DOI QR코드

DOI QR Code

Buckling analysis of nanocomposite plates coated by magnetostrictive layer

  • Tabbakh, Moein (Department of Mechanical Engineering, Kashan Branch, Islamic Azad University) ;
  • Nasihatgozar, Mohsen (Department of Mechanical Engineering, Kashan Branch, Islamic Azad University)
  • Received : 2018.10.13
  • Accepted : 2018.11.24
  • Published : 2018.12.25

Abstract

In this project, buckling response of polymeric plates reinforced with carbon nanotubes (CNTs) and coated by magnetostrictive layer was studied. The equivalent nanocomposite properties are determined using Mori-Tanak model considering agglomeration effects. The structure is simulated with first order shear deformation theory (FSDT). Employing strains-displacements, stress-strain, the energy equations of the structure are obtained. Using Hamilton's principal, the governing equations are derived considering the coupling of mechanical displacements and magnetic field. Using Navier method, the buckling load of the sandwich structure is obtained. The influences of volume percent and agglomeration of CNTs, geometrical parameters and magnetic field on the buckling load are investigated. Results show that with increasing volume percent of CNTs, the buckling load increases. In addition, applying magnetic field, increases the frequency of the sandwich structure.

Keywords

References

  1. Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5), 963-981. https://doi.org/10.12989/SCS.2016.20.5.963
  2. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., 18(1), 187-212. https://doi.org/10.12989/SCS.2015.18.1.187
  3. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  4. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/SSS.2016.18.4.755
  5. Belkorissat, I., Houari, M.S.A., Tounsi, A. and Hassan, S. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/SCS.2015.18.4.1063
  6. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  7. Bellifa, H., Benrahou, K.H., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2017), "A nonlocal zeroth-order shear deformation theory for nonlinear postbuckling of nanobeams", Struct. Eng. Mech., 62(6), 695-702. https://doi.org/10.12989/SEM.2017.62.6.695
  8. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mat. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  9. Bessaim, A., Houari, M.S.A. and Tounsi, A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888
  10. Besseghier, A., Houari, M.S.A., Tounsi, A. and Hassan, S. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., 19(6), 601-614. https://doi.org/10.12989/SSS.2017.19.6.601
  11. Bouafia, K.H., Kaci, A., Houari M.S.A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/SSS.2017.19.2.115
  12. Bousahla, A.A., Benyoucef, S., Tounsi, A. and Mahmoud, S.R. (2016a), "On thermal stability of plates with functionally graded coefficient of thermal expansion", Struct. Eng. Mech., 60(2), 313-335. https://doi.org/10.12989/SEM.2016.60.2.313
  13. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  14. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016b), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/SEM.2016.58.3.397
  15. Boukhari, A., Atmane, H.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2016), "An efficient shear deformation theory for wave propagation of functionally graded material plates", Struct. Eng. Mech., 57(5), 837-859. https://doi.org/10.12989/SEM.2016.57.5.837
  16. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/SCS.2016.20.2.227
  17. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/SCS.2015.18.2.409
  18. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
  19. Draiche, K., Tounsi, A. and Mahmoud, S.R. (2016), "A refined theory with stretching effect for the flexure analysis of laminated composite plates", Geomech. Eng., 11, 671-690. https://doi.org/10.12989/gae.2016.11.5.671
  20. Dutta, G., Panda. S.K., Mahapatra, T.R. and Singh, V.K. (2017), "Electro-magneto-elastic response of laminated composite plate: A finite element approach", Int. J. Appl. Comput. Math., 3, 2573-2592. https://doi.org/10.1007/s40819-016-0256-6
  21. El-Haina, F., Bakora, A., Bousahla, A.A. and Hassan, S. (2017), "A simple analytical approach for thermal buckling of thick functionally graded sandwich plates", Struct. Eng. Mech., 63(5), 585-595. https://doi.org/10.12989/SEM.2017.63.5.585
  22. Fan, Y. and Wang, H. (2016), "Nonlinear bending and postbuckling analysis of matrix cracked hybrid laminated plates containing carbon nanotube reinforced composite layers in thermal environments", Compos. Part B: Eng., 86, 1-16.
  23. Ferreira, A.J.M., Roque, C.M.C., Carrera, E., Cinefra, M. and Polit, O. (2011), "Two higher order Zig-Zag theories for the accurate analysis of bending, vibration and buckling response of laminated plates by radial basis functions collocation and a unified formulation", J. Compos. Mat., 45, 2523-2536. https://doi.org/10.1177/0021998311401103
  24. Guo, L., Zhang, H., Lu, R. and Yu, G. (2015), "Magnetoelectric analysis of a bilayer piezoelectric/magnetostrictive composite system with interfacial effect", Compos. Struct., 134, 285-293. https://doi.org/10.1016/j.compstruct.2015.08.064
  25. Hajmohammad, M.H., Zarei, M.S., Nouri, A. and Kolahchi, R. (2017), "Dynamic buckling of sensor/functionally gradedcarbon nanotubes reinforced laminated plates/actuator based on sinusoidal-viscopiezoelasticity theories", J. Sandw. Struct. Mater., In press.
  26. Khetir, H., Bouiadjra, M.B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates", Struct. Eng. Mech., 64(4), 391-402. https://doi.org/10.12989/SEM.2017.64.4.391
  27. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017a), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined Zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039
  28. Kolahchi, R., Keshtegar, B. and Fakhar, M.H. (2017b), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal visco-piezoelasticity theories using Grey Wolf algorithm", J. Sandw. Struct. Mater., In press.
  29. Larbi Chaht, F., Kaci, A., Houari M.S.A. and Hassan, S. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/SCS.2015.18.2.425
  30. Lei, Z.X., Liew, K.M. and Yu, J.L. (2013), "Buckling analysis of functionally graded carbon nanotube-reinforced composite plates using the element-freekp-Ritz method", Compos. Struct., 98, 160-168 https://doi.org/10.1016/j.compstruct.2012.11.006
  31. Li, N., Han, Z.J. and Lu, G.Y. (2015), "Research on the dynamic buckling of composite laminated plates with one edge fixed and three edges simply-supported", Appl. Mech. Mat., 751, 189-194. https://doi.org/10.4028/www.scientific.net/AMM.751.189
  32. Li, X., Yu, K., Han, J., Song, H. and Zhao, R. (2016), "Buckling and vibro-acoustic response of the clamped composite laminated plate in thermal environment", Int. J. Mech. Sci., 119, 370-382. https://doi.org/10.1016/j.ijmecsci.2016.10.021
  33. Lei, Z.X., Zhang, L.W. and Liew ,K.M. (2017), "Meshless modeling of geometrically nonlinear behavior of CNTreinforced functionally graded composite laminated plates", Appl. Math. Comput., 295, 24-46.
  34. Mahapatra, T.R. and Panda, S.K. (2016a), "Nonlinear free vibration analysis of laminated composite spherical shell panel under elevated hygrothermal environment: A micromechanical approach", Aerosp. Sci. Technol., 49, 276-288. https://doi.org/10.1016/j.ast.2015.12.018
  35. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016b), "Nonlinear flexural analysis of laminated composite panel under hygrothermo-mechanical loading-A micromechanical approach", Int. J. Comput. Meth., 13, 1650015. https://doi.org/10.1142/S0219876216500158
  36. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016c), "Nonlinear hygro-thermo-elastic vibration analysis of doubly curved composite shell panel using finite element micromechanical model", Mech. Adv. Mater. Struct., 23, 1343-1359. https://doi.org/10.1080/15376494.2015.1085606
  37. Mahapatra, T.R., Panda, S.K. and Kar, V.R. (2016d), "Geometrically nonlinear flexural analysis of hygro-thermoelastic laminated composite doubly curved shell panel", Int. J. Mech. Mater. Des., 12, 153-171. https://doi.org/10.1007/s10999-015-9299-9
  38. Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  39. Malekzadeh, P. and Shojaee, M. (2013), "Buckling analysis of quadrilateral laminated plates with carbon nanotubes reinforced composite layers", Thin-Wall. Struct., 71, 108-118. https://doi.org/10.1016/j.tws.2013.05.008
  40. Malekzadeh, P. and Zarei, A.R. (2014), "Free vibration of quadrilateral laminated plates with carbon nanotube reinforced composite layers", Thin-Wall. Struct., 82, 221-232. https://doi.org/10.1016/j.tws.2014.04.016
  41. Marjanovic, M. and Vuksanovic, D. (2014), "Layerwise solution of free vibrations and buckling of laminated composite and sandwich plates with embedded delaminations", Compos. Struct., 108, 9-20. https://doi.org/10.1016/j.compstruct.2013.09.006
  42. Menasria, A., Bouhadra, A., Tounsi, A. and Hassan, S. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., 25(2), 157-175. https://doi.org/10.12989/SCS.2017.25.2.157
  43. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A.T. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  44. Moradi-Dastjerdi, R. and Malek-Mohammadi, H. (2016), "Biaxial buckling analysis of functionally graded nanocomposite sandwich plates reinforced by aggregated carbon nanotube using improved high-order theory", J. Sandw. Struct. Mater., 19, 736-769.
  45. Mouffoki, A., Adda Bedia, E.A., Houari M.S.A. and Hassan, S. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart Struct. Syst., 20(3), 369-383. https://doi.org/10.12989/SSS.2017.20.3.369
  46. Nasihatgozar, M. and Khalili, S.M.R. (2018), "Vibration and buckling analysis of laminated sandwich conical shells using higher order shear deformation theory and differential quadrature method", J. Sandw. Struct. Mater., In press.
  47. Pandit, M.K., Sheikh, A.H. and Singh, B.N. (2010), "Analysis of laminated sandwich plates based on an improved higher order Zigzag theory", J. Sandw. Struct. Mater., 12, 234-241.
  48. Pramod, A.L.N., Natarajan, S., Ferreira, A.J.M., Carrera, E. and Cinefra, M. (2017), "Static and free vibration analysis of crossply laminated plates using the Reissner-mixed variational theorem and the cell based smoothed finite element method", Euro. J. Mech.-A/Solids, 62, 14-21. https://doi.org/10.1016/j.euromechsol.2016.10.006
  49. Reddy, J.N. (2002), Mechanics of Laminated Composite Plates and Shells, Theory and Analysis, Second Edition, CRC Press.
  50. Samaei, A.T., Abbasion, S. and Mirsayar, M.M. (2011), "Buckling analysis of a single-layer graphene sheet embedded in an elastic medium based on nonlocal Mindlin plate theory", Mech. Res. Commun., 38, 481-493. https://doi.org/10.1016/j.mechrescom.2011.06.003
  51. Sayyad, A.S. and Ghugal, Y.M. (2017), "On the free vibration of angle-ply laminated composite and soft core sandwich plates", J. Sandw. Struct. Mater., 19, 679-711. https://doi.org/10.1177/1099636216639000
  52. Shariyat, M. (2009), "Dynamic buckling of imperfect laminated plates with piezoelectric sensors and actuators subjected to thermo-electro-mechanical loadings, considering the temperature-dependency of the material properties", Compos. Struct., 88, 228-239. https://doi.org/10.1016/j.compstruct.2008.03.044
  53. Shi, D.L. and Feng, X.Q. (2004), "The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube-reinforced composties", J. Eng. Mat. Tech. ASME, 126, 250-270. https://doi.org/10.1115/1.1751182
  54. Shokravi, M. and Jalili, N. (2017), "Dynamic buckling response of temperature-dependent functionally graded-carbon nanotubesreinforced Sandwich microplates considering structural damping", Smart Struct. Syst., 20(5), 583-593. https://doi.org/10.12989/SSS.2017.20.5.583
  55. Shokravi, M. (2018), "Dynamic buckling of smart Sandwich beam subjected to electric field based on hyperbolic piezoelasticity theory", Smart Struct. Syst., 22(3), 327-334. https://doi.org/10.12989/sss.2018.22.3.327
  56. Suman, S.D., Hirwani, C.K., Chaturvedi, A. and Panda, S.K. (2017), "Effect of magnetostrictive material layer on the stress and deformation behaviour of laminated structure", IOP Conference Series: Materials Science and Engineering, 178 (1), 012026.
  57. Yu, T., Yin, Sh., Bui, T.Q., Xia, S.H., Tanaka, S. and Hirose, S. (2016), "NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method", Thin-Wall. Struct., 101, 141-156. https://doi.org/10.1016/j.tws.2015.12.008
  58. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/SEM.2015.54.4.693
  59. Zhao, R., Yu, K., Hulbert, G.M., Wu, Y. and Li, X. (2017), "Piecewise shear deformation theory and finite element formulation for vibration analysis of laminated composite and sandwich plates in thermal environments", Compos. Struct., 160, 1060-1083. https://doi.org/10.1016/j.compstruct.2016.10.103
  60. Zhang, L.W., Liew, K.M. and Reddy, J.N. (2016), "Postbuckling analysis of bi-axially compressed laminated nanocomposite plates using the first-order shear deformation theory", Compos. Struct., 152, 418-431. https://doi.org/10.1016/j.compstruct.2016.05.040
  61. Zhang, L.W. and Selim, B.A. (2017), "Vibration analysis of CNT-reinforced thick laminated composite plates based on Reddy's higher-order shear deformation theory", Compos. Struct., 160, 689-705. https://doi.org/10.1016/j.compstruct.2016.10.102
  62. Zidi, M., Tounsi, A., and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Tech., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001