PREGROUPS AND PRE- B-ALGEBRAS ${ }^{\dagger}$

GANG WU AND YOUNG HEE KIM*

Abstract

In this paper, we introduce the notions of pregroups, postgroups and pre- B-algebras, and we investigate their relations. Using this notions we give another proof that the notion of B-algebras coincides with the notion of pregroups.

AMS Mathematics Subject Classification : 06F35.
Key words and phrases : pregroup, postgroup, pre- B-algebra, B-algebra.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: $B C K$ algebras and $B C I$-algebras $([6,7])$. It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. In [3, 4], Q. P. Hu and $\mathrm{X} . \mathrm{Li}$ introduced a wide class of abstract algebras: BCH -algebras. They have shown that the class of $B C I$-algebras is a proper subclass of the class of $B C H$-algebras. J. Neggers and H. S. Kim ([14]) introduced a new notion which appears to be of some interest, i.e., that of a B-algebra, and studied some of its properties. M. Kondo and Y. B. Jun ([12]) proved that the class of B-algebras is equivalent in one sense to the class of groups by using the property: $x=0 *(0 * x)$, for all $x \in X$. J. Neggers and H. S. Kim ([14]) argued slightly differently in taking their position. J. R. Cho and H. S. Kim ([2]) discussed further relations between B-algebras and other classes of algebras, such as quasigroups. It is well-known that every group determines a B-algebra, called a group-derived B-algebra. It is natural to consider the problem whether or not all B-algebras are so groupderived. J. Neggers and H. S. Kim ([15]) introduced the notion of normality in B-algebras, and obtained a fundamental theorem of B-homomorphism for B algebras. C. B. Kim and H. S. Kim ([9]) introduced the notion of a $B M$-algebra which is a specialization of B-algebras, and they proved the following: the class of

[^0]$B M$-algebras is a proper subclass of B-algebras, and showed that a $B M$-algebra is equivalent to a 0 -commutative B-algebra, and the class of Coxeter algebras is a proper subclass of $B M$-algebras. H. K. Park and H. S. Kim ([16]) introduced the notion of a quadratic B-algebra which is a medial quasigroup, and obtained that every quadratic B-algebra on a field X with $|X| \geq x$, is a $B C I$-algebra. Y. B. Jun et al. ([8]) considered the fuzzification of (normal) B-subalgebras, and investigated some related properties. They characterized fuzzy B-algebras. P. J. Allen et al. ([1]) gave another proof of the close relationship of B-algebras with groups using the zero adjoint mapping. H. S. Kim and H. G. Park ([11]) showed that if X is a 0 -commutative B-algebra, then $(x * a) *(y * b)=(b * a) *(y * x)$. Using this property they showed that the class of p-semisimple $B C I$-algebras is equivalent to the class of 0 -commutative B-algebras. A. Walendziak ([17]) obtained some systems of axioms defining a B-algebra, and he also obtained a simplified axiomatization of 0-commutative B-algebras. C. B. Kim and H. S. Kim ([10]) introduced the notion of a $B A$-algebra, and showed that the class of $B A$-algebras is equivalent to the class of B-algebras. For general reference on $B C K / B C I$-algebra we refer to $([5,13,18])$.

In this paper, we introduce the notions of pregroups, postgroups and pre- B algebras, and we investigate their relations. Using this notions we give another proof that the notion of B-algebras coincides with the notion of pregroups.

2. Preliminaries

A B-algebra ([14]) is a non-empty set X with a constant 0 and a binary operation " $*$ " satisfying the following axioms:
(I) $x * x=0$,
(II) $x * 0=x$,
(III) $(x * y) * z=x *(z *(0 * y))$ for all x, y, z in X.

Example 2.1 ([14]). Let X be the set of all real numbers except for a negative integer $-n$. Define a binary operation $*$ on X by

$$
x * y:=\frac{n(x-y)}{n+y}
$$

Then $(X, *, 0)$ is a B-algebra.
Example 2.2. Let $X:=\{0,1,2,3,4,5\}$ be a set with the following table:

$*$	0	1	2	3	4	5
0	0	2	1	3	4	5
1	1	0	2	4	5	3
2	2	1	0	5	3	4
3	3	4	5	0	2	1
4	4	5	3	1	0	2
5	5	3	4	2	1	0

Then $(X, *, 0)$ is a B-algebra (see [14]).

Theorem 2.3 ([14, 17]). If $(X, *, 0)$ is a B-algebra, then
(1) $x *(y * z)=(x *(0 * z)) * y$,
(2) $0 *(0 * x)=x$,
(3) $0 *(x * y)=y * x$ for all $x, y, z \in X$.

Proposition 2.4 ([2, 14]). In any B-algebra, the left and the right cancelation laws hold.

Theorem $2.5([1])$. Let (X, \bullet) be a group with identity e_{X}. If we define $x * y:=$ $x \bullet y^{-1}$, then $\left(X, *, e_{X}\right)$ is a B-algebra.

3. Pregroups and postgroups

Let (X, \bullet) be a group and let $\varphi: X \rightarrow X$ be a function. A groupoid $(X, *)$ is said to be a pregroup of (X, \bullet) with respect to φ if $x \bullet y:=x * \varphi(y)$ for all $x, y \in X$. Moreover, a groupoid $(X, *)$ is said to be a postgroup of (X, \bullet) with respect to φ if $x * y:=x \bullet \varphi(y)$ for all $x, y \in X$.

Example 3.1. Consider $X:=\{0,1,2,3\}$ with the following table:

\bullet	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

Then (X, \bullet) is a group which is isomorphic with \mathbf{Z}_{4}. If we define a map $\varphi: X \rightarrow$ X by $\varphi(0)=0, \varphi(1)=3, \varphi(2)=2$ and $\varphi(3)=1$, then the groupoid $(X, *)$ with the following table:

$*$	0	1	2	3
0	0	3	2	1
1	1	0	3	2
2	2	1	0	3
3	3	2	1	0

is a pregroup of (X, \bullet) with respect to φ. Note that $(X, *)$ is not a group, since it has no identity.

Example 3.2. Let (X, \bullet) be a group. Define a binary operation $*$ on X by $x * y:=x \bullet y^{-1}$ for all $x, y \in X$ and define a map $\varphi: X \rightarrow X$ by $\varphi(x):=x^{-1}$ for all $x \in X$. Then $x * \varphi(y)=x * y^{-1}=x \bullet\left(y^{-1}\right)^{-1}=x \bullet y$. This shows that $(X, *)$ is a pregroup of (X, \bullet) with respect to φ.

Proposition 3.3. Let $(X, *)$ be a pregroup of a group (X, \bullet) with respect to a function $\varphi: X \rightarrow X$. Then
(1) $(\operatorname{Im\varphi }, *)$ has only one idempotent,
(2) φ is injective,
(3) every finite pregroup is also a postgroup.

Proof. (1) Let $u:=\varphi\left(e_{X}\right)$ where e_{X} is an identity for a group (X, \bullet). Then $x=x \bullet e_{X}=x * \varphi\left(e_{X}\right)=x * u$ for all $x \in X$. It follows that $u=u * u$, i.e., u is an idempotent element of $\operatorname{Im} \varphi$. Assume $v=\varphi(w)$ is an idempotent in $\operatorname{Im} \varphi$ for some $w \in X$. Then $v \bullet w=v * \varphi(w)=v * v=v$. Since (X, \bullet) is a group, we obtain $w=e_{X}$ and hence $v=\varphi(w)=\varphi\left(e_{X}\right)=u$.
(2) If $\varphi(y)=\varphi(z)$ for any $y, z \in X$, then $y=e_{x} \bullet y=e_{X} * \varphi(y)=e_{X} * \varphi(z)=$ $e_{X} \bullet z=z$, proving that φ is injective.
(3) Assume X is finite. Since φ is injective, it is also an onto function, i.e., φ is a bijective function. Let $\varphi^{-1}: X \rightarrow X$ be an inverse function of φ. Then $x \bullet \varphi^{-1}(y)=x * \varphi\left(\varphi^{-1}(y)\right)=x * y$ for all $x, y \in X$, which proves that $(X, *)$ is a postgroup of (X, \bullet).

Proposition 3.4. If $(X, *)$ is a pregroup of a group (X, \bullet) with respect to a function $\varphi: X \rightarrow X$, then φ is onto.

Proof. Since (X, \bullet) is a group, we have $x \bullet X=X$ for any $x \in X$. It follows from $(X, *)$ is a pregroup of a group (X, \bullet) with respect to a function $\varphi: X \rightarrow X$ that $x \bullet y=x * \varphi(y)$, and hence $x * \operatorname{Im} \varphi=x \bullet X=X$ for all $x \in X$. This shows that $|X|=|x * \operatorname{Im} \varphi| \leq|\operatorname{Im} \varphi| \leq|X|$, proving that $\operatorname{Im} \varphi=X$, i.e., φ is onto.

Theorem 3.5. Every left-zero semigroup $(X, *),|X| \geq 2$, is a postgroup of any group, and it can not be a pregroup of any group.

Proof. Let (X, \bullet) be a group with identity e_{X}. Define a map $\varphi: X \rightarrow X$ by $\varphi(x):=e_{X}$ for all $x \in X$. Then $x * y=x=x \bullet e_{X}=x \bullet \varphi(y)$ for all $x, y \in X$, proving that $(X, *)$ is a postgroup of (X, \bullet).

Assume that $(X, *)$ is a pregroup of a group (X, \bullet). Then there is a function $\varphi:(X, *) \rightarrow(X, \bullet)$ such that $x \bullet y=x * \varphi(y)$ for all $x, y \in X$. It follows that $x \bullet y=x * \varphi(y)=x=x \bullet e_{X}$. Since (X, \bullet) is a group, we obtain $y=e_{X}$ for all $y \in X$, i.e., $|X|=1$, a contradiction.
Remark. Not every groupoid is a postgroup. See the following example.
Example 3.6. Let $a \in X$. Define a binary operation $x * y:=a$ for all $x, y \in X$. Then $(X, *)$ is a groupoid. Assume $(X, *)$ is a postgroup of a group (X, \bullet) with respect to $\varphi: X \rightarrow X$. Then $x * y=x \bullet \varphi(y)$ for all $x, y \in X$. Hence $x \bullet \varphi(y)=x * y=a$ for all $x, y \in X$. Since (X, \bullet) is a group, we have $\varphi(y)=x^{-1} \bullet a$ for all $x \in X$. Let $x \neq z$ in X. Then $x^{-1} \bullet a=\varphi(y)=z^{-1} \bullet a$. Since (X, \bullet) is a group, we have $x^{-1}=z^{-1}$ and hence $x=z$, a contradiction. Hence $(X, *)$ is not a postgroup.
Theorem 3.7. Let $(X, *)$ be a pregroup of a group (X, \odot, \widehat{e}) with respect to ψ and let $(X, *)$ be a postgroup of a group (X, \bullet, e) with respect to φ. Then $(\varphi \circ \psi)(x)=(\widehat{e})^{-1} \bullet x$ for all $x \in X$

Proof. Let $(X, *)$ be a pregroup of a group (X, \odot, \widehat{e}) with respect to ψ. Then $x \odot y=x * \psi(y)$ for all $x, y \in X$. Let $(X, *)$ be a postgroup of a group (X, \bullet, e) with respect to φ. Then $x * y=x \bullet \varphi(y)$ for all $x, y \in X$. It follows that
$x \odot y=x * \psi(y)=x \bullet \varphi(\psi(y))$ for all $x, y \in X$. Hence $x=\widehat{e} \odot x=\widehat{e} \bullet \varphi(\psi(x))$, which shows that $(\varphi \circ \psi)(x)=(\widehat{e})^{-1} \bullet x$ for all $x \in X$.

The following proposition can be easily proved:
Proposition 3.8. The direct product of pregroups is a pregroup and the direct product of postgroups is a postgroup.

Remark. Given a non-empty set X, not every $\operatorname{groupoid}(X, *)$ can be a pregroup of a group (X, \bullet) defined on X.

Example 3.9. Let $\mathbf{N}:=\{0,1,2, \cdots\}$. Assume $(\mathbf{N},+)$ is a pregroup of a group (\mathbf{N}, \bullet) with respect to a mapping $\varphi: X \rightarrow X$. Let e be an identity for (\mathbf{N}, \bullet). Then $x=x \bullet e=x+\varphi(e)$ for all $x \in \mathbf{N}$, which shows that $\varphi(e)=0$. Moreover, $x=e \bullet x=e+\varphi(x)$ and hence $\varphi(x)=x-e$ for all $x \in \mathbf{N}$. Thus we obtain $x \bullet y=x+\varphi(y)=x+y-e$ for all $x, y \in \mathbf{N}$. It follows that $e=x \bullet x^{-1}=x+x^{-1}-e$ and hence $x^{-1}=2 e-x \geq 0$ for all $x \in \mathbf{N}$. This shows that $x \leq 2 e$ for all $x \in \mathbf{N}$, a contradiction.

Proposition 3.10. Let $(X, *)$ be a pregroup of a group (X, \bullet) with respect to a function $\varphi: X \rightarrow X$. If φ is onto, then the left and right cancelation laws hold in $(X, *)$.

Proof. Assume $x * y=z * y$ where $x, y, z \in X$. Since φ is onto, there exists $a \in X$ such that $\varphi(a)=y$. It follows that $x \bullet a=x * \varphi(a)=x * y=z * y=z * \varphi(a)=z \bullet a$. Since (X, \bullet) is a group, we obtain $x=z$. Similarly, the left cancelation law holds.

4. Pre- B-algebras and postgroups

Definition 4.1. Let $(X, *, 0)$ be a B-algebra and let $\varphi: X \rightarrow X$ be a mapping. An algebra $(X, \bullet, 0)$ is said to be a pre-B-algebra with respect to φ if $x * y:=$ $x \bullet \varphi(y)$ for all $x, y \in X$.

Proposition 4.2. If $(X, \bullet, 0)$ is a pre- B-algebra, then
(1) $x \bullet \varphi(x)=0$ and $x=x \bullet \varphi(0)$,
(2) $x=0 \bullet \varphi(0 \bullet \varphi(x))$,
(3) $(x \bullet \varphi(y)) \bullet \varphi(y)=x \bullet \varphi(z \bullet \varphi(0 \bullet \varphi(y)))$,
(4) $x \bullet \varphi(y \bullet \varphi(z))=(x \bullet \varphi(0 \bullet \varphi(z))) \bullet \varphi(y)$,
for all $x, y, z \in X$ and for some mapping $\varphi: X \rightarrow X$.
Proof. If $(X, \bullet, 0)$ is a pre- B-algebra, then there exists a B-algebra $(X, *, 0)$, where $x * y:=x \bullet \varphi(y)$, for all $x, y \in X$, for some mapping $\varphi: X \rightarrow X$. (1) Given $x \in X$, we have $0=x * x=x \bullet \varphi(x)$ and $x=x * 0=x \bullet \varphi(0)$. (2) Given $x \in X$, we have $x=0 *(0 * x)=0 \bullet \varphi(0 * x)=0 \bullet \varphi(0 \bullet \varphi(x))$. (3) For any $x, y, z \in X$, we have $(x * y) * z=(x \bullet \varphi(y)) \bullet \varphi(y)$ and $x *(z *(0 * y))=$ $x \bullet \varphi(z *(0 * y))=x \bullet \varphi(z \bullet \varphi(0 * y))=x \bullet \varphi(z \bullet \varphi(0 \bullet \varphi(y)))$, which proves (3), since $(X, *, 0)$ is a B-algebra. (4) For any $x, y, z \in X$, we have $x *(y * z)=x \bullet \varphi(y \bullet \varphi(z))$
and $(x *(0 * z)) * y=(x *(0 * z)) \bullet \varphi(y)=(x \bullet \varphi(0 * z)) \bullet \varphi(y)=(x \bullet \varphi(0 \bullet \varphi(z))) \bullet \varphi(y)$, which proves (4), since $(X, *, 0)$ is a B-algebra.

Theorem 4.3. Every group is a pre-B-algebra.
Proof. Let (X, \bullet) be a group with identity e_{X}. Define a map $\varphi: X \rightarrow X$ by $\varphi(x):=x^{-1}$ for all $x \in X$. If we define a binary operation "*" on X by $x * y:=x \bullet \varphi(y)$, then $x * y=x \bullet y^{-1}$ for all $x, y \in X$. Given $x \in X$, we have $x * x=x \bullet x^{-1}=e_{X}$ and $x * e_{X}=x \bullet e_{X}{ }^{-1}=x$. Given $x, y, z \in X$, we have $(x * y) * z=\left(x \bullet y^{-1}\right) \bullet z^{-1}=x \bullet\left(y^{-1} \bullet z^{-1}\right)$ and $x *\left(z *\left(e_{X} * y\right)\right)=$ $x *\left(z \bullet\left(e_{X} \bullet y^{-1}\right)^{-1}\right)=x *(z \bullet y)=x \bullet(z \bullet y)^{-1}=x \bullet\left(y^{-1} \bullet z^{-1}\right)$, proving that $\left(X, *, e_{X}\right)$ is a B-algebra, i.e., $\left(X, \bullet, e_{X}\right)$ is a pre- B-algebra.

Proposition 4.4. Every B-algebra is a postgroup of a group.
Proof. It follows immediately from Theorem 2.5.
Question. Can non-isomorphic groupoids $\left(X, \cdot{ }_{1}\right)$ and $\left(X, \cdot_{2}\right)$ produce isomorphic B-algebras through the proper choices of identities e_{1}, e_{2} and mappings φ_{1}, φ_{2} ?

Theorem 4.5. Let (X, \bullet) be a group with identity e_{X} and let $\left(X, *, e_{X}\right)$ be a B-algebra, where $x \bullet y:=x * \psi(y)$ and $x * y:=x \bullet \varphi(y)$ for all $x, y \in X$. Then ψ, φ are bijective and $\psi^{-1}=\varphi$.
Proof. Given $x, y \in X$, we have $x * y=x \bullet \varphi(y)=x * \psi(\varphi(y))=x *(\psi \circ \varphi)(y)$. By Proposition 2.4, we obtain $y=(\psi \circ \varphi)(y)$.

Given $x, y \in X$, we have $x \bullet y=x * \psi(y)=x \bullet \varphi(\psi(y))=x \bullet(\varphi \circ \psi)(y)$. Since every group has cancelation laws, we obtain $y=(\varphi \circ \psi)(y)$, proving the theorem.

References

1. P.J. Allen, J. Neggers and H.S. Kim, B-algebras and groups, Sci. Math. Japo. Online 9 (2003), 9-17.
2. Jung R. Cho and H.S. Kim, On B-algebras and quasigroups, Quasigroups and related systems 7 (2001), 1-6.
3. Q.P. Hu and Xin Li, On BCH-algebras, Math. Seminar Notes 11 (1983), 313-320.
4. Q.P. Hu and Xin Li , On proper $B C H$-algebras, Math. Japonica 30 (1985), 659-661.
5. A. Iorgulescu, Algebras of logic as $B C K$-algebras, Editura ASE, Bucharest, 2008.
6. K. Iséki and S. Tanaka, An introduction to theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
7. K. Iséki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125-130.
8. Y.B. Jun, E.H. Roh and H.S. Kim, On fuzzy B-algebras, Czech. Math. J. 52(2002), 375-384.
9. C.B. Kim and H.S. Kim, On BM-algebras, Sci. Math. Japo. 63(2006), 421-427.
10. C.B. Kim and H.S. Kim, Another axiomatization of B-algebrs, Demonstratio Math. 41 (2008), 259-262.
11. H.S. Kim and H.G. Park, On O-commutative B-algebras, Sci. Math. Japo. 62 (2005), 31-36.
12. M. Kondo and Y.B. Jun, The class of B-algebras coincides with the class of groups, Sci. Math. Japo. Online 7 (2002), 175-177.
13. J. Meng and Y.B. Jun, $B C K$-algebras, Kyungmoon Sa, Seoul, 1994.
14. J. Neggers and H.S. Kim, On B-algebras, Mate. Vesnik 54 (2002), 21-29.
15. J. Neggers and H.S. Kim, A fundamental theorem of B-homomorphism for B-algebras, Intern. Math. J. 2(2002), 207-214.
16. H.K. Park and H.S. Kim, On quadratic B-algebras, Quasigroups and related systems 8 (2001), 67-72.
17. A. Walendziak, Some axiomatizations of B-algebras, Math. Slovaca 56 (2006), 301-306.
18. H. Yisheng, $B C I$-algebras, Science Press, Beijing, 2006.

Gang Wu Department of Mathematics and Applied Mathematics, Harbin University of Commerce, Harbin, 150076, China.
e-mail: w3393@163.com
Young Hee Kim Department of Mathematics, Chungbuk National University, Cheongju, 28644, Korea.
e-mail: yhkim@chungbuk.ac.kr

[^0]: Received September 28, 2017. Revised November 3, 2017. Accepted November 8, 2017. * Corresponding author.
 ${ }^{\dagger}$ This work was financially supported by the Research Year of Chungbuk National University in 2017.
 © 2018 Korean SIGCAM and KSCAM.

