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PREGROUPS AND PRE-B-ALGEBRAS'

GANG WU AND YOUNG HEE KIM*

ABSTRACT. In this paper, we introduce the notions of pregroups, post-
groups and pre-B-algebras, and we investigate their relations. Using this
notions we give another proof that the notion of B-algebras coincides with
the notion of pregroups.
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1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-
algebras and BC'I-algebras ([6, 7]). It is known that the class of BC K-algebras
is a proper subclass of the class of BCT-algebras. In [3, 4], Q. P. Hu and X. Li
introduced a wide class of abstract algebras: BC H-algebras. They have shown
that the class of BCI-algebras is a proper subclass of the class of BC H-algebras.
J. Neggers and H. S. Kim ([14]) introduced a new notion which appears to be
of some interest, i.e., that of a B-algebra, and studied some of its properties.
M. Kondo and Y. B. Jun ([12]) proved that the class of B-algebras is equivalent
in one sense to the class of groups by using the property: x = 0% (0 x x), for
all z € X. J. Neggers and H. S. Kim ([14]) argued slightly differently in taking
their position. J. R. Cho and H. S. Kim ([2]) discussed further relations between
B-algebras and other classes of algebras, such as quasigroups. It is well-known
that every group determines a B-algebra, called a group-derived B-algebra. It
is natural to consider the problem whether or not all B-algebras are so group-
derived. J. Neggers and H. S. Kim ([15]) introduced the notion of normality in
B-algebras, and obtained a fundamental theorem of B-homomorphism for B-
algebras. C. B. Kim and H. S. Kim ([9]) introduced the notion of a BM-algebra
which is a specialization of B-algebras, and they proved the following: the class of
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BM-algebras is a proper subclass of B-algebras, and showed that a BM-algebra
is equivalent to a 0-commutative B-algebra, and the class of Coxeter algebras is
a proper subclass of BM-algebras. H. K. Park and H. S. Kim ([16]) introduced
the notion of a quadratic B-algebra which is a medial quasigroup, and obtained
that every quadratic B-algebra on a field X with | X| > z, is a BCI-algebra. Y.
B. Jun et al. ([8]) considered the fuzzification of (normal) B-subalgebras, and
investigated some related properties. They characterized fuzzy B-algebras. P. J.
Allen et al. ([1]) gave another proof of the close relationship of B-algebras with
groups using the zero adjoint mapping. H. S. Kim and H. G. Park ([11]) showed
that if X is a 0O-commutative B-algebra, then (x * a) % (y*b) = (b*a) * (y * ).
Using this property they showed that the class of p-semisimple BC'I-algebras
is equivalent to the class of 0-commutative B-algebras. A. Walendziak ([17])
obtained some systems of axioms defining a B-algebra, and he also obtained a
simplified axiomatization of 0-commutative B-algebras. C. B. Kim and H. S.
Kim ([10]) introduced the notion of a BA-algebra, and showed that the class of
BA-algebras is equivalent to the class of B-algebras. For general reference on
BCK/BCTI-algebra we refer to ([5, 13, 18]).

In this paper, we introduce the notions of pregroups, postgroups and pre-B-
algebras, and we investigate their relations. Using this notions we give another
proof that the notion of B-algebras coincides with the notion of pregroups.

2. Preliminaries

A B-algebra ([14]) is a non-empty set X with a constant 0 and a binary

operation “x” satisfying the following axioms:
(I) zxx=0,
(II) %0 =z,
(II) (xxy)*xz=ax*(2x(0xy)) for all z,y,z in X.

Example 2.1 ([14]). Let X be the set of all real numbers except for a negative
integer —n. Define a binary operation * on X by

n(z —y)

T kY=
Y n+y

Then (X, *,0) is a B-algebra.
Example 2.2. Let X :={0,1,2,3,4,5} be a set with the following table:

*0 1 2 3 4 5
0/0 2 1 3 4 5
111 0 2 4 5 3
2121 0 5 3 4
313 4 5 0 2 1
414 5 3 1 0 2
515 3 4 2 1 0

Then (X, *,0) is a B-algebra (see [14]).
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Theorem 2.3 ([14, 17]). If (X, *,0) is a B-algebra, then
(1) zx(y*xz2)=(xx(0x2))*y,
(2) 0% (0*xz) ==,
(3) Ox(xxy)=yxx forallz,y,z € X.

Proposition 2.4 ([2, 14]). In any B-algebra, the left and the right cancelation
laws hold.

Theorem 2.5 ([1]). Let (X, e) be a group with identity ex. If we define xxy :=
rey L, then (X, x,ex) is a B-algebra.

3. Pregroups and postgroups

Let (X, o) be a group and let ¢ : X — X be a function. A groupoid (X, *)
is said to be a pregroup of (X, e) with respect to ¢ if z ey := x % p(y) for all
x,y € X. Moreover, a groupoid (X, *) is said to be a postgroup of (X, e) with
respect to p if x x y := z @ p(y) for all z,y € X.

Example 3.1. Consider X :={0,1, 2,3} with the following table:

e|0 1 2 3
00 1 2 3
1[1 230
212 3 0 1
3130 1 2

Then (X, @) is a group which is isomorphic with Z4. If we define a map ¢ : X —
X by ¢(0) =0,9(1) = 3,p(2) =2 and ¢(3) = 1, then the groupoid (X, *) with
the following table:

«x[0 1 2 3
00 3 2 1
111 0 3 2
212 1 0 3
313 2 1 0
is a pregroup of (X, e) with respect to ¢. Note that (X, *) is not a group, since

it has no identity.

Example 3.2. Let (X, o) be a group. Define a binary operation * on X by
rxy:=xzey ! forall z,y € X and define a map ¢ : X — X by p(x) := 27!
for all z € X. Then 2 x o(y) =z *xy~ ! =z e (y~!)~! = z ey. This shows that
(X, %) is a pregroup of (X, e) with respect to ¢.

Proposition 3.3. Let (X, x) be a pregroup of a group (X, e) with respect to a
function ¢ : X — X. Then

(1) (Imep,*) has only one idempotent,

(2) ¢ is injective,

(3) every finite pregroup is also a postgroup.
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Proof. (1) Let u := ¢(ex) where ex is an identity for a group (X,e). Then
r=zeex =x*xp(ex) =xx*ufor all z € X. It follows that u = u x u, i.e., u
is an idempotent element of I'mp. Assume v = ¢(w) is an idempotent in Imgp
for some w € X. Then vew = v * p(w) =v*v =wv. Since (X, o) is a group, we
obtain w = ex and hence v = p(w) = p(ex) = u.

(2) If p(y) = p(2) for any y, 2 € X, then y = e, 0y = ex *p(y) = ex *p(z) =
ex ® z = z, proving that ¢ is injective.

(3) Assume X is finite. Since ¢ is injective, it is also an onto function, i.e.,
¢ is a bijective function. Let ¢~ : X — X be an inverse function of ¢. Then
rep l(y) =ax*p(p t(y)) =xx*y for all ,y € X, which proves that (X, x) is
a postgroup of (X, e). |

Proposition 3.4. If (X,x) is a pregroup of a group (X,e) with respect to a
function ¢ : X — X, then ¢ s onto.

Proof. Since (X, o) is a group, we have ze X = X for any x € X. It follows from
(X, %) is a pregroup of a group (X, e) with respect to a function ¢ : X — X that
zeoy=xx¢(y), and hence zx Imp =z X = X for all z € X. This shows that
|X| = |z * Imy| < |Imep| < |X]|, proving that Imep = X, i.e.,  is onto. O

Theorem 3.5. Fvery left-zero semigroup (X, *), | X| > 2, is a postgroup of any
group, and it can not be a pregroup of any group.

Proof. Let (X, o) be a group with identity ex. Define a map ¢ : X — X by
p(z):=ex forallz € X. Thenz+xy=ax=xzeex =x o p(y) for all z,y € X,
proving that (X, ) is a postgroup of (X, e).

Assume that (X, *) is a pregroup of a group (X, e). Then there is a function
v (X,%) = (X,e) such that z e y = x % p(y) for all z,y € X. Tt follows that
zey=1xx*xp(y) =x=2xeecx. Since (X, e) is a group, we obtain y = ex for all
y € X, ie., | X| =1, a contradiction. a

Remark. Not every groupoid is a postgroup. See the following example.

Example 3.6. Let a € X. Define a binary operation z xy := a for all z,y € X.
Then (X, %) is a groupoid. Assume (X,x*) is a postgroup of a group (X,e)
with respect to ¢ : X — X. Then z+y = x e ¢(y) for all x,y € X. Hence
reop(y) = xxy = aforallz,y € X. Since (X, o) is a group, we have p(y) = z~Lea
forallz € X. Let x # 2z in X. Then 2 ! ea = ¢(y) = 27! e a. Since (X, o) is
a group, we have 27! = 27! and hence x = z, a contradiction. Hence (X, *) is

not a postgroup.

Theorem 3.7. Let (X, %) be a pregroup of a group (X,®,€) with respect to
¥ and let (X,x) be a postgroup of a group (X, e, e) with respect to w. Then
(potp)(w)=(e)tex forallz € X

Proof. Let (X, %) be a pregroup of a group (X,®,€) with respect to ¢. Then
xOy=u1zx*x1(y) for all x,y € X. Let (X, *) be a postgroup of a group (X, e, ¢)
with respect to ¢. Then z xy = z e o(y) for all z,y € X. It follows that
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xQy=z*xP(y) =z e p((y)) for all z,y € X. Hence z = €O z = € @ p(¢(x)),
which shows that (¢ ov)(z) = (€) L ex for all z € X. O

The following proposition can be easily proved:

Proposition 3.8. The direct product of pregroups is a pregroup and the direct
product of postgroups is a postgroup.

Remark. Given a non-empty set X, not every groupoid (X, x) can be a pregroup
of a group (X, e) defined on X.

Example 3.9. Let N :={0,1,2,---}. Assume (N, +) is a pregroup of a group
(N, o) with respect to a mapping ¢ : X — X. Let e be an identity for (N, e).
Then x = x e e =z + ¢(e) for all z € N, which shows that ¢(e) = 0. Moreover,
x =eex = e+ p(x) and hence p(x) = z — e for all x € N. Thus we obtain
roy = x+p(y) = z+y—eforallz,y € N. It follows that e = zex ™! = x+z~ 1 —¢
and hence 271 = 2e —z > 0 for all x € N. This shows that = < 2e for all z € N,
a contradiction.

Proposition 3.10. Let (X, ) be a pregroup of a group (X, e) with respect to a
function ¢ : X — X. If v is onto, then the left and right cancelation laws hold
in (X, *).

Proof. Assume xxy = z*y where x,y, z € X. Since y is onto, there exists a € X
such that p(a) = y. It follows that zea = zxp(a) = xxy = z*xy = zxp(a) = zea.
Since (X, e) is a group, we obtain z = z. Similarly, the left cancelation law
holds. (]

4. Pre-B-algebras and postgroups

Definition 4.1. Let (X, *,0) be a B-algebra and let ¢ : X — X be a mapping.
An algebra (X, e,0) is said to be a pre-B-algebra with respect to ¢ if x xy :=
x e (y) for all z,y € X.

Proposition 4.2. If (X,e,0) is a pre-B-algebra, then
(1) xep(x) =0 and x = x e p(0),
(2) 2 =0e0p(00p(z)),
(3) (wop(y))ep(y) =zep(zep(0ep(y))),
(4) zop(yep(z)) = (zep(0ep(z)))ep(y),
for all x,y,z € X and for some mapping p : X — X.

Proof. If (X,e,0) is a pre-B-algebra, then there exists a B-algebra (X, *,0),
where z xy := x @ p(y), for all z,y € X, for some mapping ¢ : X — X. (1)
Given x € X, we have 0 = zx2xz =z e p(x) and z = 2% 0 = x e p(0). (2)
Given z € X, we have 2 = 0% (0xx) =00 p(0*xxz) = 0 e (0 e p(x)). (3) For
any z,y,z € X, we have (xxy)*xz = (x e p(y)) e o(y) and z x (z x (0 x y)) =
zop(2x(0xy)) = Tep(z00(0%1)) = vep(sep(0e@(y))), which proves (3), since
(X, *,0) is a B-algebra. (4) For any x,y,z € X, we have xx(y*z) = xep(yep(z))
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and (v#(0%2))*xy = (x(0x2))ep(y) = (vep(0xz))ep(y) = (vep(0ep(2)))ep(y),
which proves (4), since (X, ,0) is a B-algebra. O

Theorem 4.3. Fvery group is a pre-B-algebra.

Proof. Let (X,e) be a group with identity ex. Define a map ¢ : X — X
by p(z) := 7! for all z € X. If we define a binary operation “+” on X by
rxy = xep(y), then zxy = rey ! for all z,y € X. Given x € X, we
have zxz =rex ! =ex and zxex = xreex ' = 2. Given 2,7,z € X, we
have (x*xy)*x 2 = (roy l)ezl =xe(y tezt)and o * (2% (ex xy)) =
rx(zo(exoy ) ) =ax(zey)=ze(zey) "l =xe(y~tez"1) proving that
(X, *,ex) is a B-algebra, i.e., (X, e, ex) is a pre-B-algebra. |

Proposition 4.4. Every B-algebra is a postgroup of a group.
Proof. 1t follows immediately from Theorem 2.5. ]

Question. Can non-isomorphic groupoids (X, 1) and (X, -3) produce isomor-
phic B-algebras through the proper choices of identities e1,es and mappings
1,2 7

Theorem 4.5. Let (X, o) be a group with identity ex and let (X,*,ex) be a
B-algebra, where oy :=x x¥(y) and x xy =z o p(y) for all x,y € X. Then
b, @ are bijective and ™1 = .

Proof. Given z,y € X, we have x xy =z 0 o(y) = z x Y(p(y)) = x * (Y o ) (y).
By Proposition 2.4, we obtain y = (¢ o ¢)(y).

Given z,y € X, we have z oy = z x(y) = z 0 p(¢(y)) = z o (p o Y)(y).
Since every group has cancelation laws, we obtain y = (¢ o 9)(y), proving the
theorem.
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