DOI QR코드

DOI QR Code

Characteristics of Carbon Dioxide Adsorption with the Physical Property of Activated Carbon

활성탄의 물리적 특성에 따른 이산화탄소 흡착 특성

  • Tanveer, Ahmad (Department of Environmental Engineering, Chungbuk National University) ;
  • Park, Jeongmin (Department of Environmental Engineering, Chungbuk National University) ;
  • Choi, Sinang (Department of Environmental Engineering, Chungbuk National University) ;
  • Lee, Sang-Sup (Department of Environmental Engineering, Chungbuk National University)
  • ;
  • 박정민 (충북대학교 환경공학과) ;
  • 최신앙 (충북대학교 환경공학과) ;
  • 이상섭 (충북대학교 환경공학과)
  • Received : 2018.07.09
  • Accepted : 2018.09.02
  • Published : 2018.12.31

Abstract

Effect of physical property of activated carbon on its carbon dioxide adsorption was investigated for the effective control of carbon dioxide. Pinewood sawdust and coal were used as raw materials of activated carbon. Specific surface area, micropore volume and mesopore volume of the prepared activated carbons were determined, respectively. The prepared activated carbons were analyzed for their adsorption capacity of carbon dioxide. The adsorption capacity was then presented with respect to the surface area, micropore volume and mesopore volume, respectively. As a result, the specific surface area and micropore volume of both pinewood and coal activated carbon were highly related to its carbon dioxide capacity. Its mesopore volume hardly affected its carbon dioxide capacity. Preparation of activated carbon with high specific surface area and micropore volume was found to be critical to the effective control of carbon dioxide.

효율적으로 이산화탄소를 처리할 수 있는 활성탄을 제조하기 위하여 활성탄의 물리적 특성이 이산화탄소 흡착에 미치는 영향을 조사하였다. 소나무 톱밥과 석탄이 활성탄의 원료로 사용되었고, 제조된 활성탄의 비표면적, 미세기공 부피, 중기공 부피를 분석하였다. 제조된 활성탄은 열중량 분석기를 이용하여 이산화탄소 흡착량을 결정하였다. 그리고 이산화탄소 흡착량 결과를 활성탄의 비표면적, 미세기공 부피, 중기공 부피에 따라 분석하였다. 실험 결과, 소나무 톱밥 활성탄과 석탄 활성탄의 비표면적과 미세기공 부피는 이산화탄소 흡착량과 높은 연관성을 보인 반면에 중기공 부피는 이산화탄소 흡착에 거의 영향을 미치지 않았다. 따라서 활성탄의 비표면적과 미세기공 부피를 극대화하는 것이 효율적인 이산화탄소 처리를 위해 매우 중요한 요소로 나타났다.

Keywords

CJGSB2_2018_v24n4_287_f0001.png 이미지

Figure 1. CO2 adsorption test results for pinewood activated carbons.

CJGSB2_2018_v24n4_287_f0002.png 이미지

Figure 2. CO2 adsorption test results for coal activated carbons.

CJGSB2_2018_v24n4_287_f0003.png 이미지

Figure 3. CO2 adsorption capacity with the BET surface area of pinewood activated carbon.

CJGSB2_2018_v24n4_287_f0004.png 이미지

Figure 4. CO2 adsorption capacity with the micropore volume of pinewood activated carbon.

CJGSB2_2018_v24n4_287_f0005.png 이미지

Figure 5. CO2 adsorption capacity with the mesopore volume of pinewood activated carbon.

CJGSB2_2018_v24n4_287_f0006.png 이미지

Figure 6. CO2 adsorption capacity with the BET surface area of coal activated carbon.

CJGSB2_2018_v24n4_287_f0007.png 이미지

Figure 7. CO2 adsorption capacity with the micropore volume of coal activated carbon.

CJGSB2_2018_v24n4_287_f0008.png 이미지

Figure 8. CO2 adsorption capacity with the mesopore volume of coal activated carbon.

CJGSB2_2018_v24n4_287_f0009.png 이미지

Figure 9. CO2 adsorption capacity with the BET surface area of pinewood and coal activated carbon.

CJGSB2_2018_v24n4_287_f0010.png 이미지

Figure 10. CO2 adsorption capacity with the micropore volume of pinewood and coal activated carbon.

CJGSB2_2018_v24n4_287_f0011.png 이미지

Figure 11. CO2 adsorption capacity with the mesopore volume of pinewood and coal activated carbon.

Table 1. Physical properties of the prepared activated carbons [19]

CJGSB2_2018_v24n4_287_t0001.png 이미지

References

  1. EIA., "Emission of Greenhouse Gases in the United States," DOE/EIA-0573, U. S. Energy Information Administration (2009).
  2. Choi, S., Jeffrey, H., Drese, H. J., and Jones, C. W., "Adsorbent Materials for Carbon Dioxide Capture from Large Anthropogenic Point Sources," ChemSusChem, 2(9), 796-854 (2009). https://doi.org/10.1002/cssc.200900036
  3. Rochelle, G. T., "Amine Scrubbing for $CO_2$ Capture," Science, 325(5948), 1652-1654 (2009). https://doi.org/10.1126/science.1176731
  4. Veltman, K., Singh, B., and Hertwich., E. G., "Human and Environmental Impact Assessment of Postcombustion $CO_2$ Capture Focusing on Emissions from Amine-Based Scrubbing Solvents to Air," Environ. Sci. Technol., 44(4), 1496-1502 (2010). https://doi.org/10.1021/es902116r
  5. Yu, C. H., Huang, C. H., and Tan., C. S., "A Review of $CO_2$ Capture by Absorption and Adsorption," Aerosol Air Qual. Res., 12(5), 745-769 (2012). https://doi.org/10.4209/aaqr.2012.05.0132
  6. Creamer, A. E., Gao, B., and Zhang, M., "Carbon Dioxide Capture Using Biochar Produced from Sugarcane Bagasse and Hickory Wood," Chem. Eng. J., 249, 174-179 (2014). https://doi.org/10.1016/j.cej.2014.03.105
  7. Huang, Y. F., Chiueh, P. T., Shih, C. H., Lo, S. L., Sun, L., Zhong, Y., and Qiu, C., "Microwave Pyrolysis of Rice Straw to Produce Biochar as an Adsorbent for $CO_2$ Capture," Energy, 84, 75-82 (2015). https://doi.org/10.1016/j.energy.2015.02.026
  8. Creamer, A. E., Gao, B., and Wang, S., "Carbon Dioxide Capture Using Various Metal Oxyhydroxide-Biochar Composites," Chem. Eng. J., 283, 826-832 (2016).
  9. Zhang, Y., Maroto-Valer, M. M., and Tang, Z., "Microporous Activated Carbons Produced from Unburned Carbon in Fly Ash and their Application For $CO_2$ Capture," Fuel Chem. Div. Prepr., 49(1), 304-305 (2004).
  10. Plaza, M. G., Pevida, C., Arias, B., Fermoso, J., Casal, M. D., Martin, C.-F., Rubiera, F., and Pis, J. J., "Development of Low-Cost Biomass-Based Adsorbents for Postcombustion $CO_2$ Capture," Fuel, 88(12), 2442-2447 (2009). https://doi.org/10.1016/j.fuel.2009.02.025
  11. Radosz, M., Hu, X., Krutkramelis, K., and Shen, Y., "Flue- Gas Carbon Capture on Carbonaceous Sorbents: Toward a Low-Cost Multifunctional Carbon Filter for "Green" Energy Producers," Ind. Eng. Chem. Res., 47(10), 3783-3794 (2008). https://doi.org/10.1021/ie0707974
  12. Xiong, Z., Shihong, Z., Haiping, Y., Tao, S,. Chen Yingquan., and Hanping, C., "Influence of $NH_3$/$CO_2$ Modification on the Characteristic of Biochar and the $CO_2$ Capture," Bioenergy Res., 6(4), 1147-1153 (2013). https://doi.org/10.1007/s12155-013-9304-9
  13. Fan, X., Zhang, L., Zhang, G., Shu, Z., and Shi, J., "Chitosan Derived Nitrogen-Doped Microporous Carbons for High Performance $CO_2$ Capture," Carbon, 61, 423-430 (2013).
  14. Liu, L., Deng, Q. F., Ma, T. Y., Lin, X. Z., Hou, X. X., Liu, Y. P., and Yuan, Z. Y.,"Ordered Mesoporous Carbons: Citric Acid-Catalyzed Synthesis, Nitrogen Doping and $CO_2$ Capture," J. Mater. Chem., 21(40), 16001-16009 (2011). https://doi.org/10.1039/c1jm12887f
  15. Zhao, Y., Zhao, L., Yao, K. X., Yang, Y., Zhang, Q., and Han, Y., "Novel Porous Carbon Materials with Ultrahigh Nitrogen Contents for Selective $CO_2$ Capture," J. Mater. Chem., 22(37), 19726-19731 (2012). https://doi.org/10.1039/c2jm33091a
  16. Sevilla, M., and Fuertes, A. B., "Sustainable Porous Carbons with a Superior Performance for $CO_2$ Capture," Energy Environ. Sci., 4(5), 1765-1771 (2011). https://doi.org/10.1039/c0ee00784f
  17. Hao, W., Bjorkman, E., Lilliestrale, M., and Hedin, N., "Activated Carbons Prepared from Hydrothermally Carbonized Waste Biomass used as Adsorbents for $CO_2$," Appl. Energy, 112, 526-532 (2013). https://doi.org/10.1016/j.apenergy.2013.02.028
  18. Presser, V., McDonough, J., Yeon, S. H., and Gogotsi, Y., "Effect of Pore Size on Carbon Dioxide Sorption by Carbide Derived Carbon," Energy Environ. Sci., 4(8), 3059-3066 (2011). https://doi.org/10.1039/c1ee01176f
  19. Min, H., Ahmad, T., and Lee, S. S., "Mercury Adsorption Characteristics as Dependent upon the Physical Properties of Activated Carbon," Energy Fuels, 31(1), 724-729 (2017). https://doi.org/10.1021/acs.energyfuels.6b02246
  20. Min, H., Ahmad, T., Park, M., and Lee, S. S., "Physical Property with the Manufacturing Conditions of Activated Carbon for Mercury Adsorption," J. Korean Soc. Atmos. Environ., 31(3), 302-314 (2015). https://doi.org/10.5572/KOSAE.2015.31.3.302

Cited by

  1. 지속가능 에너지 패러다임 변화속에서 석탄의 활용 vol.53, pp.6, 2020, https://doi.org/10.9719/eeg.2020.53.6.793