(1) = 3, \varphi(2) = 2$ and $\varphi(3) = 1$, then the groupoid (X, *) with the following table:

is a pregroup of (X, \bullet) with respect to φ . Note that (X, *) is not a group, since it has no identity.

Example 3.2. Let (X, \bullet) be a group. Define a binary operation * on X by $x * y := x \bullet y^{-1}$ for all $x, y \in X$ and define a map $\varphi : X \to X$ by $\varphi(x) := x^{-1}$ for all $x \in X$. Then $x * \varphi(y) = x * y^{-1} = x \bullet (y^{-1})^{-1} = x \bullet y$. This shows that (X, *) is a pregroup of (X, \bullet) with respect to φ .

Proposition 3.3. Let (X,*) be a pregroup of a group (X, \bullet) with respect to a function $\varphi: X \to X$. Then

- (1) $(Im\varphi,*)$ has only one idempotent,
- (2) φ is injective,
- (3) every finite pregroup is also a postgroup.

- *Proof.* (1) Let $u := \varphi(e_X)$ where e_X is an identity for a group (X, \bullet) . Then $x = x \bullet e_X = x * \varphi(e_X) = x * u$ for all $x \in X$. It follows that u = u * u, i.e., u is an idempotent element of $Im\varphi$. Assume $v = \varphi(w)$ is an idempotent in $Im\varphi$ for some $w \in X$. Then $v \bullet w = v * \varphi(w) = v * v = v$. Since (X, \bullet) is a group, we obtain $w = e_X$ and hence $v = \varphi(w) = \varphi(e_X) = u$.
- (2) If $\varphi(y) = \varphi(z)$ for any $y, z \in X$, then $y = e_x \bullet y = e_X * \varphi(y) = e_X * \varphi(z) = e_X \bullet z = z$, proving that φ is injective.
- (3) Assume X is finite. Since φ is injective, it is also an onto function, i.e., φ is a bijective function. Let $\varphi^{-1}: X \to X$ be an inverse function of φ . Then $x \bullet \varphi^{-1}(y) = x * \varphi(\varphi^{-1}(y)) = x * y$ for all $x, y \in X$, which proves that (X, *) is a postgroup of (X, \bullet) .

Proposition 3.4. If (X,*) is a pregroup of a group (X, \bullet) with respect to a function $\varphi: X \to X$, then φ is onto.

Proof. Since (X, \bullet) is a group, we have $x \bullet X = X$ for any $x \in X$. It follows from (X, *) is a pregroup of a group (X, \bullet) with respect to a function $\varphi : X \to X$ that $x \bullet y = x * \varphi(y)$, and hence $x * Im\varphi = x \bullet X = X$ for all $x \in X$. This shows that $|X| = |x * Im\varphi| \le |Im\varphi| \le |X|$, proving that $Im\varphi = X$, i.e., φ is onto.

Theorem 3.5. Every left-zero semigroup (X, *), $|X| \ge 2$, is a postgroup of any group, and it can not be a pregroup of any group.

Proof. Let (X, \bullet) be a group with identity e_X . Define a map $\varphi : X \to X$ by $\varphi(x) := e_X$ for all $x \in X$. Then $x * y = x = x \bullet e_X = x \bullet \varphi(y)$ for all $x, y \in X$, proving that (X, *) is a postgroup of (X, \bullet) .

Assume that (X, *) is a pregroup of a group (X, \bullet) . Then there is a function $\varphi: (X, *) \to (X, \bullet)$ such that $x \bullet y = x * \varphi(y)$ for all $x, y \in X$. It follows that $x \bullet y = x * \varphi(y) = x = x \bullet e_X$. Since (X, \bullet) is a group, we obtain $y = e_X$ for all $y \in X$, i.e., |X| = 1, a contradiction.

Remark. Not every groupoid is a postgroup. See the following example.

Example 3.6. Let $a \in X$. Define a binary operation x * y := a for all $x, y \in X$. Then (X, *) is a groupoid. Assume (X, *) is a postgroup of a group (X, \bullet) with respect to $\varphi : X \to X$. Then $x * y = x \bullet \varphi(y)$ for all $x, y \in X$. Hence $x \bullet \varphi(y) = x * y = a$ for all $x, y \in X$. Since (X, \bullet) is a group, we have $\varphi(y) = x^{-1} \bullet a$ for all $x \in X$. Let $x \neq z$ in X. Then $x^{-1} \bullet a = \varphi(y) = z^{-1} \bullet a$. Since (X, \bullet) is a group, we have $x^{-1} = z^{-1}$ and hence x = z, a contradiction. Hence (X, *) is not a postgroup.

Theorem 3.7. Let (X,*) be a pregroup of a group (X, \odot, \widehat{e}) with respect to ψ and let (X,*) be a postgroup of a group (X, \bullet, e) with respect to φ . Then $(\varphi \circ \psi)(x) = (\widehat{e})^{-1} \bullet x$ for all $x \in X$

Proof. Let (X,*) be a pregroup of a group (X,\odot,\widehat{e}) with respect to ψ . Then $x\odot y=x*\psi(y)$ for all $x,y\in X$. Let (X,*) be a postgroup of a group (X,\bullet,e) with respect to φ . Then $x*y=x\bullet\varphi(y)$ for all $x,y\in X$. It follows that

$$x \odot y = x * \psi(y) = x \bullet \varphi(\psi(y))$$
 for all $x, y \in X$. Hence $x = \widehat{e} \odot x = \widehat{e} \bullet \varphi(\psi(x))$, which shows that $(\varphi \circ \psi)(x) = (\widehat{e})^{-1} \bullet x$ for all $x \in X$.

The following proposition can be easily proved:

Proposition 3.8. The direct product of pregroups is a pregroup and the direct product of postgroups is a postgroup.

Remark. Given a non-empty set X, not every groupoid (X, *) can be a pregroup of a group (X, \bullet) defined on X.

Example 3.9. Let $\mathbf{N} := \{0, 1, 2, \cdots\}$. Assume $(\mathbf{N}, +)$ is a pregroup of a group (\mathbf{N}, \bullet) with respect to a mapping $\varphi : X \to X$. Let e be an identity for (\mathbf{N}, \bullet) . Then $x = x \bullet e = x + \varphi(e)$ for all $x \in \mathbf{N}$, which shows that $\varphi(e) = 0$. Moreover, $x = e \bullet x = e + \varphi(x)$ and hence $\varphi(x) = x - e$ for all $x \in \mathbf{N}$. Thus we obtain $x \bullet y = x + \varphi(y) = x + y - e$ for all $x, y \in \mathbf{N}$. It follows that $e = x \bullet x^{-1} = x + x^{-1} - e$ and hence $x^{-1} = 2e - x \ge 0$ for all $x \in \mathbf{N}$. This shows that $x \le 2e$ for all $x \in \mathbf{N}$, a contradiction.

Proposition 3.10. Let (X,*) be a pregroup of a group (X, \bullet) with respect to a function $\varphi: X \to X$. If φ is onto, then the left and right cancelation laws hold in (X,*).

Proof. Assume x*y=z*y where $x,y,z\in X$. Since φ is onto, there exists $a\in X$ such that $\varphi(a)=y$. It follows that $x\bullet a=x*\varphi(a)=x*y=z*y=z*\varphi(a)=z\bullet a$. Since (X,\bullet) is a group, we obtain x=z. Similarly, the left cancelation law holds.

4. Pre-*B*-algebras and postgroups

Definition 4.1. Let (X, *, 0) be a B-algebra and let $\varphi : X \to X$ be a mapping. An algebra $(X, \bullet, 0)$ is said to be a pre-B-algebra with respect to φ if $x * y := x \bullet \varphi(y)$ for all $x, y \in X$.

Proposition 4.2. If $(X, \bullet, 0)$ is a pre-B-algebra, then

- (1) $x \bullet \varphi(x) = 0$ and $x = x \bullet \varphi(0)$,
- (2) $x = 0 \bullet \varphi(0 \bullet \varphi(x)),$
- (3) $(x \bullet \varphi(y)) \bullet \varphi(y) = x \bullet \varphi(z \bullet \varphi(0 \bullet \varphi(y))),$
- (4) $x \bullet \varphi(y \bullet \varphi(z)) = (x \bullet \varphi(0 \bullet \varphi(z))) \bullet \varphi(y),$

for all $x, y, z \in X$ and for some mapping $\varphi : X \to X$.

Proof. If $(X, \bullet, 0)$ is a pre-*B*-algebra, then there exists a *B*-algebra (X, *, 0), where $x * y := x \bullet \varphi(y)$, for all $x, y \in X$, for some mapping $\varphi : X \to X$. (1) Given $x \in X$, we have $0 = x * x = x \bullet \varphi(x)$ and $x = x * 0 = x \bullet \varphi(0)$. (2) Given $x \in X$, we have $x = 0 * (0 * x) = 0 \bullet \varphi(0 * x) = 0 \bullet \varphi(0 \bullet \varphi(x))$. (3) For any $x, y, z \in X$, we have $(x * y) * z = (x \bullet \varphi(y)) \bullet \varphi(y)$ and $x * (z * (0 * y)) = x \bullet \varphi(z * (0 * y)) = x \bullet \varphi(z \bullet \varphi(0 * y))$, which proves (3), since (X, *, 0) is a *B*-algebra. (4) For any $x, y, z \in X$, we have $x * (y * z) = x \bullet \varphi(y \bullet \varphi(z))$

and $(x*(0*z))*y = (x*(0*z)) \bullet \varphi(y) = (x \bullet \varphi(0*z)) \bullet \varphi(y) = (x \bullet \varphi(0 \bullet \varphi(z))) \bullet \varphi(y)$, which proves (4), since (X, *, 0) is a B-algebra.

Theorem 4.3. Every group is a pre-B-algebra.

Proof. Let (X, \bullet) be a group with identity e_X . Define a map $\varphi: X \to X$ by $\varphi(x) := x^{-1}$ for all $x \in X$. If we define a binary operation "*" on X by $x * y := x \bullet \varphi(y)$, then $x * y = x \bullet y^{-1}$ for all $x, y \in X$. Given $x \in X$, we have $x * x = x \bullet x^{-1} = e_X$ and $x * e_X = x \bullet e_X^{-1} = x$. Given $x, y, z \in X$, we have $(x * y) * z = (x \bullet y^{-1}) \bullet z^{-1} = x \bullet (y^{-1} \bullet z^{-1})$ and $x * (z * (e_X * y)) = x * (z \bullet (e_X \bullet y^{-1})^{-1}) = x * (z \bullet y) = x \bullet (z \bullet y)^{-1} = x \bullet (y^{-1} \bullet z^{-1})$, proving that $(X, *, e_X)$ is a B-algebra, i.e., (X, \bullet, e_X) is a pre-B-algebra.

Proposition 4.4. Every B-algebra is a postgroup of a group.

Proof. It follows immediately from Theorem 2.5.

Question. Can non-isomorphic groupoids (X, \cdot_1) and (X, \cdot_2) produce isomorphic *B*-algebras through the proper choices of identities e_1, e_2 and mappings φ_1, φ_2 ?

Theorem 4.5. Let (X, \bullet) be a group with identity e_X and let $(X, *, e_X)$ be a B-algebra, where $x \bullet y := x * \psi(y)$ and $x * y := x \bullet \varphi(y)$ for all $x, y \in X$. Then ψ, φ are bijective and $\psi^{-1} = \varphi$.

Proof. Given $x, y \in X$, we have $x * y = x \bullet \varphi(y) = x * \psi(\varphi(y)) = x * (\psi \circ \varphi)(y)$. By Proposition 2.4, we obtain $y = (\psi \circ \varphi)(y)$.

Given $x, y \in X$, we have $x \bullet y = x * \psi(y) = x \bullet \varphi(\psi(y)) = x \bullet (\varphi \circ \psi)(y)$. Since every group has cancelation laws, we obtain $y = (\varphi \circ \psi)(y)$, proving the theorem.

References

- P.J. Allen, J. Neggers and H.S. Kim, B-algebras and groups, Sci. Math. Japo. Online 9 (2003), 9-17.
- Jung R. Cho and H.S. Kim, On B-algebras and quasigroups, Quasigroups and related systems 7 (2001), 1-6.
- 3. Q.P. Hu and Xin Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
- 4. Q.P. Hu and Xin Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.
- 5. A. Iorgulescu, Algebras of logic as BCK-algebras, Editura ASE, Bucharest, 2008.
- K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
- 7. K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
- 8. Y.B. Jun, E.H. Roh and H.S. Kim, On fuzzy B-algebras, Czech. Math. J. 52(2002), 375-384.
- 9. C.B. Kim and H.S. Kim, On BM-algebras, Sci. Math. Japo. 63(2006), 421-427.
- C.B. Kim and H.S. Kim, Another axiomatization of B-algebrs, Demonstratio Math. 41 (2008), 259-262.
- H.S. Kim and H.G. Park, On 0-commutative B-algebras, Sci. Math. Japo. 62 (2005), 31-36.

- M. Kondo and Y.B. Jun, The class of B-algebras coincides with the class of groups, Sci. Math. Japo. Online 7 (2002), 175-177.
- 13. J. Meng and Y.B. Jun, BCK-algebras, Kyungmoon Sa, Seoul, 1994.
- 14. J. Neggers and H.S. Kim, On B-algebras, Mate. Vesnik 54 (2002), 21-29.
- J. Neggers and H.S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Intern. Math. J. 2(2002), 207-214.
- 16. H.K. Park and H.S. Kim, *On quadratic B-algebras*, Quasigroups and related systems 8 (2001), 67-72.
- 17. A. Walendziak, Some axiomatizations of B-algebras, Math. Slovaca 56 (2006), 301-306.
- 18. H. Yisheng, BCI-algebras, Science Press, Beijing, 2006.

Gang Wu Department of Mathematics and Applied Mathematics, Harbin University of Commerce, Harbin, 150076, China.

e-mail: w3393@163.com

Young Hee Kim Department of Mathematics, Chungbuk National University, Cheongju, 28644, Korea.

e-mail: yhkim@chungbuk.ac.kr