DOI QR코드

DOI QR Code

Coefficient Estimates for a Subclass of Bi-univalent Functions Defined by Sălăgean Type q-Calculus Operator

  • Received : 2018.03.07
  • Accepted : 2018.10.02
  • Published : 2018.12.23

Abstract

In this paper, we introduce and investigate a new subclass of bi-univalent functions defined by $S{\breve{a}}l{\breve{a}}gean$ q-calculus operator in the open disk ${\mathbb{U}}$. For functions belonging to the subclass, we obtain estimates on the first two Taylor-Maclaurin coefficients ${\mid}a_2{\mid}$ and ${\mid}a_3{\mid}$. Some consequences of the main results are also observed.

Keywords

References

  1. S. Altinkaya and S. Yalcin, Faber polynomial coefficient bounds for a subclass of biunivalent functions, Stud. Univ. Babes-Bolyai Math., 61(1)(2016), 37-44.
  2. L. D. Branges, A proof of the Bieberbach conjecture, Acta. Math., 154(1985), 137-152. https://doi.org/10.1007/BF02392821
  3. D. A. Brannan and J. G. Clunie, Aspect of contemporary complex analysis, Proceedings of the NATO Advanced Study Institute (University of Durham, Durham; July 1-20, 1979), pp. 79-95, Academic Press, New York and London, 1980.
  4. D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Mathematical Analysis and its Applications(Kuwait, 1985), 53-60, KFAS Proc. Ser. 3, Pergamon Press, Elsevier science Limited, Oxford, 1988.
  5. S. Bulut, Coefficient estimates for a class of analytic and bi-univalent functions, Novi Sad J. Math., 43(2)(2013), 59-65.
  6. M. Caglar, E. Deniz and H. M. Srivastava, Second Hankel determinant for certain subclasses of bi-univalent functions, Turkish J. Math., 41(2017), 694-706. https://doi.org/10.3906/mat-1602-25
  7. P. L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, 1983.
  8. B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(2011), 1569-1573. https://doi.org/10.1016/j.aml.2011.03.048
  9. G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, 1990.
  10. M. E. H. Ismail, E. Merkes and D. Styer, A generalization of starlike functions, Complex Variables Theory Appl., 14(1990), 77-84. https://doi.org/10.1080/17476939008814407
  11. P. N. Kamble and M. G. Shrigan, Initial coefficient estimates for bi-univalent functions, Far East J. Math., 105(2)(2018), 271-282.
  12. A. Y. Lashin, On certain subclasses of analytic and bi-univalent functions, J. Egyptian Math. Soc., 24(2016), 220-225. https://doi.org/10.1016/j.joems.2015.04.004
  13. M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc., 18(1967), 63-68. https://doi.org/10.1090/S0002-9939-1967-0206255-1
  14. E. Netanyahu, The minimal distance of the image boundary from the origin and second coefficient of a univalent function in $\left|z\right|$ < 1, Arch. Rational Mech. Anal., 32(1969), 100-112. https://doi.org/10.1007/BF00247676
  15. S. Porwal and M. Darus, On a new subclass of bi-univalent functions, J. Egyptian Math. Soc., 21(2013), 190-193. https://doi.org/10.1016/j.joems.2013.02.007
  16. S. D. Purohit and R. K. Raina, Certain subclasses of analytic functions associated with fractional q-calculus operators, Math. Scand., 109(1)(2011), 55-70. https://doi.org/10.7146/math.scand.a-15177
  17. G. S. Salagean, Subclasses of univalent functions, Complex Analysis - Fifth Romanian Finish Seminar, Bucharest, 1(1983), 362-372.
  18. H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, in Univalent Functions; Fractional Calculus; and Their Applications (H. M. Srivastava and S. Owa, Editors), Halsted Press (Ellis Horwood Limited, Chichester), 329-354, John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989.
  19. H. M. Srivastava, S. Altinkaya and S. Yalcin, Hankel determinant for a subclass of bi-univalent functions defined by using a symmetric q-derivative operator, Filomat, 32(2018), 503-516. https://doi.org/10.2298/FIL1802503S
  20. H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc., 23(2015), 242-246. https://doi.org/10.1016/j.joems.2014.04.002
  21. H. M. Srivastava, S. Bulut, M. C aglar and N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27(5)(2013), 831-842. https://doi.org/10.2298/FIL1305831S
  22. H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29(2015), 1839-1845. https://doi.org/10.2298/FIL1508839S
  23. H. M. Srivastava, S. S. Eker, S. G. Hamadi and J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator, Bull. Iranian Math. Soc., 44(1)(2018), 149-157. https://doi.org/10.1007/s41980-018-0011-3
  24. H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Univ. Apulensis Math. Inform., 41(2015), 153-164.
  25. H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B (Engl. Ed.), 36(2016), 863-871.
  26. H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Afr. Mat., 28(2017), 693-706. https://doi.org/10.1007/s13370-016-0478-0
  27. H. M. Srivastava, S. B. Joshi, S. S. Joshi and H. Pawar, Coefficient estimates for certain subclasses of meromorphically bi-univalent functions, Palest. J. Math., 5(2016), 250-258.
  28. H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(2010), 1188-1192. https://doi.org/10.1016/j.aml.2010.05.009
  29. H. M. Srivastava, F. Muge Sakar and H. Ozlem Guney, Some general coefficient estimates for a new class of analytic and bi-univalent functions defined by a linear combination, Filomat, 32(4)(2018), 1313-1322. https://doi.org/10.2298/FIL1804313S
  30. D. Styer and J. Wright, Results on bi-univalent functions, Proc. Amer. Math. Soc., 82(1981), 243-248. https://doi.org/10.1090/S0002-9939-1981-0609659-5
  31. H. Tang, H. M. Srivastava, S. Sivasubramanian and P. Gurusamy, The Fekete-Szego functional problems for some classes of m-fold symmetric bi-univalent functions, J. Math. Inequal., 10(2016), 1063-1092.
  32. Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett., 25(2012), 990-994. https://doi.org/10.1016/j.aml.2011.11.013
  33. Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218(2012), 11461-11465.