References
- Drobniewski FA. 1993. Bacillus cereus and related species. Clin. Microbiol. Rev. 6: 324-338. https://doi.org/10.1128/CMR.6.4.324
- Schoeni JL, Wong AC. 2005. Bacillus cereus food poisoning and its toxins. J. Food Prot. 68: 636-648. https://doi.org/10.4315/0362-028X-68.3.636
- Stenfors ALP, Fagerlund A, Granum PE. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32: 579-606. https://doi.org/10.1111/j.1574-6976.2008.00112.x
- Bhunia AK. 2008. Bacillus cereus and Bacillus anthracis, pp. 135-148. In Bhunia AK (ed.). Foodborne Microbial Pathogens. Springer, New York.
- Bottone EJ. 2010. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 23: 382-398.
- Ehling-Schulz M, Fricker M, Scherer S. 2004. Bacillus cereus, the causative agent of an emetic type of food-borne illness. Mol. Nutr. Food Res. 48: 479-487. https://doi.org/10.1002/mnfr.200400055
- Simone E, Goosen M, Notermans SH, Borgdorff MW. 1997. Investigations of foodborne diseases by food inspection services in the Netherlands, 1991 to 1994. J. Food Prot. 60: 442-446. https://doi.org/10.4315/0362-028X-60.4.442
- Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, et al. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5: 607-625. https://doi.org/10.3201/eid0505.990502
- Bandara N, Jo J, Ryu S, Kim KP. 2012. Bacteriophages BCP1-1 and BCP8-2 require divalent cations for efficient control of Bacillus cereus in fermented foods. Food Microbiol. 31: 9-16. https://doi.org/10.1016/j.fm.2012.02.003
- Guinebretiere MH, Broussolle V, Nguyen-The C. 2002. Enterotoxigenic profiles of food-poisoning and food-borne Bacillus cereus strains. J. Clin. Microbiol. 40: 3053-3056. https://doi.org/10.1128/JCM.40.8.3053-3056.2002
- Desai SV, Varadaraj MC. 2010. Behavioural pattern of vegetative cells and spores of Bacillus cereus as affected by time-temperature combinations used in processing of Indian traditional foods. J. Food Sci. Technol. 47: 549-556. https://doi.org/10.1007/s13197-010-0099-9
- Ankolekar C, Rahmati T, Labbe RG. 2009. Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in U.S. rice. Int. J. Food Microbiol. 128: 460-466.
- Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C. 2010. An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol. Adv. 28: 232-254. https://doi.org/10.1016/j.biotechadv.2009.12.004
- Law JW, Ab Mutalib NS, Chan KG, Lee LH. 2015. Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front. Microbiol. 5: 1-19.
- Byeon HM, Vodyanoy VJ, Oh JH, Kwon JH, Park MK. 2015. Lytic phage-based magnetoelastic biosensors for on-site detection of methicillin-resistant Staphylococcus aureus on spinach leaves. J. Electrochem. Soc. 162: B230-B235. https://doi.org/10.1149/2.0681508jes
- Park MK, Chin BA. 2016. Novel approach of a phage-based magnetoelastic biosensor for the detection of Salmonella enterica serovar Typhimurium in soil. J. Microbiol. Biotechnol. 26: 2051-2059. https://doi.org/10.4014/jmb.1609.09062
- Grimes CA, Roy SC, Rani S, Cai Q. 2011. Theory, instrumentation and applications of magnetoelastic resonance sensors: a review. Sensors 11: 2809-2844. https://doi.org/10.3390/s110302809
- Park MK, Wikle III HC, Chai Y, Horikawa S, Shen W, Chin BA. 2012. The effect of incubation time for Salmonella Typhimurium binding to phage-based magnetoelastic biosensors. Food Control 26: 539-545. https://doi.org/10.1016/j.foodcont.2012.01.061
- Li S, Li Y, Chen H, Horikawa S, Shen W, Simonian A, et al. 2010. Direct detection of Salmonella typhimurium on fresh food produce using phage-based magnetoelastic biosensors. Biosens. Bioelectron. 26: 1313-1319. https://doi.org/10.1016/j.bios.2010.07.029
- Park MK, Li S, Chin BA. 2013. Detection of Salmonella typhimurium grown directly on tomato surface using phagebased magnetoelastic biosensors. Food Bioprocess Technol. 6: 682-689.
- Park MK, Park JW, Wikle III HC, Chin BA. 2013. Evaluation of phage-based magnetoelastic biosensors for direct detection of Salmonella Typhimurium on spinach leaves. Sens. Actuators B Chem. 176: 1134-1140. https://doi.org/10.1016/j.snb.2012.10.084
- Park M-K, Weerakoon KA, Oh JH, Chin BA. 2013. The analytical comparison of phage-based magnetoelastic biosensor with TaqMan-based quantitative PCR method to detect Salmonella Typhimurium on cantaloupes. Food Control 33: 330-336. https://doi.org/10.1016/j.foodcont.2013.02.026
- Singh A, Poshtiban S, Evoy S. 2013. Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors (Basel) 13: 1763-1786. https://doi.org/10.3390/s130201763
- Sorokulova I, Olsen E, Vodyanoy V. 2014. Bacteriophage biosensors for antibiotic-resistant bacteria. Expert Rev. Med. Devices 11: 175-186. https://doi.org/10.1586/17434440.2014.882767
- Nanduri V, Sorokulova IB, Samoylov AM, Simonian AL, Petrenko VA, Vodyanoy V. 2007. Phage as a molecular recognition element in biosensors immobilized by physical adsorption. Biosens. Bioelectron. 22: 986-992. https://doi.org/10.1016/j.bios.2006.03.025
- Schmelcher M, Loessner MJ. 2014. Application of bacteriophages for detection of foodborne pathogens. Bacteriophage 4: e28137. https://doi.org/10.4161/bact.28137
- Nicastro J, Sheldon K, Slavcev RA. 2014. Bacteriophage lambda display systems: developments and applications. Appl. Microbiol. Biotechnol. 98: 2853-2866. https://doi.org/10.1007/s00253-014-5521-1
- Ackermann HW. 2007. 5500 Phages examined in the electron microscope. Arch. Virol. 152: 227-243. https://doi.org/10.1007/s00705-006-0849-1
- Gervais L, Gel M, Allain B, Tolba M, Brovko L, Zourob M, et al. 2007. Immobilization of biotinylated bacteriophages on biosensor surfaces. Sens. Actuators B Chem. 125: 615-621.
- Singh A, Arutyunov D, Szymanski CM, Evoy S. 2012. Bacteriophage based probes for pathogen detection. Analyst 137: 3405-3421. https://doi.org/10.1039/c2an35371g
- Hiremath N, Guntupalli R, Vodyanoy V, Chin BA, Park MK. 2015. Detection of methicillin-resistant Staphylococcus aureus using novel lytic phage-based magnetoelastic biosensors. Sens. Actuators B Chem. 210: 129-136. https://doi.org/10.1016/j.snb.2014.12.083
- Jabrane T, Dube M, Mangin PJ. 2009. Bacteriophage immobilization on paper surface: effect of cationic pre-coat layer, pp. 311-315. In: Proceedings of PAPTAC 95th Annual Meeting. Pulp and Paper Technical Association of Canada, Quebec, Canada.
- Balasubramanian S, Sorokulova IB, Vodyanoy VJ, Simonian AL. 2007. Lytic phage as a specific and selective probe for detection of Staphylococcus aureus-a surface plasmon resonance spectroscopic study. Biosens. Bioelectron. 22: 948-955.
- Tawil N, Sacher E, Mandeville R, Meunier M. 2013. Strategies for the immobilization of bacteriophages on gold surfaces monitored by surface plasmon resonance and surface morphology. J. Phys. Chem. C 117: 6686-6691. https://doi.org/10.1021/jp400565m
- Arya SK, Singh A, Naidoo R, Wu P, McDermott MT, Evoy S. 2011. Chemically immobilized T4-bacteriophage for specific Escherichia coli detection using surface plasmon resonance. Analyst 136: 486-492. https://doi.org/10.1039/C0AN00697A
- Singh A, Glass N, Tolba M, Brovko L, Griffiths M, Evoy S. 2009. Immobilization of bacteriophages on gold surfaces for the specific capture of pathogens. Biosens. Bioelectron. 24: 3645-3651. https://doi.org/10.1016/j.bios.2009.05.028
- Lindberg AA. 1973. Bacteriophage receptors. Annu. Rev. Microbiol. 27: 205-241. https://doi.org/10.1146/annurev.mi.27.100173.001225
- Reverberi R, Reverberi L. 2007. Factors affecting the antigenantibody reaction. Blood Transfus. 5: 227-240.
Cited by
- Studies on Shigella sonnei-specific bacteriophage isolated from a slaughterhouse vol.25, pp.3, 2018, https://doi.org/10.11002/kjfp.2018.25.3.390
- Lytic KFS-SE2 phage as a novel bio-receptor for Salmonella Enteritidis detection vol.57, pp.2, 2019, https://doi.org/10.1007/s12275-019-8610-0
- Bacteriophages in Food Applications: From Foe to Friend vol.10, pp.1, 2019, https://doi.org/10.1146/annurev-food-032818-121747
- Strategies for Surface Immobilization of Whole Bacteriophages: A Review vol.7, pp.6, 2018, https://doi.org/10.1021/acsbiomaterials.1c00013