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PREGROUPS AND PRE-B-ALGEBRAS†
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Abstract. In this paper, we introduce the notions of pregroups, post-

groups and pre-B-algebras, and we investigate their relations. Using this
notions we give another proof that the notion of B-algebras coincides with

the notion of pregroups.
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1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-
algebras and BCI-algebras ([6, 7]). It is known that the class of BCK-algebras
is a proper subclass of the class of BCI-algebras. In [3, 4], Q. P. Hu and X. Li
introduced a wide class of abstract algebras: BCH-algebras. They have shown
that the class of BCI-algebras is a proper subclass of the class of BCH-algebras.
J. Neggers and H. S. Kim ([14]) introduced a new notion which appears to be
of some interest, i.e., that of a B-algebra, and studied some of its properties.
M. Kondo and Y. B. Jun ([12]) proved that the class of B-algebras is equivalent
in one sense to the class of groups by using the property: x = 0 ∗ (0 ∗ x), for
all x ∈ X. J. Neggers and H. S. Kim ([14]) argued slightly differently in taking
their position. J. R. Cho and H. S. Kim ([2]) discussed further relations between
B-algebras and other classes of algebras, such as quasigroups. It is well-known
that every group determines a B-algebra, called a group-derived B-algebra. It
is natural to consider the problem whether or not all B-algebras are so group-
derived. J. Neggers and H. S. Kim ([15]) introduced the notion of normality in
B-algebras, and obtained a fundamental theorem of B-homomorphism for B-
algebras. C. B. Kim and H. S. Kim ([9]) introduced the notion of a BM -algebra
which is a specialization of B-algebras, and they proved the following: the class of
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BM -algebras is a proper subclass of B-algebras, and showed that a BM -algebra
is equivalent to a 0-commutative B-algebra, and the class of Coxeter algebras is
a proper subclass of BM -algebras. H. K. Park and H. S. Kim ([16]) introduced
the notion of a quadratic B-algebra which is a medial quasigroup, and obtained
that every quadratic B-algebra on a field X with |X| ≥ x, is a BCI-algebra. Y.
B. Jun et al. ([8]) considered the fuzzification of (normal) B-subalgebras, and
investigated some related properties. They characterized fuzzy B-algebras. P. J.
Allen et al. ([1]) gave another proof of the close relationship of B-algebras with
groups using the zero adjoint mapping. H. S. Kim and H. G. Park ([11]) showed
that if X is a 0-commutative B-algebra, then (x ∗ a) ∗ (y ∗ b) = (b ∗ a) ∗ (y ∗ x).
Using this property they showed that the class of p-semisimple BCI-algebras
is equivalent to the class of 0-commutative B-algebras. A. Walendziak ([17])
obtained some systems of axioms defining a B-algebra, and he also obtained a
simplified axiomatization of 0-commutative B-algebras. C. B. Kim and H. S.
Kim ([10]) introduced the notion of a BA-algebra, and showed that the class of
BA-algebras is equivalent to the class of B-algebras. For general reference on
BCK/BCI-algebra we refer to ([5, 13, 18]).

In this paper, we introduce the notions of pregroups, postgroups and pre-B-
algebras, and we investigate their relations. Using this notions we give another
proof that the notion of B-algebras coincides with the notion of pregroups.

2. Preliminaries

A B-algebra ([14]) is a non-empty set X with a constant 0 and a binary
operation “∗” satisfying the following axioms:

(I) x ∗ x = 0,
(II) x ∗ 0 = x,

(III) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y)) for all x, y, z in X.

Example 2.1 ([14]). Let X be the set of all real numbers except for a negative
integer −n. Define a binary operation ∗ on X by

x ∗ y :=
n(x− y)

n+ y

Then (X, ∗, 0) is a B-algebra.

Example 2.2. Let X := {0, 1, 2, 3, 4, 5} be a set with the following table:

∗ 0 1 2 3 4 5
0 0 2 1 3 4 5
1 1 0 2 4 5 3
2 2 1 0 5 3 4
3 3 4 5 0 2 1
4 4 5 3 1 0 2
5 5 3 4 2 1 0

Then (X, ∗, 0) is a B-algebra (see [14]).
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Theorem 2.3 ([14, 17]). If (X, ∗, 0) is a B-algebra, then

(1) x ∗ (y ∗ z) = (x ∗ (0 ∗ z)) ∗ y,
(2) 0 ∗ (0 ∗ x) = x,
(3) 0 ∗ (x ∗ y) = y ∗ x for all x, y, z ∈ X.

Proposition 2.4 ([2, 14]). In any B-algebra, the left and the right cancelation
laws hold.

Theorem 2.5 ([1]). Let (X, •) be a group with identity eX . If we define x∗y :=
x • y−1, then (X, ∗, eX) is a B-algebra.

3. Pregroups and postgroups

Let (X, •) be a group and let ϕ : X → X be a function. A groupoid (X, ∗)
is said to be a pregroup of (X, •) with respect to ϕ if x • y := x ∗ ϕ(y) for all
x, y ∈ X. Moreover, a groupoid (X, ∗) is said to be a postgroup of (X, •) with
respect to ϕ if x ∗ y := x • ϕ(y) for all x, y ∈ X.

Example 3.1. Consider X := {0, 1, 2, 3} with the following table:

• 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Then (X, •) is a group which is isomorphic with Z4. If we define a map ϕ : X →
X by ϕ(0) = 0, ϕ(1) = 3, ϕ(2) = 2 and ϕ(3) = 1, then the groupoid (X, ∗) with
the following table:

∗ 0 1 2 3
0 0 3 2 1
1 1 0 3 2
2 2 1 0 3
3 3 2 1 0

is a pregroup of (X, •) with respect to ϕ. Note that (X, ∗) is not a group, since
it has no identity.

Example 3.2. Let (X, •) be a group. Define a binary operation ∗ on X by
x ∗ y := x • y−1 for all x, y ∈ X and define a map ϕ : X → X by ϕ(x) := x−1

for all x ∈ X. Then x ∗ ϕ(y) = x ∗ y−1 = x • (y−1)−1 = x • y. This shows that
(X, ∗) is a pregroup of (X, •) with respect to ϕ.

Proposition 3.3. Let (X, ∗) be a pregroup of a group (X, •) with respect to a
function ϕ : X → X. Then

(1) (Imϕ, ∗) has only one idempotent,
(2) ϕ is injective,
(3) every finite pregroup is also a postgroup.
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Proof. (1) Let u := ϕ(eX) where eX is an identity for a group (X, •). Then
x = x • eX = x ∗ ϕ(eX) = x ∗ u for all x ∈ X. It follows that u = u ∗ u, i.e., u
is an idempotent element of Imϕ. Assume v = ϕ(w) is an idempotent in Imϕ
for some w ∈ X. Then v •w = v ∗ ϕ(w) = v ∗ v = v. Since (X, •) is a group, we
obtain w = eX and hence v = ϕ(w) = ϕ(eX) = u.

(2) If ϕ(y) = ϕ(z) for any y, z ∈ X, then y = ex •y = eX ∗ϕ(y) = eX ∗ϕ(z) =
eX • z = z, proving that ϕ is injective.

(3) Assume X is finite. Since ϕ is injective, it is also an onto function, i.e.,
ϕ is a bijective function. Let ϕ−1 : X → X be an inverse function of ϕ. Then
x • ϕ−1(y) = x ∗ ϕ(ϕ−1(y)) = x ∗ y for all x, y ∈ X, which proves that (X, ∗) is
a postgroup of (X, •). �

Proposition 3.4. If (X, ∗) is a pregroup of a group (X, •) with respect to a
function ϕ : X → X, then ϕ is onto.

Proof. Since (X, •) is a group, we have x•X = X for any x ∈ X. It follows from
(X, ∗) is a pregroup of a group (X, •) with respect to a function ϕ : X → X that
x • y = x ∗ϕ(y), and hence x ∗ Imϕ = x •X = X for all x ∈ X. This shows that
|X| = |x ∗ Imϕ| ≤ |Imϕ| ≤ |X|, proving that Imϕ = X, i.e., ϕ is onto. �

Theorem 3.5. Every left-zero semigroup (X, ∗), |X| ≥ 2, is a postgroup of any
group, and it can not be a pregroup of any group.

Proof. Let (X, •) be a group with identity eX . Define a map ϕ : X → X by
ϕ(x) := eX for all x ∈ X. Then x ∗ y = x = x • eX = x • ϕ(y) for all x, y ∈ X,
proving that (X, ∗) is a postgroup of (X, •).

Assume that (X, ∗) is a pregroup of a group (X, •). Then there is a function
ϕ : (X, ∗) → (X, •) such that x • y = x ∗ ϕ(y) for all x, y ∈ X. It follows that
x • y = x ∗ ϕ(y) = x = x • eX . Since (X, •) is a group, we obtain y = eX for all
y ∈ X, i.e., |X| = 1, a contradiction. �

Remark. Not every groupoid is a postgroup. See the following example.

Example 3.6. Let a ∈ X. Define a binary operation x ∗ y := a for all x, y ∈ X.
Then (X, ∗) is a groupoid. Assume (X, ∗) is a postgroup of a group (X, •)
with respect to ϕ : X → X. Then x ∗ y = x • ϕ(y) for all x, y ∈ X. Hence
x•ϕ(y) = x∗y = a for all x, y ∈ X. Since (X, •) is a group, we have ϕ(y) = x−1•a
for all x ∈ X. Let x 6= z in X. Then x−1 • a = ϕ(y) = z−1 • a. Since (X, •) is
a group, we have x−1 = z−1 and hence x = z, a contradiction. Hence (X, ∗) is
not a postgroup.

Theorem 3.7. Let (X, ∗) be a pregroup of a group (X,�, ê) with respect to
ψ and let (X, ∗) be a postgroup of a group (X, •, e) with respect to ϕ. Then
(ϕ ◦ ψ)(x) = (ê)−1 • x for all x ∈ X

Proof. Let (X, ∗) be a pregroup of a group (X,�, ê) with respect to ψ. Then
x� y = x ∗ ψ(y) for all x, y ∈ X. Let (X, ∗) be a postgroup of a group (X, •, e)
with respect to ϕ. Then x ∗ y = x • ϕ(y) for all x, y ∈ X. It follows that



Pregroups and pre-B-algebras 55

x� y = x ∗ ψ(y) = x • ϕ(ψ(y)) for all x, y ∈ X. Hence x = ê� x = ê • ϕ(ψ(x)),
which shows that (ϕ ◦ ψ)(x) = (ê)−1 • x for all x ∈ X. �

The following proposition can be easily proved:

Proposition 3.8. The direct product of pregroups is a pregroup and the direct
product of postgroups is a postgroup.

Remark. Given a non-empty set X, not every groupoid (X, ∗) can be a pregroup
of a group (X, •) defined on X.

Example 3.9. Let N := {0, 1, 2, · · · }. Assume (N,+) is a pregroup of a group
(N, •) with respect to a mapping ϕ : X → X. Let e be an identity for (N, •).
Then x = x • e = x+ ϕ(e) for all x ∈ N, which shows that ϕ(e) = 0. Moreover,
x = e • x = e + ϕ(x) and hence ϕ(x) = x − e for all x ∈ N. Thus we obtain
x•y = x+ϕ(y) = x+y−e for all x, y ∈ N. It follows that e = x•x−1 = x+x−1−e
and hence x−1 = 2e−x ≥ 0 for all x ∈ N. This shows that x ≤ 2e for all x ∈ N,
a contradiction.

Proposition 3.10. Let (X, ∗) be a pregroup of a group (X, •) with respect to a
function ϕ : X → X. If ϕ is onto, then the left and right cancelation laws hold
in (X, ∗).

Proof. Assume x∗y = z∗y where x, y, z ∈ X. Since ϕ is onto, there exists a ∈ X
such that ϕ(a) = y. It follows that x•a = x∗ϕ(a) = x∗y = z∗y = z∗ϕ(a) = z•a.
Since (X, •) is a group, we obtain x = z. Similarly, the left cancelation law
holds. �

4. Pre-B-algebras and postgroups

Definition 4.1. Let (X, ∗, 0) be a B-algebra and let ϕ : X → X be a mapping.
An algebra (X, •, 0) is said to be a pre-B-algebra with respect to ϕ if x ∗ y :=
x • ϕ(y) for all x, y ∈ X.

Proposition 4.2. If (X, •, 0) is a pre-B-algebra, then

(1) x • ϕ(x) = 0 and x = x • ϕ(0),
(2) x = 0 • ϕ(0 • ϕ(x)),
(3) (x • ϕ(y)) • ϕ(y) = x • ϕ(z • ϕ(0 • ϕ(y))),
(4) x • ϕ(y • ϕ(z)) = (x • ϕ(0 • ϕ(z))) • ϕ(y),

for all x, y, z ∈ X and for some mapping ϕ : X → X.

Proof. If (X, •, 0) is a pre-B-algebra, then there exists a B-algebra (X, ∗, 0),
where x ∗ y := x • ϕ(y), for all x, y ∈ X, for some mapping ϕ : X → X. (1)
Given x ∈ X, we have 0 = x ∗ x = x • ϕ(x) and x = x ∗ 0 = x • ϕ(0). (2)
Given x ∈ X, we have x = 0 ∗ (0 ∗ x) = 0 • ϕ(0 ∗ x) = 0 • ϕ(0 • ϕ(x)). (3) For
any x, y, z ∈ X, we have (x ∗ y) ∗ z = (x • ϕ(y)) • ϕ(y) and x ∗ (z ∗ (0 ∗ y)) =
x•ϕ(z∗(0∗y)) = x•ϕ(z•ϕ(0∗y)) = x•ϕ(z•ϕ(0•ϕ(y))), which proves (3), since
(X, ∗, 0) is a B-algebra. (4) For any x, y, z ∈ X, we have x∗(y∗z) = x•ϕ(y•ϕ(z))
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and (x∗(0∗z))∗y = (x∗(0∗z))•ϕ(y) = (x•ϕ(0∗z))•ϕ(y) = (x•ϕ(0•ϕ(z)))•ϕ(y),
which proves (4), since (X, ∗, 0) is a B-algebra. �

Theorem 4.3. Every group is a pre-B-algebra.

Proof. Let (X, •) be a group with identity eX . Define a map ϕ : X → X
by ϕ(x) := x−1 for all x ∈ X. If we define a binary operation “∗” on X by
x ∗ y := x • ϕ(y), then x ∗ y = x • y−1 for all x, y ∈ X. Given x ∈ X, we
have x ∗ x = x • x−1 = eX and x ∗ eX = x • eX−1 = x. Given x, y, z ∈ X, we
have (x ∗ y) ∗ z = (x • y−1) • z−1 = x • (y−1 • z−1) and x ∗ (z ∗ (eX ∗ y)) =
x ∗ (z • (eX • y−1)−1) = x ∗ (z • y) = x • (z • y)−1 = x • (y−1 • z−1), proving that
(X, ∗, eX) is a B-algebra, i.e., (X, •, eX) is a pre-B-algebra. �

Proposition 4.4. Every B-algebra is a postgroup of a group.

Proof. It follows immediately from Theorem 2.5. �

Question. Can non-isomorphic groupoids (X, ·1) and (X, ·2) produce isomor-
phic B-algebras through the proper choices of identities e1, e2 and mappings
ϕ1, ϕ2 ?

Theorem 4.5. Let (X, •) be a group with identity eX and let (X, ∗, eX) be a
B-algebra, where x • y := x ∗ ψ(y) and x ∗ y := x • ϕ(y) for all x, y ∈ X. Then
ψ,ϕ are bijective and ψ−1 = ϕ.

Proof. Given x, y ∈ X, we have x ∗ y = x • ϕ(y) = x ∗ ψ(ϕ(y)) = x ∗ (ψ ◦ ϕ)(y).
By Proposition 2.4, we obtain y = (ψ ◦ ϕ)(y).

Given x, y ∈ X, we have x • y = x ∗ ψ(y) = x • ϕ(ψ(y)) = x • (ϕ ◦ ψ)(y).
Since every group has cancelation laws, we obtain y = (ϕ ◦ ψ)(y), proving the
theorem. �

References

1. P.J. Allen, J. Neggers and H.S. Kim, B-algebras and groups, Sci. Math. Japo. Online 9
(2003), 9-17.

2. Jung R. Cho and H.S. Kim, On B-algebras and quasigroups, Quasigroups and related
systems 7 (2001), 1-6.

3. Q.P. Hu and Xin Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.

4. Q.P. Hu and Xin Li, On proper BCH-algebras, Math. Japonica 30 (1985), 659-661.

5. A. Iorgulescu, Algebras of logic as BCK-algebras, Editura ASE, Bucharest, 2008.
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