DOI QR코드

DOI QR Code

TiO2와 Al2O3의 기상 VOCs 흡착 특성 평가 및 다양한 구조체로의 성형을 통한 열적 내구성 확보에 관한 연구

A Study on the Evaluation of Adsorption Characteristics of VOCs on TiO2 and Al2O3 and Investigation of the Thermal Durability by Molding Various Structures

  • 황인혁 (경기대학교 일반대학원 환경에너지공학과) ;
  • 이상문 (경기대학교 환경에너지공학과) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Hwang, In-Hyuck (Department of Environmental Energy Engineering, Graduate school of Kyonggi University) ;
  • Lee, Sang Moon (Department of Environmental Energy Systems Engineering, Kyonggi University) ;
  • Kim, Sung Su (Department of Environmental Energy Systems Engineering, Kyonggi University)
  • 투고 : 2018.07.07
  • 심사 : 2018.07.26
  • 발행 : 2018.12.31

초록

본 연구에서는 금속산화물 2종, $TiO_2$ 분말과 $Al_2O_3$ 분말을 이용하여 건식 조건에서의 기상 VOCs 흡착 성능을 평가하였으며, BET분석과 암모니아 in-situ FT-IR 분석을 통해 비표면적, 표면 산점을 분석하고 성능과의 상관성을 평가하였다. 그 결과 $TiO_2$ 분말, $Al_2O_3$ 분말은 각각 $317.6m^2\;g^{-1}$, $64m^2\;g^{-1}$의 비표면적을 갖으며, $TiO_2$ 분말의 경우 표면에 다수의 산점이 관찰되었다. 두 금속 산화물 분말을 이용하여 기상 VOCs 흡착 성능을 평가한 결과, 비표면적이 크고 다수의 산점을 보유한 $TiO_2$ 분말이 비교적 우수한 흡착 성능을 나타내었다. 특히 비표면적이 흡착성능에 직접적인 영향을 미치는 것으로 판단되며, 산점에 의한 영향에 대해서는 추가적인 연구가 요구된다. 우수한 흡착 성능을 나타낸 $TiO_2$를 기반으로 honeycomb, hollow fiber, disc의 성형체로 제조 한 결과, 분말보다 흡착 성능은 낮았으나 적용성 측면에서 유리하며 제조공정의 특성상 우수한 열적 내구성을 갖는 polymeric disc 흡착제의 경우, 수회의 고온 탈착공정 후에도 흡착 성능을 안정적으로 유지함을 확인하였다.

In this study, the adsorption performance of vapor phase VOCs under dry conditions was evaluated by using two metal oxides, $TiO_2$ powder and $Al_2O_3$ powder. BET analysis and ammonia in-situ FT-IR analysis were used to analyze specific surface area and surface acid site. As a result, $TiO_2$ powder and $Al_2O_3$ powder had a specific surface area of $317.6m^2\;g^{-1}$ and $64m^2\;g^{-1}$, respectively. In the case of $TiO_2$ powder, many acid sites were observed on the surface. As a result of evaluating the vapor phase VOCs adsorption performance using two metal oxide powders, $TiO_2$ powder having a relatively large specific surface area and a large number of acid sites exhibited relatively good adsorption performance. In particular, it is considered that the specific surface area directly affects the adsorption performance, and further study on the effect of the acid site is required. Based on the $TiO_2$ exhibited excellent adsorption performance, it manufactured into various forms of honeycomb, hollow fiber and disc. As a result, the adsorption performance was lower than that of the powder, but it is advantageous in view of applicability. In addition, it was confirmed that the disc adsorbent having excellent thermal durability due to the characteristics of the manufacturing process stably maintains adsorption performance even at a high temperature desorption process several times.

키워드

CJGSB2_2018_v24n4_280_f0001.png 이미지

Figure 1. Schematic of adsorption test reactor.

CJGSB2_2018_v24n4_280_f0002.png 이미지

Figure 2. Comparison of adsorption performance of VOCs between TiO2 powder and Al2O3 powder.

CJGSB2_2018_v24n4_280_f0003.png 이미지

Figure 3. Ammonia in situ FT-IR analysis results of TiO2 powder and Al2O3 powder.

CJGSB2_2018_v24n4_280_f0004.png 이미지

Figure 4. Comparison of VOCs adsorption performance of various form of TiO2-based adsorbents.

CJGSB2_2018_v24n4_280_f0005.png 이미지

Figure 5. SEM analysis results of various type of TiO2-based adsorbents

CJGSB2_2018_v24n4_280_f0006.png 이미지

Figure 6. SEM analysis results of activated carbon before and after heat treatment.

CJGSB2_2018_v24n4_280_f0007.png 이미지

Figure 7. Performance comparison of activated carbon before and after heat treatment.

CJGSB2_2018_v24n4_280_f0008.png 이미지

Figure 8. Performance comparison of TiO2 disc before and after heat treatment.

Table 1. BET analysis results of TiO2 powder and Al2O3 powder

CJGSB2_2018_v24n4_280_t0001.png 이미지

Table 2. Adsorption amount of VOCs adsorbed per unit weight of various type of TiO2-based adsorbents

CJGSB2_2018_v24n4_280_t0002.png 이미지

Table 3. Comparison of weight of activated carbon before and after heat treatment

CJGSB2_2018_v24n4_280_t0003.png 이미지

참고문헌

  1. Qiu, K., Yang, L., Lin, J., Wang, P., Yang, Y., Ye, D., and Wang, L., "Historical Industrial Emissions of Non-Methane Volatile Organic Compounds in China for the Period of 1980-2010," Atmos. Environ., 86, 102-112 (2014). https://doi.org/10.1016/j.atmosenv.2013.12.026
  2. Wang, H., Nie, L., Li, J., Wang, Y., Wang, G., Wang, J., and Hao, Z., "Characterization and Assessment of Volatile Organic Compounds (vocs) Emissions from Typical Industries," Chin. Bull., 58, 724-730 (2013). https://doi.org/10.1007/s11434-012-5345-2
  3. Main, D. M., and Hogan, T. J., "Health Effects of Low-Level Exposure to Formaldehyde," J. Occup. Environ. Med., 25, 896-900 (1983). https://doi.org/10.1097/00043764-198312000-00013
  4. Kamal, M. S., Razzak, S. A., and Hossain, M. M., "Catalytic Oxidation of Volatile Organic Compounds (vocs) - A Review," Atmos. Environ., 140, 117-134 (2016). https://doi.org/10.1016/j.atmosenv.2016.05.031
  5. Yu, C., and Crump, D., "A Review of the Emission of vocs from Polymeric Materials Used in Buildings," Build. Environ., 33, 357-374 (1998).
  6. Kim, S. C., and Shim, W. G., "Catalytic Combustion of VOCs over a Series of Manganese Oxide Catalysts," Appl. Catal. B: Environ., 98, 180-185 (2010). https://doi.org/10.1016/j.apcatb.2010.05.027
  7. Suib, S. L., "New and Future Developments in Catalysis: Catalysis for Remediation and Environmental Concerns," Elsevier Amsterdam, The Netherlands, (2013).
  8. Wang, S., Zhang, L., Long, C., and Li, A., "Enhanced Adsorption and Desorption of VOCs Vapor on Novel Micro- Mesoporous Polymeric Adsorbents," J. Colloid Interf. Sci., 428, 185-190 (2014).
  9. Serna-Guerrero, R., and Sayari, A., "Applications of Pore- Expanded Mesoporous Silica. 7. Adsorption of Volatile Organic Compounds," Environ. Sci. Technol., 41, 4761-4766 (2007). https://doi.org/10.1021/es0627996
  10. Alslaibi, T. M., Abustan, I., Ahmad, M. A., and Foul, A. A., "A Review: Production of Activated Carbon from Agricultural Byproducts via Conventional and Microwave Heating," J. Chem. Technol. Biot., 88, 1183-1190 (2013). https://doi.org/10.1002/jctb.4028
  11. Shafeeyan, M. S., Daud, W. M. A. W., Houshmand, A., and Shamiri, A., "A Review on Surface Modification of Activated Carbon for Carbon Dioxide Adsorption," J. Anal. Appl. Pyrol., 89, 143-151 (2010). https://doi.org/10.1016/j.jaap.2010.07.006
  12. Yin, C. Y., Aroua, M. K., and Daud, W. M. A. W., "Review of Modifications of Activated Carbon for Enhancing Contaminant Uptakes from Aqueous Solutions," Sep. Purif. Technol., 52, 403-415 (2007). https://doi.org/10.1016/j.seppur.2006.06.009
  13. Suhas, P. J. M., Carrott, M. M. L., and Carrott, R., "Lignin - from Natural Adsorbent to Activated Carbon: a Review," Bioresour. Technol., 98, 2301-2312 (2007). https://doi.org/10.1016/j.biortech.2006.08.008
  14. Kim, S. C., "The Catalytic Oxidation of Aromatic Hydrocarbons over Supported Metal Oxide," J. Hazard. Mater., 91, 285-299 (2002). https://doi.org/10.1016/S0304-3894(01)00396-X
  15. Baur, G. B., Yuranov, I., and Kiwi-Minsker, L., "Activated Carbon Fibers Modified by Metal Oxide as Effective Structured Adsorbents for Acetaldehyde," Catal. Today, 249, 252-258 (2015). https://doi.org/10.1016/j.cattod.2014.11.021
  16. Figueiredo, J. L., Pereira, M. F. R., Freitas, M. M. A., and Orfao, J. J. M., "Modification of the Surface Chemistry of Activated Carbons," Carbon, 37, 1379-1389 (1999). https://doi.org/10.1016/S0008-6223(98)00333-9
  17. Shen, W., Li, Z., and Liu, Y., "Surface Chemical Functional Groups Modification of Porous Carbon," Recent Pat. Chem. Eng., 1, 27-40 (2008). https://doi.org/10.2174/2211334710801010027
  18. Yazdani, M. R., Tuutijarvi, T., Bhatnagar, A., and Vahala, R., "Adsorption Removal of Arsenic (V) from Aqueous Phase by Feldspars: Kinetics, Mechanism, and Thermodynamic Aspects of Adsorption," J. Mol. Liq., 214, 149-156 (2016).
  19. Li, Y., Cai, X., Guo, J., and Na, P., "UV-Induced Photoactive Adsorption Mechanism of Arsenite by Anatase $TiO_2$ with High Surface Hydroxyl Group Density," Colloid Surf. A: Physicochem. Eng. Aspect, 462, 202-210 (2014). https://doi.org/10.1016/j.colsurfa.2014.09.011
  20. Lee, S. M., Kim, S. S., and Hong, S. C., "Systematic Mechanism Study of the High Temperature SCR of NOx by $NH_3$ over a W/$TiO_2$ Catalyst," Chem. Eng. Sci., 70, 177-185 (2012).