참고문헌
- Abdul-Salam, B., Farghaly, A.S. and Benmokrane, B. (2016), "Mechanisms of shear resistance of one-way concrete slabs reinforced with FRP bars", Constr. Build. Mater., 127, 959-970. https://doi.org/10.1016/j.conbuildmat.2016.10.015
- ACI Committee 440 (2015), Guide for the Design and Construction of Structural Concrete Reinforced with FRP bars, ACI 440.1R-15, American Concrete Institute, Farmington Hills, Detroit, Michigan, USA.
- Alam, M.S., Youssef, M.A. and Nehdi, M.L. (2010), "Exploratory investigation on mechanical anchors for connecting SMA bars to steel or FRP bars", Mater. Struct., 43(1), 91-107. https://doi.org/10.1617/s11527-010-9601-0
- Ashour, A.F. (2006), "Flexural and shear capacities of concrete beams reinforced with GFRP bars", Constr. Build. Mater., 20(10), 1005-1015. https://doi.org/10.1016/j.conbuildmat.2005.06.023
- Barris, L., Torres, Ll., Turon, A., Baena, M. and Catalan, A. (2009), "An experimental study of the flexural behaviour of GFRP RC beams and comparison with prediction models", Compos. Struct., 91(3), 286-295. https://doi.org/10.1016/j.compstruct.2009.05.005
- Bencardino, F., Condello, A. and Ombres, L. (2016), "Numerical and analytical modeling of concrete beams with steel, FRP and hybrid FRP-steel reinforcements", Compos. Struct., 140, 53-65. https://doi.org/10.1016/j.compstruct.2015.12.045
- Bouguerra, K., Ahmed, E.A., El-Gamal, S. and Benmokrane, B. (2011), "Testing of full-scale concrete bridge deck slabs reinforced with fiber-reinforced polymer (FRP) bars", Constr. Build. Mater., 25, 3956-3965. https://doi.org/10.1016/j.conbuildmat.2011.04.028
- Bousias, S.N., Triantafillou, T.C., Fardis, M.N., Spathis, L. and O' Regan, B.A. (2004), "Fiber-reinforced polymer retrofitting of rectangular reinforced concrete columns with or without corrosion", ACI Struct. J., 101(4), 512-520.
- Bui, L.V.H., Stitmannaithum, B. and Ueda, T. (2017), "Mechanical performances of concrete beams with hybrid usage of steel and FRP tension reinforcement", Comput. Concrete, 20(4), 391-407. https://doi.org/10.12989/cac.2017.20.4.391
- Canadian Standards Association (2012), Design and Construction of Building Components with Fibre-Reinforced Polymers, CSA S806-12, Rexdale, Toronto, Canada.
- Chalioris, C.E., Kosmidou, P.-M.K., Panagiotopoulos, T.A. and Karayannis, C.G. (2016), "Flexural and cracking behaviour of concrete beans reinforced with FRP bars", Proceedings of the 6th International Conference on Concrete Repair-Concrete Solutions, Thessaloniki, Greece, June.
- CNR-DT 203 (2007), Guide for the Design and Construction of Concrete Structures Reinforced with Fiber-Reinforced Polymer Bars, CNR-DT 203/2006, National Research Council, Rome, Italy.
- El-Helou, R.G. and Aboutaha, R.S. (2015), "Analysis of rectangular hybrid steel-GFRP reinforced concrete beam columns", Comput. Concrete, 16(2), 245-260. https://doi.org/10.12989/cac.2015.16.2.245
- El-Sayed, A.K. and Soudki, K. (2011), "Evaluation of shear design equations of concrete beams with FRP reinforcement", J. Compos. Constr., 15(1), 9-20. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000158
- El-Sayed, A.K., El-Salakawy, E.F. and Benmokrane, B. (2006), "Shear strength of FRP-reinforced concrete beams without transverse reinforcement", ACI Struct. J., 103(2), 235-242.
- Elgabbas, F., Ahmed, E.A. and Benmokrane, B. (2017), "Flexural behavior of concrete beams reinforced with ribbed basalt-FRP bars under static loads", J. Compos. Constr., 21(3), 04016098. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000752
- European Committee for Standardization (2004), EN 1992-1-1 Eurocode 2: Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, CEN, Brussels, Belgium.
- Fang, H., Xu, X., Liu, W., Qi, Y., Bai, Y., Zhang, B. and Hui, D. (2016), "Flexural behavior of composite concrete slabs reinforced by FRP grid facesheets", Compos. Part B: Eng., 92, 46-62. https://doi.org/10.1016/j.compositesb.2016.02.029
- Fib bulletin 40 (2007), FRP Reinforcement in RC Structures, International Federation for Structural Concrete, Lausanne.
- Ghatefar, A., ElSalakawy, E. and Bassuoni, M.T. (2017), "A model for the restrained shrinkage behavior of concrete bridge deck slabs reinforced with FRP bars", Comput. Concrete, 20(2), 215-227. https://doi.org/10.12989/CAC.2017.20.2.215
- Goldston, M.W., Remennikov, A. and Sheikh, M.N. (2016), "Experimental investigation of the behaviour of concrete beams reinforced with GFRP bars under static and impact loading", Eng. Struct., 113, 220-232. https://doi.org/10.1016/j.engstruct.2016.01.044
- Goldston, M.W., Remennikov, A. and Sheikh, M.N. (2017), "Flexural behaviour of GFRP reinforced high strength and ultra high strength concrete beams", Constr. Build. Mater., 131, 606-617. https://doi.org/10.1016/j.conbuildmat.2016.11.094
- Ha, G.J., Cho, C.G., Kang, H.W. and Feo, L. (2013), "Seismic improvement of RC beam-column joints using hexagonal CFRP bars combined with CFRP sheets", Compos. Struct., 95, 464-470. https://doi.org/10.1016/j.compstruct.2012.08.022
- Johnson, D.T. and Sheikh, S.A. (2016), "Experimental investigation of glass fiber-reinforced polymer-reinforced normal-strength concrete beams", ACI Struct. J., 113(6), 1165-1174. https://doi.org/10.14359/51689017
- Ju, M., Park C. and Kim, Y. (2017), "Flexural behavior and a modified prediction of deflection of concrete beam reinforced with a ribbed GFRP bars", Comput. Concrete, 19(6), 631-639. https://doi.org/10.12989/CAC.2017.19.6.631
- Kang, T.H.K. and Ary, M.I. (2012), "Shear-strengthening of reinforced & prestressed concrete beams using FRP: Part II - Experimental investigation", Int. J. Concrete Struct. Mater., 6(1), 49-57. https://doi.org/10.1007/s40069-012-0005-0
- Kim, C.H. and Jang, H.S. (2014), "Concrete shear strength of normal and lightweight concrete beams reinforced with FRP bars", J. Compos. Constr., 18(2), 2-10.
- Konsta-Gdoutos, M. and Karayannis, C. (1998), "Flexural behaviour of concrete beams reinforced with FRP bars", Adv. Composite Let., 7(5), 133-137.
- Lau, D. and Pam, H.J. (2010), "Experimental study of hybrid FRP reinforced concrete beams", Eng. Struct., 32(12), 3857-3865. https://doi.org/10.1016/j.engstruct.2010.08.028
- Lee, Y.H. and Kim, M.S. (2012), "Flexural behavior and deflection prediction of concrete beams reinforced with AFRP and CFRP bars", ACI Struct. J., 284, 1-26.
- Liang, J.F., Deng, Y., Hu, M. and Tang, D. (2017b), "Cyclic performance of concrete beams reinforced with CFRP prestressed prisms", Comput. Concrete, 19(3), 227-232. https://doi.org/10.12989/CAC.2017.19.3.227
- Liang, J.F., Yu, D. and Yu, B. (2016), "Flexural behavior of concrete beams reinforced with CFRP prestressed prisms", Comput. Concrete, 17(3), 295-304. https://doi.org/10.12989/CAC.2016.17.3.295
- Liang, J.F., Yu, D., Xie, S. and Li, J. (2017a), "Flexural behaviour of reinforced concrete beams strengthened with NSM CFRP prestressed prisms", Struct. Eng. Mech., 62(3), 291-295. https://doi.org/10.12989/SEM.2017.62.3.291
- Mari, A., Bairan, J., Cladera, A., Oller, E. and Ribas, C. (2015), "Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams", Struct. Infrastr. Eng., 11(11), 1399-1419. https://doi.org/10.1080/15732479.2014.964735
- Mari, A., Cladera, A., Oller, E. and Bairan, J. (2014), "Shear design of FRP reinforced concrete beams without transverse reinforcement", Compos. Part B: Eng., 57(2), 228-241. https://doi.org/10.1016/j.compositesb.2013.10.005
- Masmoudi, R., Theriault, M. and Benmokrane, B. (1998), "Flexural behavior of concrete beams reinforced with deformed fiber reinforced plastic reinforcing rods", ACI Struct. J., 95(6), 665-675.
- Oller, E., Mari, A., Bairan, J. and Cladera, A. (2015), "Shear design of reinforced concrete beams with FRP longitudinal and transverse reinforcement", Compos. Part B: Eng., 74(1), 104-122. https://doi.org/10.1016/j.compositesb.2014.12.031
- Ovitigala, T., Ibrahim, M.A. and Issa, M.A. (2016), "Serviceability and ultimate load behavior of concrete beams reinforced with basalt fiber-reinforced polymer bars", ACI Struct. J., 113(4), 757-768.
- Qin, R., Zhou, A. and Lau, D. (2017), "Effect of reinforcement ratio on the flexural performance of hybrid FRP reinforced concrete beams", Compos. Part B: Eng., 108, 200-209. https://doi.org/10.1016/j.compositesb.2016.09.054
- Rafi, M.M., Nadjai, A., Ali, F. and Talamona, D. (2008), "Aspects of behaviour of CFRP reinforced concrete beams in bending", Constr. Build. Mater., 22(3), 277-285. https://doi.org/10.1016/j.conbuildmat.2006.08.014
- Refai, A.E., Aded, F. and Al-Rahmani, A. (2015), "Structural performance and serviceability of concrete beams reinforced with hybrid (GFRP and steel) bars", Constr. Build. Mater., 96, 518-559. https://doi.org/10.1016/j.conbuildmat.2015.08.063
- Said, M., Adam, M.A., Mahmoud, A.A. and Shanour, A.S. (2016), "Experimental and analytical shear evaluation of concrete beams reinforced with glass fiber reinforced polymers bars", Constr. Build. Mater., 102, 574-591. https://doi.org/10.1016/j.conbuildmat.2015.10.185
- Saikia, B., Kumar, P., Thomas, J., K.S. Nanjunda Rao and Ramaswamy, A. (2007), "Strength and serviceability performance of beams reinforced with GFRP bars in flexure" Constr. Build. Mater., 21, 1709-1719. https://doi.org/10.1016/j.conbuildmat.2006.05.021
- Shin, S., Seo, D. and Han, B. (2009), "Performance of concrete beams reinforced with GFRP bars", J. Asian Arch. Build. Eng., 8(1), 197-204. https://doi.org/10.3130/jaabe.8.197
- Shraideh, M.S. and Aboutaha, R.S. (2013), "Analysis of steel-GFRP reinforced concrete circular columns", Comput. Concrete, 11(4), 351-364. https://doi.org/10.12989/cac.2013.11.4.351
- Tan, K.H. (2002), "Strength enhancement of rectangular reinforced concrete columns using fiber-reinforced polymer", J. Compos. Constr., 6(3), 175-183. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:3(175)
- Torres, L.l., Neocleous, K. and Pilakoutas, K. (2012), "Design procedure and simplified equations for the flexural capacity of concrete members reinforced with fibre-reinforced polymer bars", Struct. Concrete, 13(2), 119-129. https://doi.org/10.1002/suco.201100045
- Toutanji, A.H. and Saafi, M. (2000), "Flexural behavior of concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars", ACI Struct. J., 97(5), 712-719.
- Tsonos, A.G. (2009), "Ultra-high-performance fiber reinforced concrete: An innovative solution for strengthening old R/C structures and for improving the FRP strengthening method", WIT Tran. Eng. Sci., 64, 273-284.
- Tureyen, A.K. and Frosch, R.J. (2002), "Shear tests of FRPreinforced concrete beams without stirrups", ACI Struct. J., 99(4), 427-434.
- Vougioukas, E., Zeris, C.A. and Kotsovos, M.D. (2005), "Toward safe and efficient use of fiber-reinforced polymer for repair and strengthening of reinforced concrete structures", ACI Struct. J., 102(4), 525-534.
- Yost, J.R., Gross, S.P. and Dinehart, D.W. (2001), "Shear strength of normal strength concrete beams reinforced with deformed GFRP bars", J. Compos. Constr., 5(4), 268-275. https://doi.org/10.1061/(ASCE)1090-0268(2001)5:4(268)
- Zadeh, H.J. and Nanni, A. (2013), "Reliability analysis of concrete beams internally reinforced with fiber-reinforced polymer bars", ACI Struct. J., 110(6), 1023-1031.
- Zararis, P.D. and Papadakis, G.C. (2001), "Diagonal shear failure and size effect in RC beams without reinforcement", J. Struct. Eng., 127(7), 733-742. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(733)
- Zeris, C., Batis, G., Mouloudakis, V. and Marakis J. (2014), "Accelerated corrosion investigation of axially loaded reinforced concrete elements", Anti-Corros. Meth. Mater., 61(4), 215-223. https://doi.org/10.1108/ACMM-01-2013-1236
- Zhang, L., Sun, Y. and Xiong, W. (2015), "Experimental study on the flexural deflections of concrete beam reinforced with Basalt FRP bars", Mater. Struct., 48(10), 3279-3293. https://doi.org/10.1617/s11527-014-0398-0
피인용 문헌
- Numerical Analysis on Flexural Behavior of Steel Fiber-Reinforced LWAC Beams Reinforced with GFRP Bars vol.9, pp.23, 2018, https://doi.org/10.3390/app9235128
- Shear deformations based on variable angle truss model for concrete beams reinforced with FRP bars vol.79, pp.3, 2021, https://doi.org/10.12989/sem.2021.79.3.337