Fig. 1. Relationship between Obesity and Autoph-agy. Sophisticated interaction between autophagyand obesity-associated pathologies is schematical-ly illustrated.
References
- Alers, S., Loffler, A.S., Wesselborg, S., and Stork, B. (2012a). The incredible ULKs. Cell Commun. Signal. 10, 7. https://doi.org/10.1186/1478-811X-10-7
- Alers, S., Loffler, A.S., Wesselborg, S., and Stork, B. (2012b). Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell Biol. 32, 2-11. https://doi.org/10.1128/MCB.06159-11
- Arruda, A.P., and Hotamisligil, G.S. (2015). Calcium homeostasis and organelle function in the pathogenesis of obesity and diabetes. Cell Metab. 22, 381-397. https://doi.org/10.1016/j.cmet.2015.06.010
- Bartolome, A., Guillen, C., and Benito, M. (2012). Autophagy plays a protective role in endoplasmic reticulum stress-mediated pancreatic beta cell death. Autophagy 8, 1757-1768. https://doi.org/10.4161/auto.21994
- Basseri, S., and Austin, R.C. (2008). ER stress and lipogenesis: a slippery slope toward hepatic steatosis. Dev. Cell 15, 795-796. https://doi.org/10.1016/j.devcel.2008.11.013
- Bernales, S., Schuck, S., and Walter, P. (2007). ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy 3, 285-287. https://doi.org/10.4161/auto.3930
- Bournat, J.C., and Brown, C.W. (2010). Mitochondrial dysfunction in obesity. Curr. Opin. Endocrinol. Diabetes Obes. 17, 446-452. https://doi.org/10.1097/MED.0b013e32833c3026
- Brookheart, R.T., Michel, C.I., and Schaffer, J.E. (2009). As a matter of fat. Cell Metab. 10, 9-12. https://doi.org/10.1016/j.cmet.2009.03.011
- Browning, J.D., and Horton, J.D. (2004). Molecular mediators of hepatic steatosis and liver injury. J. Clin. Invest. 114, 147-152. https://doi.org/10.1172/JCI200422422
- Cerda, C., Sanchez, C., Climent, B., Vazquez, A., Iradi, A., El Amrani, F., Bediaga, A., and Saez, G.T. (2014). Oxidative stress and DNA damage in obesity-related tumorigenesis. Adv. Exp. Med. Biol. 824, 5-17.
- Cho, C.S., Lombard, D.B., and Lee, J.H. (2017). SIRT3 as a regulator of hepatic autophagy. Hepatology 66, 700-702. https://doi.org/10.1002/hep.29271
- Choi, A.M., Ryter, S.W., and Levine, B. (2013). Autophagy in human health and disease. N Engl. J. Med. 368, 651-662. https://doi.org/10.1056/NEJMra1205406
- Collaborators, G.B.D.O., Afshin, A., Forouzanfar, M.H., Reitsma, M.B., Sur, P., Estep, K., Lee, A., Marczak, L., Mokdad, A.H., Moradi-Lakeh, M., et al. (2017). Health Effects of Overweight and Obesity in 195 Countries over 25 Years. N Engl. J. Med. 377, 13-27. https://doi.org/10.1056/NEJMoa1614362
- Cooke, M.S., Evans, M.D., Dizdaroglu, M., and Lunec, J. (2003). Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 17, 1195-1214. https://doi.org/10.1096/fj.02-0752rev
- Czaja, M.J. (2015). A new mechanism of lipotoxicity: Calcium channel blockers as a treatment for nonalcoholic steatohepatitis? Hepatology 62, 312-314. https://doi.org/10.1002/hep.27858
- Dann, S.G., Selvaraj, A., and Thomas, G. (2007). mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol. Med. 13, 252-259. https://doi.org/10.1016/j.molmed.2007.04.002
- Ding, W.X., Li, M., Chen, X., Ni, H.M., Lin, C.W., Gao, W., Lu, B., Stolz, D.B., Clemens, D.L., and Yin, X.M. (2010). Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology 139, 1740-1752. https://doi.org/10.1053/j.gastro.2010.07.041
- Duran, A., Hernandez, E.D., Reina-Campos, M., Castilla, E.A., Subramaniam, S., Raghunandan, S., Roberts, L.R., Kisseleva, T., Karin, M., Diaz-Meco, M.T., et al. (2016). p62/SQSTM1 by binding to vitamin D receptor inhibits hepatic stellate cell activity, fibrosis, and liver cancer. Cancer Cell 30, 595-609. https://doi.org/10.1016/j.ccell.2016.09.004
- Ebato, C., Uchida, T., Arakawa, M., Komatsu, M., Ueno, T., Komiya, K., Azuma, K., Hirose, T., Tanaka, K., Kominami, E., et al. (2008). Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 8, 325-332. https://doi.org/10.1016/j.cmet.2008.08.009
- Ezaki, J., Matsumoto, N., Takeda-Ezaki, M., Komatsu, M., Takahashi, K., Hiraoka, Y., Taka, H., Fujimura, T., Takehana, K., Yoshida, M., et al. (2011). Liver autophagy contributes to the maintenance of blood glucose and amino acid levels. Autophagy 7, 727-736. https://doi.org/10.4161/auto.7.7.15371
- Feng, Y., He, D., Yao, Z., and Klionsky, D.J. (2014). The machinery of macroautophagy. Cell Res. 24, 24-41. https://doi.org/10.1038/cr.2013.168
- Filomeni, G., De Zio, D., and Cecconi, F. (2015). Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 22, 377-388. https://doi.org/10.1038/cdd.2014.150
- Fu, S., Yang, L., Li, P., Hofmann, O., Dicker, L., Hide, W., Lin, X., Watkins, S.M., Ivanov, A.R., and Hotamisligil, G.S. (2011). Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 473, 528-531. https://doi.org/10.1038/nature09968
- Galluzzi, L., Pietrocola, F., Levine, B., and Kroemer, G. (2014). Metabolic control of autophagy. Cell 159, 1263-1276. https://doi.org/10.1016/j.cell.2014.11.006
- Goldberg, I.J., Trent, C.M., and Schulze, P.C. (2012). Lipid metabolism and toxicity in the heart. Cell Metab. 15, 805-812. https://doi.org/10.1016/j.cmet.2012.04.006
- Gonzalez-Rodriguez, A., Mayoral, R., Agra, N., Valdecantos, M.P., Pardo, V., Miquilena-Colina, M.E., Vargas-Castrillon, J., Lo Iacono, O., Corazzari, M., Fimia, G.M., et al. (2014). Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis. 5, e1179. https://doi.org/10.1038/cddis.2014.162
- Hara, T., Takamura, A., Kishi, C., Iemura, S., Natsume, T., Guan, J.L., and Mizushima, N. (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181, 497-510. https://doi.org/10.1083/jcb.200712064
- Hauck, A.K., and Bernlohr, D.A. (2016). Oxidative stress and lipotoxicity. J. Lipid Res. 57, 1976-1986. https://doi.org/10.1194/jlr.R066597
- Hernandez-Gea, V., Ghiassi-Nejad, Z., Rozenfeld, R., Gordon, R., Fiel, M.I., Yue, Z., Czaja, M.J., and Friedman, S.L. (2012). Autophagy releases lipid that promotes fibrogenesis by activated hepatic stellate cells in mice and in human tissues. Gastroenterology 142, 938-946. https://doi.org/10.1053/j.gastro.2011.12.044
- Hill, J.O., Wyatt, H.R., Reed, G.W., and Peters, J.C. (2003). Obesity and the environment: where do we go from here? Science 299, 853-855. https://doi.org/10.1126/science.1079857
- Hill, J.O., Wyatt, H.R., and Peters, J.C. (2012). Energy balance and obesity. Circulation 126, 126-132. https://doi.org/10.1161/CIRCULATIONAHA.111.087213
- Holzer, R.G., Park, E.J., Li, N., Tran, H., Chen, M., Choi, C., Solinas, G., and Karin, M. (2011). Saturated fatty acids induce c-Src clustering within membrane subdomains, leading to JNK activation. Cell 147, 173-184. https://doi.org/10.1016/j.cell.2011.08.034
- Hotamisligil, G.S. (2010). Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900-917. https://doi.org/10.1016/j.cell.2010.02.034
- Jansen, H.J., van Essen, P., Koenen, T., Joosten, L.A., Netea, M.G., Tack, C.J., and Stienstra, R. (2012). Autophagy activity is up-regulated in adipose tissue of obese individuals and modulates proinflammatory cytokine expression. Endocrinology 153, 5866-5874. https://doi.org/10.1210/en.2012-1625
- Jewell, J.L., and Guan, K.L. (2013). Nutrient signaling to mTOR and cell growth. Trends Biochem. Sci. 38, 233-242. https://doi.org/10.1016/j.tibs.2013.01.004
- Ji, C., and Kaplowitz, N. (2006). ER stress: can the liver cope? J. Hepatol. 45, 321-333. https://doi.org/10.1016/j.jhep.2006.06.004
- Jung, H.S., Chung, K.W., Won Kim, J., Kim, J., Komatsu, M., Tanaka, K., Nguyen, Y.H., Kang, T.M., Yoon, K.H., Kim, J.W., et al. (2008). Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab. 8, 318-324. https://doi.org/10.1016/j.cmet.2008.08.013
- Kamada, Y., Funakoshi, T., Shintani, T., Nagano, K., Ohsumi, M., and Ohsumi, Y. (2000). Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J. Cell Biol. 150, 1507-1513. https://doi.org/10.1083/jcb.150.6.1507
- Kaur, J., and Debnath, J. (2015). Autophagy at the crossroads of catabolism and anabolism. Nat. Rev. Mol. Cell Biol. 16, 461-472. https://doi.org/10.1038/nrm4024
- Kaushik, S., and Cuervo, A.M. (2012). Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol. 22, 407-417. https://doi.org/10.1016/j.tcb.2012.05.006
- Kennedy, A., Martinez, K., Chuang, C.C., LaPoint, K., and McIntosh, M. (2009). Saturated fatty acid-mediated inflammation and insulin resistance in adipose tissue: mechanisms of action and implications. J. Nutr. 139, 1-4. https://doi.org/10.3945/jn.108.098269
- Kim, K.H., and Lee, M.S. (2014). Autophagy--a key player in cellular and body metabolism. Nat. Rev. Endocrinol. 10, 322-337. https://doi.org/10.1038/nrendo.2014.35
- Kim, K.H., Jeong, Y.T., Oh, H., Kim, S.H., Cho, J.M., Kim, Y.N., Kim, S.S., Kim, D.H., Hur, K.Y., Kim, H.K., et al. (2013). Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat. Med. 19, 83-92. https://doi.org/10.1038/nm.3014
- Kim, M., Ho, A., and Lee, J.H. (2017). Autophagy and human neurodegenerative diseases-A fly's perspective. Int. J. Mol. Sci. 18, pii: E1596.
- Klionsky, D.J., Cregg, J.M., Dunn, W.A., Jr., Emr, S.D., Sakai, Y., Sandoval, I.V., Sibirny, A., Subramani, S., Thumm, M., Veenhuis, M., et al. (2003). A unified nomenclature for yeast autophagy-related genes. Dev. Cell 5, 539-545. https://doi.org/10.1016/S1534-5807(03)00296-X
- Klionsky, D.J., Abdelmohsen, K., Abe, A., Abedin, M.J., Abeliovich, H., Acevedo Arozena, A., Adachi, H., Adams, C.M., Adams, P.D., Adeli, K., et al. (2016). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1-222. https://doi.org/10.1080/15548627.2015.1100356
- Komatsu, M., Waguri, S., Ueno, T., Iwata, J., Murata, S., Tanida, I., Ezaki, J., Mizushima, N., Ohsumi, Y., Uchiyama, Y., et al. (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425-434. https://doi.org/10.1083/jcb.200412022
- Komatsu, M., Waguri, S., Koike, M., Sou, Y.S., Ueno, T., Hara, T., Mizushima, N., Iwata, J., Ezaki, J., Murata, S., et al. (2007). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149-1163. https://doi.org/10.1016/j.cell.2007.10.035
- Kopelman, P.G. (2000). Obesity as a medical problem. Nature 404, 635-643. https://doi.org/10.1038/35007508
- Kovsan, J., Bluher, M., Tarnovscki, T., Kloting, N., Kirshtein, B., Madar, L., Shai, I., Golan, R., Harman-Boehm, I., Schon, M.R., et al. (2011). Altered autophagy in human adipose tissues in obesity. J. Clin. Endocrinol. Metab. 96, E268-277. https://doi.org/10.1210/jc.2010-1681
- Kroemer, G., Marino, G., and Levine, B. (2010). Autophagy and the integrated stress response. Mol. Cell 40, 280-293. https://doi.org/10.1016/j.molcel.2010.09.023
- Las, G., Serada, S.B., Wikstrom, J.D., Twig, G., and Shirihai, O.S. (2011). Fatty acids suppress autophagic turnover in beta-cells. J. Biol. Chem. 286, 42534-42544. https://doi.org/10.1074/jbc.M111.242412
- Lelliott, C., and Vidal-Puig, A.J. (2004). Lipotoxicity, an imbalance between lipogenesis de novo and fatty acid oxidation. Int. J. Obes. Relat. Metab. Disord. 28 Suppl 4, S22-28. https://doi.org/10.1038/sj.ijo.0802854
- Li, Y., Ge, M., Ciani, L., Kuriakose, G., Westover, E.J., Dura, M., Covey, D.F., Freed, J.H., Maxfield, F.R., Lytton, J., et al. (2004). Enrichment of endoplasmic reticulum with cholesterol inhibits sarcoplasmicendoplasmic reticulum calcium ATPase-2b activity in parallel with increased order of membrane lipids: implications for depletion of endoplasmic reticulum calcium stores and apoptosis in cholesterolloaded macrophages. J. Biol. Chem. 279, 37030-37039. https://doi.org/10.1074/jbc.M405195200
- Li, S., Dou, X., Ning, H., Song, Q., Wei, W., Zhang, X., Shen, C., Li, J., Sun, C., and Song, Z. (2017). Sirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity. Hepatology 66, 936-952. https://doi.org/10.1002/hep.29229
- Liao, X., Sluimer, J.C., Wang, Y., Subramanian, M., Brown, K., Pattison, J.S., Robbins, J., Martinez, J., and Tabas, I. (2012). Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab. 15, 545-553. https://doi.org/10.1016/j.cmet.2012.01.022
- Lim, Y.M., Lim, H., Hur, K.Y., Quan, W., Lee, H.Y., Cheon, H., Ryu, D., Koo, S.H., Kim, H.L., Kim, J., et al. (2014). Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes. Nat. Commun. 5, 4934. https://doi.org/10.1038/ncomms5934
- Lin, C.W., Zhang, H., Li, M., Xiong, X., Chen, X., Chen, X., Dong, X.C., and Yin, X.M. (2013). Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice. J. Hepatol. 58, 993-999. https://doi.org/10.1016/j.jhep.2013.01.011
- Liu, H.Y., Han, J., Cao, S.Y., Hong, T., Zhuo, D., Shi, J., Liu, Z., and Cao, W. (2009). Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J. Biol. Chem. 284, 31484-31492. https://doi.org/10.1074/jbc.M109.033936
- Liu, K., Zhao, E., Ilyas, G., Lalazar, G., Lin, Y., Haseeb, M., Tanaka, K.E., and Czaja, M.J. (2015). Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization. Autophagy 11, 271-284. https://doi.org/10.1080/15548627.2015.1009787
- Lupi, R., Dotta, F., Marselli, L., Del Guerra, S., Masini, M., Santangelo, C., Patane, G., Boggi, U., Piro, S., Anello, M., et al. (2002). Prolonged exposure to free fatty acids has cytostatic and pro-apoptotic effects on human pancreatic islets: evidence that beta-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes 51, 1437-1442. https://doi.org/10.2337/diabetes.51.5.1437
- Ma, D., Molusky, M.M., Song, J., Hu, C.R., Fang, F., Rui, C., Mathew, A.V., Pennathur, S., Liu, F., Cheng, J.X., et al. (2013). Autophagy deficiency by hepatic FIP200 deletion uncouples steatosis from liver injury in NAFLD. Mol. Endocrinol. 27, 1643-1654. https://doi.org/10.1210/me.2013-1153
- Martino, L., Masini, M., Novelli, M., Beffy, P., Bugliani, M., Marselli, L., Masiello, P., Marchetti, P., and De Tata, V. (2012). Palmitate activates autophagy in INS-1E beta-cells and in isolated rat and human pancreatic islets. PLoS One 7, e36188. https://doi.org/10.1371/journal.pone.0036188
- Matsuura, A., Tsukada, M., Wada, Y., and Ohsumi, Y. (1997). Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 192, 245-250. https://doi.org/10.1016/S0378-1119(97)00084-X
- Mauvezin, C., and Neufeld, T.P. (2015). Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy 11, 1437-1438. https://doi.org/10.1080/15548627.2015.1066957
- Mauvezin, C., Nagy, P., Juhasz, G., and Neufeld, T.P. (2015). Autophagosome-lysosome fusion is independent of V-ATPasemediated acidification. Nat. Commun. 6, 7007. https://doi.org/10.1038/ncomms8007
- Mei, S., Ni, H.M., Manley, S., Bockus, A., Kassel, K.M., Luyendyk, J.P., Copple, B.L., and Ding, W.X. (2011). Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes. J. Pharmacol. Exp. Ther. 339, 487-498. https://doi.org/10.1124/jpet.111.184341
- Menzies, F.M., Fleming, A., Caricasole, A., Bento, C.F., Andrews, S.P., Ashkenazi, A., Fullgrabe, J., Jackson, A., Jimenez Sanchez, M., Karabiyik, C., et al. (2017). Autophagy and neurodegeneration: pathogenic mechanisms and therapeutic opportunities. Neuron 93, 1015-1034. https://doi.org/10.1016/j.neuron.2017.01.022
- Mir, S.U., George, N.M., Zahoor, L., Harms, R., Guinn, Z., and Sarvetnick, N.E. (2015). Inhibition of autophagic turnover in betacells by fatty acids and glucose leads to apoptotic cell death. J. Biol. Chem. 290, 6071-6085. https://doi.org/10.1074/jbc.M114.605345
- Mizushima, N., and Levine, B. (2010). Autophagy in mammalian development and differentiation. Nat. Cell Biol. 12, 823-830. https://doi.org/10.1038/ncb0910-823
- Mizushima, N., Yoshimori, T., and Levine, B. (2010). Methods in mammalian autophagy research. Cell 140, 313-326. https://doi.org/10.1016/j.cell.2010.01.028
- Mulakkal, N.C., Nagy, P., Takats, S., Tusco, R., Juhasz, G., and Nezis, I.P. (2014). Autophagy in Drosophila: from historical studies to current knowledge. Biomed. Res. Int. 2014, 273473.
- Murrow, L., and Debnath, J. (2013). Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu. Rev. Pathol. 8, 105-137. https://doi.org/10.1146/annurev-pathol-020712-163918
- Netea-Maier, R.T., Plantinga, T.S., van de Veerdonk, F.L., Smit, J.W., and Netea, M.G. (2016). Modulation of inflammation by autophagy: Consequences for human disease. Autophagy 12, 245-260. https://doi.org/10.1080/15548627.2015.1071759
- Ng, M., Fleming, T., Robinson, M., Thomson, B., Graetz, N., Margono, C., Mullany, E.C., Biryukov, S., Abbafati, C., Abera, S.F., et al. (2014). Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766-781. https://doi.org/10.1016/S0140-6736(14)60460-8
- Nunez, C.E., Rodrigues, V.S., Gomes, F.S., Moura, R.F., Victorio, S.C., Bombassaro, B., Chaim, E.A., Pareja, J.C., Geloneze, B., Velloso, L.A., et al. (2013). Defective regulation of adipose tissue autophagy in obesity. Int. J. Obes. (Lond). 37, 1473-1480. https://doi.org/10.1038/ijo.2013.27
- Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., Murakami, T., Taniguchi, M., Tanii, I., Yoshinaga, K., et al. (2006). Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell Biol. 26, 9220-9231. https://doi.org/10.1128/MCB.01453-06
- Ost, A., Svensson, K., Ruishalme, I., Brannmark, C., Franck, N., Krook, H., Sandstrom, P., Kjolhede, P., and Stralfors, P. (2010). Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Mol. Med. 16, 235-246. https://doi.org/10.1007/s00894-009-0539-5
- Ota, T., Gayet, C., and Ginsberg, H.N. (2008). Inhibition of apolipoprotein B100 secretion by lipid-induced hepatic endoplasmic reticulum stress in rodents. J. Clin. Invest. 118, 316-332. https://doi.org/10.1172/JCI32752
- Ozcan, U., Cao, Q., Yilmaz, E., Lee, A.H., Iwakoshi, N.N., Ozdelen, E., Tuncman, G., Gorgun, C., Glimcher, L.H., and Hotamisligil, G.S. (2004). Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457-461. https://doi.org/10.1126/science.1103160
- Ozcan, U., Yilmaz, E., Ozcan, L., Furuhashi, M., Vaillancourt, E., Smith, R.O., Gorgun, C.Z., and Hotamisligil, G.S. (2006). Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313, 1137-1140. https://doi.org/10.1126/science.1128294
- Park, H.W., and Lee, J.H. (2014). Calcium channel blockers as potential therapeutics for obesity-associated autophagy defects and fatty liver pathologies. Autophagy 10, 2385-2386. https://doi.org/10.4161/15548627.2014.984268
- Park, H.W., Park, H., Ro, S.H., Jang, I., Semple, I.A., Kim, D.N., Kim, M., Nam, M., Zhang, D., Yin, L., et al. (2014a). Hepatoprotective role of Sestrin2 against chronic ER stress. Nat. Commun. 5, 4233.
- Park, H.W., Park, H., Semple, I.A., Jang, I., Ro, S.H., Kim, M., Cazares, V.A., Stuenkel, E.L., Kim, J.J., Kim, J.S., et al. (2014b). Pharmacological correction of obesity-induced autophagy arrest using calcium channel blockers. Nat. Commun. 5, 4834. https://doi.org/10.1038/ncomms5834
- Pyo, J.O., Yoo, S.M., Ahn, H.H., Nah, J., Hong, S.H., Kam, T.I., Jung, S., and Jung, Y.K. (2013). Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat. Commun. 4, 2300.
- Qian, M., Fang, X., and Wang, X. (2017). Autophagy and inflammation. Clin. Transl. Med. 6, 24. https://doi.org/10.1186/s40169-017-0154-5
- Qin, L., Wang, Z., Tao, L., and Wang, Y. (2010). ER stress negatively regulates AKT/TSC/mTOR pathway to enhance autophagy. Autophagy 6, 239-247. https://doi.org/10.4161/auto.6.2.11062
- Quan, W., Hur, K.Y., Lim, Y., Oh, S.H., Lee, J.C., Kim, K.H., Kim, G.H., Kim, S.W., Kim, H.L., Lee, M.K., et al. (2012). Autophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice. Diabetologia 55, 392-403. https://doi.org/10.1007/s00125-011-2350-y
- Rashid, H.O., Yadav, R.K., Kim, H.R., and Chae, H.J. (2015). ER stress: autophagy induction, inhibition and selection. Autophagy 11, 1956-1977. https://doi.org/10.1080/15548627.2015.1091141
- Razani, B., Feng, C., Coleman, T., Emanuel, R., Wen, H., Hwang, S., Ting, J.P., Virgin, H.W., Kastan, M.B., and Semenkovich, C.F. (2012). Autophagy links inflammasomes to atherosclerotic progression. Cell Metab. 15, 534-544. https://doi.org/10.1016/j.cmet.2012.02.011
- Rodriguez-Navarro, J.A., and Cuervo, A.M. (2012). Dietary lipids and aging compromise chaperone-mediated autophagy by similar mechanisms. Autophagy 8, 1152-1154. https://doi.org/10.4161/auto.20649
- Rodriguez-Navarro, J.A., Kaushik, S., Koga, H., Dall'Armi, C., Shui, G., Wenk, M.R., Di Paolo, G., and Cuervo, A.M. (2012). Inhibitory effect of dietary lipids on chaperone-mediated autophagy. Proc. Natl. Acad. Sci. USA 109, E705-714. https://doi.org/10.1073/pnas.1113036109
- Ross, C.A., and Poirier, M.A. (2004). Protein aggregation and neurodegenerative disease. Nat. Med. 10 Suppl, S10-17. https://doi.org/10.1038/nm1066
- Sarparanta, J., Garcia-Macia, M., and Singh, R. (2017). Autophagy and mitochondria in obesity and type 2 diabetes. Curr. Diabetes Rev. 13, 352-369.
- Schenk, S., Saberi, M., and Olefsky, J.M. (2008). Insulin sensitivity: modulation by nutrients and inflammation. J. Clin. Invest. 118, 2992-3002. https://doi.org/10.1172/JCI34260
- Senft, D., and Ronai, Z.A. (2015). UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem. Sci. 40, 141-148. https://doi.org/10.1016/j.tibs.2015.01.002
- Settembre, C., De Cegli, R., Mansueto, G., Saha, P.K., Vetrini, F., Visvikis, O., Huynh, T., Carissimo, A., Palmer, D., Klisch, T.J., et al. (2013). TFEB controls cellular lipid metabolism through a starvationinduced autoregulatory loop. Nat. Cell Biol. 15, 647-658. https://doi.org/10.1038/ncb2718
- Shi, H., Kokoeva, M.V., Inouye, K., Tzameli, I., Yin, H., and Flier, J.S. (2006). TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116, 3015-3025. https://doi.org/10.1172/JCI28898
- Singh, R., and Cuervo, A.M. (2012). Lipophagy: connecting autophagy and lipid metabolism. Int. J. Cell Biol. 2012, 282041.
- Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M., Tanaka, K., Cuervo, A.M., and Czaja, M.J. (2009a). Autophagy regulates lipid metabolism. Nature 458, 1131-1135. https://doi.org/10.1038/nature07976
- Singh, R., Xiang, Y., Wang, Y., Baikati, K., Cuervo, A.M., Luu, Y.K., Tang, Y., Pessin, J.E., Schwartz, G.J., and Czaja, M.J. (2009b). Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest. 119, 3329-3339.
- Stubbs, C.O., and Lee, A.J. (2004). The obesity epidemic: both energy intake and physical activity contribute. Med. J. Aust. 181, 489-491.
- Takabatake, Y., Yamamoto, T., and Isaka, Y. (2017). Stagnation of autophagy: A novel mechanism of renal lipotoxicity. Autophagy 13, 775-776. https://doi.org/10.1080/15548627.2017.1283084
- Tan, S.H., Shui, G., Zhou, J., Li, J.J., Bay, B.H., Wenk, M.R., and Shen, H.M. (2012). Induction of autophagy by palmitic acid via protein kinase C-mediated signaling pathway independent of mTOR (mammalian target of rapamycin). J. Biol. Chem. 287, 14364-14376. https://doi.org/10.1074/jbc.M111.294157
- Tanaka, S., Hikita, H., Tatsumi, T., Sakamori, R., Nozaki, Y., Sakane, S., Shiode, Y., Nakabori, T., Saito, Y., Hiramatsu, N., et al. (2016). Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology 64, 1994-2014. https://doi.org/10.1002/hep.28820
- Tooze, S.A., and Dikic, I. (2016). Autophagy Captures the Nobel Prize. Cell 167, 1433-1435. https://doi.org/10.1016/j.cell.2016.11.023
- Um, S.H., Frigerio, F., Watanabe, M., Picard, F., Joaquin, M., Sticker, M., Fumagalli, S., Allegrini, P.R., Kozma, S.C., Auwerx, J., et al. (2004). Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200-205. https://doi.org/10.1038/nature02866
- Wen, H., Gris, D., Lei, Y., Jha, S., Zhang, L., Huang, M.T., Brickey, W.J., and Ting, J.P. (2011). Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408-415. https://doi.org/10.1038/ni.2022
- Yamamoto, T., Takabatake, Y., Takahashi, A., Kimura, T., Namba, T., Matsuda, J., Minami, S., Kaimori, J.Y., Matsui, I., Matsusaka, T., et al. (2017). High-Fat Diet-Induced Lysosomal Dysfunction and Impaired Autophagic Flux Contribute to Lipotoxicity in the Kidney. J. Am. Soc. Nephrol. 28, 1534-1551. https://doi.org/10.1681/ASN.2016070731
- Yang, L., Li, P., Fu, S., Calay, E.S., and Hotamisligil, G.S. (2010). Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467-478. https://doi.org/10.1016/j.cmet.2010.04.005
- Zhang, Y., Goldman, S., Baerga, R., Zhao, Y., Komatsu, M., and Jin, S. (2009). Adipose-specific deletion of autophagy-related gene 7 (atg7). in mice reveals a role in adipogenesis. Proc. Natl. Acad. Sci. USA 106, 19860-19865. https://doi.org/10.1073/pnas.0906048106
- Zhang, K., Wang, S., Malhotra, J., Hassler, J.R., Back, S.H., Wang, G., Chang, L., Xu, W., Miao, H., Leonardi, R., et al. (2011). The unfolded protein response transducer IRE1alpha prevents ER stress-induced hepatic steatosis. EMBO J. 30, 1357-1375. https://doi.org/10.1038/emboj.2011.52
- Zheng, Z., Zhang, C., and Zhang, K. (2010). Role of unfolded protein response in lipogenesis. World J. Hepatol. 2, 203-207. https://doi.org/10.4254/wjh.v2.i6.203
Cited by
- Autophagy in Metabolic Age-Related Human Diseases vol.7, pp.10, 2018, https://doi.org/10.3390/cells7100149
- Overview of the Minireviews on Autophagy vol.41, pp.1, 2018, https://doi.org/10.14348/molcells.2018.0400
- Oxidative stress, lysosomal damage and dysfunctional autophagy in molluscan hepatopancreas (digestive gland) induced by chemical contaminants vol.152, pp.None, 2018, https://doi.org/10.1016/j.marenvres.2019.104825
- Neutrophil Extracellular Traps (NETs) and Damage-Associated Molecular Patterns (DAMPs): Two Potential Targets for COVID-19 Treatment vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/7527953
- Autophagy in metabolic syndrome: breaking the wheel by targeting the renin–angiotensin system vol.11, pp.2, 2020, https://doi.org/10.1038/s41419-020-2275-9
- High-fat diet-induced and genetically inherited obesity differentially alters DNA methylation profile in the germline of adult male rats vol.12, pp.1, 2018, https://doi.org/10.1186/s13148-020-00974-7
- Multiple Mechanisms Converging on Transcription Factor EB Activation by the Natural Phenol Pterostilbene vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/7658501
- Placental Antioxidant Defenses and Autophagy-Related Genes in Maternal Obesity and Gestational Diabetes Mellitus vol.13, pp.4, 2018, https://doi.org/10.3390/nu13041303
- Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications vol.101, pp.4, 2018, https://doi.org/10.1152/physrev.00030.2020
- Obesity cardiomyopathy: evidence, mechanisms, and therapeutic implications vol.101, pp.4, 2018, https://doi.org/10.1152/physrev.00030.2020
- Roles of IκB kinases and TANK-binding kinase 1 in hepatic lipid metabolism and nonalcoholic fatty liver disease vol.53, pp.11, 2018, https://doi.org/10.1038/s12276-021-00712-w
- The Epstein-Barr virus deubiquitinase BPLF1 targets SQSTM1/p62 to inhibit selective autophagy vol.17, pp.11, 2021, https://doi.org/10.1080/15548627.2021.1874660