참고문헌
- Akbas, S, (2016), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 66-78.
- Aliabadi, M.H. and Brebbia, C.A. (1993), Advances in Boundary Element Methods for Fracture Mechanics. Amsterdam: Elsevier.
- Al-Shayea, N.A. (2005), "Crack propagation trajectories for rocks under mixed mode I-II fracture", Eng. Geol., 81, 84-97. https://doi.org/10.1016/j.enggeo.2005.07.013
- Amadei, B., Lin, C. and Jerry, D. (1996), Recent extensions to the DDA method. In: Proceedings of the First International Forum on Discontinuous Deformation Analysis (DDA) and Simulations of Discontinuous Media.Albuquerque: TSI Press. p. 1-3.
- Ashby, M.F. and Hallam, S.D. (1986), "The failure of brittle solids containing small cracks under compressive stress states", Acta Metal., 34(3), 497-510. https://doi.org/10.1016/0001-6160(86)90086-6
- Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
- Fan, Y., Zhu, Z., Kang, J. and Fu, Y. (2016), "The mutual effects between two unequal collinear cracks under compression", Math. Mech. Solids, 22,1205-1218.
- Gerges, N., Issa, C. and Fawaz, S. (2015), "Effect of construction joints on the splitting tensile strength of concrete", Case Studies Constr. Mater., 3, 83-91. https://doi.org/10.1016/j.cscm.2015.07.001
- Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar non-persistent open joints using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693, https://doi.org/10.1007/s00603-012-0233-2
- Haeri, H., Sarfarazi, V., Fatehi, M., Hedayat, A. and Zhu, Z. (2016c), "Experimental and numerical study of shear fracture in brittle materials with interference of initial double", Acta Mech. Soil. Sinic., 5, 555-566.
- Haeri, H., Khaloo, A. and Marji, M.F. (2015a), "Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials", Strength Mater., 47(5), 740-754. https://doi.org/10.1007/s11223-015-9711-6
- Haeri, H., Khaloo, A. and Marji, M.F. (2015b), "Fracture analyses of different pre-holed concrete specimens under compression", Acta Mech. Sinic., 31(6), 855-870. https://doi.org/10.1007/s10409-015-0436-3
- Haeri, H., Khaloo, A. and Marji, M.F. (2015c), "A coupled experimental and numerical simulation of rock slope joints behavior", Arab. J. Geosci., 8(9), 7297-7308. https://doi.org/10.1007/s12517-014-1741-z
- Haeri, H., Sarfarazi, V. and Hedayat, A. (2016a), "Suggesting a new testing device for determination of tensile strength of concrete", Struct. Eng. Mech., 60(6), 939-952. https://doi.org/10.12989/SEM.2016.60.6.939
- Haeri, H., Sarfarazi, V. and Lazemi, H. (2016b), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/CAC.2016.17.5.639
- Haeri, H. and Sarfarazi, V. (2016), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/CAC.2016.17.6.723
- He, L. and Ma, G.W. (2010), "Development of 3D numerical manifold method", Int. J. Comput. Meth., 7(1)107-129. https://doi.org/10.1142/S0219876210002088
- Jespersen, C., Maclaughlin, M. and Hudyma, N. (2010), "Strength deformation modulus and failure modes of cubic analog specimens representing macroporus rock", Int. J. Rock Mech. Min. Sci., 47, 1349-1356. https://doi.org/10.1016/j.ijrmms.2010.08.015
- Kequan, Y.U. and Zhoudao, L.U. (2015), "Influence of softening curves on the residual fracture toughness of post-fire normalstrength mortar", Comput. Mortar, 15(2), 102-111.
- Lajtai, E.Z. and Lajtai, V.N. (1975), "The collapse of cavities", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 12, 81-86.
- Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semicircular bending test", Constr. Build. Mater., 48, 270-277 https://doi.org/10.1016/j.conbuildmat.2013.06.046
- Lee, S. and Chang, Y. (2015), "Evaluation of RPV according to alternative fracture toughness requirements", Struct. Eng. Mech., 53(6), 1271-1286. https://doi.org/10.12989/SEM.2015.53.6.1271
- Li, S., Wang, H., Li, Y., Li, Q., Zhang, B. and Zhu, H. (2016), "A new mini-grating absolute displacement measuring system for static and dynamic geomechanical model tests", Measurement, 82, 421-431. https://doi.org/10.1016/j.measurement.2016.01.017
- Li, Y., Zhou, H., Zhu, W., Li, S. and Liu, J. (2015), "Numerical study on crack propagation in brittle jointed rock mass influenced by fracture water pressure", Materials, 8(6), 3364-3376. https://doi.org/10.3390/ma8063364
- Lin, P., Ma, T.H., Liang, Z.Z., Tang, C.A. and Wang, R.K. (2014), "Failure and overall stability analysis on high arch dam based on DFPA code", Eng. Fail. Anal., 45, 164-184. https://doi.org/10.1016/j.engfailanal.2014.06.020
- Lin, P., Wang, R.K., Wong, R.H.C. and Zhou, W.Y. (2005), "Crack coalescence mechanism of brittle solids containing holes under uniaxial compression", Proceedings of the EuRock 2005, London.
- Lin, P., Wong, R.H.C. and Tang, C.A. (2015), "Experimental study of coalescence mechanisms and failure under uniaxial compression of granite containing multiple holes", Int. J. Rock Mech. Min. Sci., 77, 313-327. https://doi.org/10.1016/j.ijrmms.2015.04.017
- Lin, P., Zhou, Y.N., Liu, H.Y. and Wang, C. (2013), "Reinforcement design and stability analysis for large-span tailrace bifurcated tunnels with irregular geometry", Tunn. Undergr. Sp. Tech., 38(9), 189-204. https://doi.org/10.1016/j.tust.2013.07.011
- Mellor, M. and Hawkes, I. (1971), "Mesurment of tensile strength by diametral compression on disc and annuli", Eng. Geol., 5, 173-225. https://doi.org/10.1016/0013-7952(71)90001-9
- Mobasher, B., Bakhshi, M. and Barsby, C. (2014), "Backcalculation of residual tensile strength of regular and high performance fibre reinforced concrete from flexural tests", Constr. Build. Mater., 70, 243-253. https://doi.org/10.1016/j.conbuildmat.2014.07.037
- Mohammad, A. (2016), "Statistical flexural toughness modeling of ultra-high performance mortar using response surface method", Comput. Mortar, 17(4), 33-39.
- Nemat-Nasser, S. and Horii, H. (1982), "Compression-induced nonlinear crack extension with application to splitting, exfoliation, and rockburst", J. Geophys. Res., 87(8), 6805-6821. https://doi.org/10.1029/JB087iB08p06805
- Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/j.engstruct.2013.11.005
- Oliveira, H.L. and Leonel, E.D. (2014), "An alternative BEM formulation, based on dipoles of stresses and tangent operator technique, applied to cohesive crack growth modeling", Eng. Anal. Bound. Elem., 41, 74-82. https://doi.org/10.1016/j.enganabound.2014.01.002
- Pan, B., Gao, Y. and Zhong, Y. (2014), "Theoretical analysis of overlay resisting crack propagation in old cement mortar pavement", Struct. Eng. Mech., 52(4) 167-181.
- Park, C.H. and Bobet, A. (2009), "Crack coalescence in specimens with open and closed flaws :a comparison", Int. J. Rock Mech. Min. Sci., 46, 819-829. https://doi.org/10.1016/j.ijrmms.2009.02.006
- Rajabi, M., Soltani, N. and Eshraghi, I. (2016), "Effects of temperature dependent material properties on mixed mode crack tip parameters of functionally graded materials", Struct. Eng. Mech., 58(2), 144-156.
- Ramadoss, P. and Nagamani, K. (2013), "Stress-strain behavior and toughness of high performance steel fiber reinforced mortar in compression", Comput. Mortar, 11(2), 55-65.
- Robert, L.K. (1979), "Crack- crack and crack- hole interactions in stressed granite", Int. J. Rock Mech. Min. Sci., 16, 37-47.
- Roy, Y.A. and Narasimhan, R.A. (1999), "Finite element investigation of the effect of crack tip constraint on hole growth under mode I and mixed mode loading", Int. J. Solids Struct., 36, 1427-1447. https://doi.org/10.1016/S0020-7683(98)00046-8
- Sammis, C.G. and Ashby, M.F. (1986), "The failure of brittle porous solids under compressive stress states", Acta Metal., 34, 511-526. https://doi.org/10.1016/0001-6160(86)90087-8
- Sammis, C.G. and Ashby, M.F. (1986), "The failure of brittle porous solids under compressive stress states", Acta. Metal., 34, 511-526. https://doi.org/10.1016/0001-6160(86)90087-8
- Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/CAC.2016.17.4.489
- Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3
- Sarfarazi, V., Haeri, H. and khaloo, A. (2016a), "The effect of non-persistent joints on sliding direction if rock slopes", Comput. Concerete, 7, 723-737.
- Shi, G.H. (1988), Discontinuous Deformation Analysis, a New Numerical Mode l for the Statics and Dynamics of Block System. Berkeley: Department of Civil Engineering, University of California; 1988 [Ph.D. dissertation].
- Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panels-experiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 33-49.
- Silva, R.V., Brito, J. and Dhir, R.K. (2015), "Tensil strength behaviour of recycled aggregate concrete", Constr. Build. Mater., 83, 108-118. https://doi.org/10.1016/j.conbuildmat.2015.03.034
- Sukumar, N.A. and Prevost, J.H. (2003), "Modeling quasi-static crack growth with the ex-tended finite element method, Part I: Computer implementation", Int. J. Solids Struct., 40, 7513-7537. https://doi.org/10.1016/j.ijsolstr.2003.08.002
- Tan, X.C., Kou, S.Q. and Lindqvist, P.A. (1998), "Application of the DDM and fracture mechanics model on the simulation of rock breakage by mechanical tools", Eng. Geol., 3-4, 277-284.
- Tang, C.A. and Hudson, J.A. (2010), Rock failure mechanisms: illustrated and explained. CRC Press, Boca Raton.
- Tiang, Y., Shi, S., Jia, K. and Hu, S. (2015), "Mechanical and dynamic properties of high strength concrete modified with lightweight aggregates presaturated polymer emulsion", Constr. Build. Mater., 93, 1151-1156. https://doi.org/10.1016/j.conbuildmat.2015.05.015
- Wan Ibrahim, M.H., Hamzah, A.F., Jamaluddin, N,, Ramadhansyah, P.J. and Fadzil, A.M. (2015), Split Tensile Strength on Self-compacting Concrete Containing Coal Bottom Ash, Procedia - Social and Behavioral Sciences, 198, 2280-2289.
- Wang, X., Zhu, Z., Wang, M., Ying, P., Zhou, L. and Dong, Y. (2017), "Study of rock dynamic fracture toughness by using VB-SCSC specimens under mediumlow speed impacts", Eng. Fract. Mech., 181, 52-64. https://doi.org/10.1016/j.engfracmech.2017.06.024
- Wong, R.H.C. and Chau, K.T. (1998), "Crack coalescence in rocklike material containing two cracks", Int. J. Rock Mech. Min. Sci., 35(2), 147-164 . https://doi.org/10.1016/S0148-9062(97)00303-3
- Yaylac, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 55-68.
- Yin, P. (2013), Multiple Surface Crack Coalescence Mechanisms in Granite.The Hong Kong Polytechnic University; [Ph.D. thesis].
- Zheng, H. (2009), "Discontinuous deformation analysis based on complementary theory", Sci. China Ser. E. Tech. Sci., 52(9), 2547-2554. https://doi.org/10.1007/s11431-009-0256-4
피인용 문헌
- Failure characteristics and mechanical mechanism of study on red sandstone with combined defects vol.24, pp.2, 2021, https://doi.org/10.12989/gae.2021.24.2.179
- Failure characteristics and mechanical mechanism of study on red sandstone with combined defects vol.24, pp.2, 2021, https://doi.org/10.12989/gae.2021.24.2.179
- Study on the propagation mechanism of blast waves using the ultra-dynamic strain test system vol.28, pp.1, 2018, https://doi.org/10.12989/sss.2021.28.1.143