DOI QR코드

DOI QR Code

Researcher and Research Area Recommendation System for Promoting Convergence Research Using Text Mining and Messenger UI

텍스트 마이닝 방법론과 메신저UI를 활용한 융합연구 촉진을 위한 연구자 및 연구 분야 추천 시스템의 제안

  • 양낙영 (아주대학교 e-비즈니스학과) ;
  • 김성근 (아주대학교 연구팀) ;
  • 강주영 (아주대학교 e-비즈니스학과)
  • Received : 2018.11.28
  • Accepted : 2018.12.26
  • Published : 2018.12.31

Abstract

Purpose Recently, social interest in the convergence research is at its peak. However, contrary to the keen interest in convergence research, an infrastructure that makes it easier to recruit researchers from other fields is not yet well established, which is why researchers are having considerable difficulty in carrying out real convergence research. In this study, we implemented a researcher recommendation system that helps researchers who want to collaborate easily recruit researchers from other fields, and we expect it to serve as a springboard for growth in the convergence research field. Design/methodology/approach In this study, we implemented a system that recommends proper researchers when users enter keyword in the field of research that they want to collaborate using word embedding techniques, word2vec. In addition, we also implemented function of keyword suggestions by using keywords drawn from LDA Topicmodeling Algorithm. Finally, the UI of the researcher recommendation system was completed by utilizing the collaborative messenger Slack to facilitate immediate exchange of information with the recommended researchers and to accommodate various applications for collaboration. Findings In this study, we validated the completed researcher recommendation system by ensuring that the list of researchers recommended by entering a specific keyword is accurate and that words learned as a similar word with a particular researcher match the researcher's field of research. The results showed 85.89% accuracy in the former, and in the latter case, mostly, the words drawn as similar words were found to match the researcher's field of research, leading to excellent performance of the researcher recommendation system.

Keywords

JBSTB0_2018_v27n4_71_f0001.png 이미지

<그림 1> 워드투벡을 활용한 연구자 추천 시스템의 연구 모델

JBSTB0_2018_v27n4_71_f0002.png 이미지

<그림 2> 워드투벡의 학습 결과 예시

JBSTB0_2018_v27n4_71_f0003.png 이미지

<그림 3> 분야별 연구자 비율

JBSTB0_2018_v27n4_71_f0004.png 이미지

<그림 4> 연구자 추천시스템 프로토타입

JBSTB0_2018_v27n4_71_f0005.png 이미지

<그림 5> 연구자 추천 시스템 구성

JBSTB0_2018_v27n4_71_f0006.png 이미지

<그림 6> 코사인 유사도의 계산 식

<표 1> LDA 토픽모델링 결과

JBSTB0_2018_v27n4_71_t0001.png 이미지

<표 2> 키워드 별 연구자 추천 정확도 예시

JBSTB0_2018_v27n4_71_t0002.png 이미지

<표 3> 연구자와 연관성이 높은 단어들 및 실제 연구 분야

JBSTB0_2018_v27n4_71_t0003.png 이미지

References

  1. 김진완, 김유일, 홍태호, "전자적 파트너십에서 공급자의 전략적 혜택 창출을 위한 협업의 효과에 관한 연구", 정보시스템 연구, 제17권 제4호, 2008, pp. 341-367.
  2. 박기범, 황정태, "융합 연구의 형성과 발전 과정의 고찰을 통한 국내 연구 현황 분석", 조사연구, 2007. 11, pp. 1-125.
  3. 배형준. 이공계 융합연구 수행의 영향요인 및 연구성과 영향 분석. 서울대학교 대학원, 2014.
  4. 송위진, "'과학기술과 인문사회 융합연구'의 필요성과 과제", STEPI Insight, 제47호, 2010, pp. 1-22.
  5. 오헌석, 배형준, 김도연, "과학기술분야 융합연구자의 융합연구 입문과 과정에 관한 연구", 아시아교육연구, 제13권 제4호, 2012, pp. 297-335.
  6. 이무순, 손달호, "ICT 기업 융합성과의 결정요인에 관한 연구", 정보시스템연구, 제26권 제3호, 2017, pp. 1-23.
  7. 이광호, 김승현, 최종화, 서지영, 강지훈, 이아정, "융합연구사업의 실태조사와 연구 개발 특성분석", 정책연구, 9월호, 2013, pp. 1-393.
  8. 정한민, 성원경, 박동인, "연구자 간 협업 지원서비스를 위한 지식 베이스 설계", 제17회 한글 및 한국어 정보처리 학술대회, 2005.10, pp. 173-178.
  9. 정한민, 이미경, 성원경, 박동인, "Ontoframe-K: 연구자 간 협업 지원 서비스를 위한 시멘틱웹 기반 정보 유통 플랫폼", 한국정보과학회 2006 한국컴퓨터종합학술대회 논문집, 2006. 6, pp. 100-102.
  10. 조양래, 양이석, 서용윤, 전정환, "국가 융합연구사업의 현황 및 연계성 분석", 대한산업공학회지, 제41권 제3호, 2015, pp. 305-323. https://doi.org/10.7232/JKIIE.2015.41.3.305
  11. 조혁준, 김성근, 강주영, "도플갱어 브랜드 이미지 효과에 대한 실증적 분석: 인터넷 커뮤니티를 중심으로", 정보시스템연구, 제26권 제1호, 2017, pp. 21-51.
  12. 채승훈, 임재익, 강주영, "사용자 리뷰를 통한 소셜커머스와 오픈마켓의 이용경험 비교분석", 지능정보연구, 제21권 제4호, 2015, pp. 53-77. https://doi.org/10.13088/JIIS.2015.21.4.053
  13. 최종화, 이광호, 조용래, 우청원, 이충현, 김은아, "정부출연연구기관의 협력적 융합 연구 촉진방안", 정책연구, 12월호, 2017, pp. 1-270.
  14. Blei, D. M., Ng, A. Y. and Jordan, M. I., "Latent Dirichlet Allocation", Journal of machine Learning research, Vol. 3, Jan, 2003, pp. 993-1022.
  15. Cambria, E. and White, B., "Jumping Nlp Curves: A Review of Natural Language Processing Research", IEEE Computational intelligence magazine, Vol. 9, No. 2, 2014, pp. 48-57. https://doi.org/10.1109/MCI.2014.2307227
  16. Ghannay, S., Favre, B., Esteve, Y. and Camelin, N., "Word Embedding Evaluation and Combination", Proceedings of LREC, 2016.
  17. Grimmer, J., "A Bayesian Hierarchical Topic Model for Political Texts: Measuring Expressed Agendas in Senate Press Releases", Political Analysis, Vol. 18, No. 1, 2010, pp. 1-35. https://doi.org/10.1093/pan/mpp034
  18. Mallon, W. T. and Bunton, S. A., "The Functions of Centers and Institutes in Academic Biomedical Research", Analysis in brief, Vol. 5, No. 1, 2005, pp. 2-3.
  19. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. and Dean, J., "Distributed Representations of Words and Phrases and Their Compositionality", Proceedings of Advances in neural information processing systems, 2013.
  20. Raasch, C., Lee, V., Spaeth, S. and Herstatt, C., "The Rise and Fall of Interdisciplinary Research: The Case of Open Source Innovation", Research policy, Vol. 42, No. 5, 2013, pp. 1138-1151. https://doi.org/10.1016/j.respol.2013.01.010
  21. Rubenstein, H. and Goodenough, J. B., "Contextual Correlates of Synonymy", Communications of the ACM, Vol. 8, No. 10, 1965, pp. 627-633. https://doi.org/10.1145/365628.365657
  22. Schummer, J., "Multidisciplinarity, Interdisciplinarity, and Patterns of Research Collaboration in Nanoscience and Nanotechnology", Scientometrics, Vol. 59, No. 3, 2004, pp. 425-465. https://doi.org/10.1023/B:SCIE.0000018542.71314.38
  23. Socher, R., Pennington, J., Huang, E. H., Ng, A. Y. and Manning, C. D., "Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions", Proceedings of Proceedings of the conference on empirical methods in natural language processing, 2011.
  24. Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T. and Qin, B., "Learning Sentiment-Specific Word Embedding for Twitter Sentiment Classification", Proceedings of Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 2014.
  25. Wang, X., Liu, Y., Chengjie, S., Wang, B. and Wang, X., "Predicting Polarities of Tweets by Composing Word Embeddings with Long Short-Term Memory", Proceedings of Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 2015.
  26. Winograd, T., "Understanding Natural Language", Cognitive psychology, Vol. 3, No. 1, 1972, pp. 1-191. https://doi.org/10.1016/0010-0285(72)90002-3
  27. Xianghua, F., Guo, L., Yanyan, G. and Zhiqiang, W., "Multi-Aspect Sentiment Analysis for Chinese Online Social Reviews Based on Topic Modeling and Hownet Lexicon", Knowledge-Based Systems, Vol. 37, 2013, pp. 186-195. https://doi.org/10.1016/j.knosys.2012.08.003
  28. Young, T., Hazarika, D., Poria, S. and Cambria, E., "Recent Trends in Deep Learning Based Natural Language Processing", IEEE Computational Intelligence Magazine, Vol. 13, No. 3, 2018, pp. 55-75. https://doi.org/10.1109/MCI.2018.2840738