DOI QR코드

DOI QR Code

Advancements in craniofacial prosthesis fabrication: A narrative review of holistic treatment

  • Jazayeri, Hossein E. (Oral and Maxillofacial Surgery, University of Pennsylvania Health System) ;
  • Kang, Steve (Oral and Maxillofacial Surgery, University of Pennsylvania Health System) ;
  • Masri, Radi M. (Department of Endodontics, Prosthodontics and Operative Dentistry, University of Maryland School of Dentistry) ;
  • Kuhn, Lauren (Department of Oral Rehabilitation, Division of Endodontics, Medical University of South Carolina) ;
  • Fahimipour, Farahnaz (Marquette University School of Dentistry) ;
  • Vanevenhoven, Rabecca (Division of Oral and Maxillofacial Surgery and Dentistry, New York Presbyterian Weill Cornell Medical Center) ;
  • Thompson, Geoffrey (Department of Prosthodontics, Marquette University School of Dentistry) ;
  • Gheisarifar, Maryam (Department of Prosthodontics, Marquette University School of Dentistry) ;
  • Tahriri, Mohammadreza (Marquette University School of Dentistry) ;
  • Tayebi, Lobat (Marquette University School of Dentistry)
  • 투고 : 2017.11.28
  • 심사 : 2018.08.13
  • 발행 : 2018.12.31

초록

The treatment of craniofacial anomalies has been challenging as a result of technological shortcomings that could not provide a consistent protocol to perfectly restore patient-specific anatomy. In the past, wax-up and impression-based maneuvers were implemented to achieve this clinical end. However, with the advent of computer-aided design and computer-aided manufacturing (CAD/CAM) technology, a rapid and cost-effective workflow in prosthetic rehabilitation has taken the place of the outdated procedures. Because the use of implants is so profound in different facets of restorative dentistry, their placement for craniofacial prosthesis retention has also been widely popular and advantageous in a variety of clinical settings. This review aims to effectively describe the well-rounded and interdisciplinary practice of craniofacial prosthesis fabrication and retention by outlining fabrication, osseointegrated implant placement for prosthesis retention, a myriad of clinical examples in the craniofacial complex, and a glimpse of the future of bioengineering principles to restore bioactivity and physiology to the previously defected tissue.

키워드

참고문헌

  1. Strub JR, Rekow ED, Witkowski S. Computer-aided design and fabrication of dental restorations: current systems and future possibilities. J Am Dent Assoc 2006;137:1289-96. https://doi.org/10.14219/jada.archive.2006.0389
  2. Sykes LM, Parrott AM, Owen CP, Snaddon DR. Applications of rapid prototyping technology in maxillofacial prosthetics. Int J Prosthodont 2004;17:454-9.
  3. Chae MP, Rozen WM, McMenamin PG, Findlay MW, Spychal RT, Hunter-Smith DJ. Emerging applications of bedside 3D printing in plastic surgery. Front Surg 2015;2:25.
  4. Markstedt K, Mantas A, Tournier I, Martinez Avila H, Hagg D, Gatenholm P. 3D Bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 2015;16:1489-96. https://doi.org/10.1021/acs.biomac.5b00188
  5. Yeong WY, Chua CK, Leong KF, Chandrasekaran M. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 2004;22:643-52. https://doi.org/10.1016/j.tibtech.2004.10.004
  6. Hourfar J, Kanavakis G, Goellner P, Ludwig B. Fully customized placement of orthodontic miniplates: a novel clinical technique. Head Face Med 2014;10:14. https://doi.org/10.1186/1746-160X-10-14
  7. Wu G, Zhou B, Bi Y, Zhao Y. Selective laser sintering technology for customized fabrication of facial prostheses. J Prosthet Dent 2008;100:56-60. https://doi.org/10.1016/S0022-3913(08)60138-9
  8. Ciocca L, De Crescenzio F, Fantini M, Scotti R. CAD/CAM bilateral ear prostheses construction for Treacher Collins syndrome patients using laser scanning and rapid prototyping. Comput Methods Biomech Biomed Engin 2010;13:379-86. https://doi.org/10.1080/10255840903251304
  9. Ciocca L, Scotti R. Oculo-facial rehabilitation after facial cancer removal: updated CAD/CAM procedures: a pilot study. Prosthet Orthot Int 2014;38:505-9. https://doi.org/10.1177/0309364613512368
  10. Sammartino G, Della Valle A, Marenzi G, Gerbino S, Martorelli M, di Lauro AE, di Lauro F. Stereolithography in oral implantology: a comparison of surgical guides. Implant Dent 2004;13:133-9. https://doi.org/10.1097/01.ID.0000127526.36938.4C
  11. Chen Y, Niu F, Yu B, Liu J, Wang M, Gui L. Three-dimensional preoperative design of distraction osteogenesis for hemifacial microsomia. J Craniofac Surg 2014;25:184-8. https://doi.org/10.1097/SCS.0000000000000391
  12. Watson RA. A low-cost surgical application of additive fabrication. J Surg Educ 2014;71:14-7. https://doi.org/10.1016/j.jsurg.2013.10.012
  13. Kang SH, Kim MK, Kim BC, Lee SH. Orthognathic Y-splint: a CAD/CAM-engineered maxillary repositioning wafer assembly. Br J Oral Maxillofac Surg 2014;52:667-9. https://doi.org/10.1016/j.bjoms.2014.01.023
  14. Javid N. The use of magnets in a maxillofacial prosthesis. J Prosthet Dent 1971;25:334-41. https://doi.org/10.1016/0022-3913(71)90196-X
  15. Grant GT, Aita-Holmes C, Liacouras P, Garnes J, Wilson WO Jr. Digital capture, design, and manufacturing of a facial prosthesis: Clinical report on a pediatric patient. J Prosthet Dent 2015;114:138-41. https://doi.org/10.1016/j.prosdent.2014.04.031
  16. Fantini M, De Crescenzio F, Ciocca L. Design and Rapid Manufacturing of anatomical prosthesis for facial rehabilitation. Int J Interact Des Manuf 2013;7:51-62. https://doi.org/10.1007/s12008-012-0159-7
  17. Bibb R, Eggbeer D, Evans P. Rapid prototyping technologies in soft tissue facial prosthetics: current state of the art. Rapid Prototyping J 2010;16:130-7. https://doi.org/10.1108/13552541011025852
  18. Ciocca L, Scotti R. CAD-CAM generated ear cast by means of a laser scanner and rapid prototyping machine. J Prosthet Dent 2004;92:591-5. https://doi.org/10.1016/j.prosdent.2004.08.021
  19. Al Mardini M, Ercoli C, Graser GN. A technique to produce a mirror-image wax pattern of an ear using rapid prototyping technology. J Prosthet Dent 2005;94:195-8. https://doi.org/10.1016/j.prosdent.2005.04.019
  20. Ravi B, Sharma A, Agrawal M. Haptic solid modeling for Pelvic bone tumor resection planning and prosthesis development. International CAD Conference, Citeseer, 2005. p. 20-4.
  21. Subburaj K, Nair C, Rajesh S, Meshram SM, Ravi B. Rapid development of auricular prosthesis using CAD and rapid prototyping technologies. Int J Oral Maxillofac Surg 2007;36:938-43. https://doi.org/10.1016/j.ijom.2007.07.013
  22. Reitemeier B, Notni G, Heinze M, Schone C, Schmidt A, Fichtner D. Optical modeling of extraoral defects. J Prosthet Dent 2004;91:80-4. https://doi.org/10.1016/j.prosdent.2003.10.010
  23. Feng Z, Dong Y, Zhao Y, Bai S, Zhou B, Bi Y, Wu G. Computerassisted technique for the design and manufacture of realistic facial prostheses. Br J Oral Maxillofac Surg 2010;48:105-9. https://doi.org/10.1016/j.bjoms.2009.05.009
  24. Ciocca L, Scotti R. CAD-CAM generated ear cast by means of a laser scanner and rapid prototyping machine. J Prosthet Dent 2004;92:591-5. https://doi.org/10.1016/j.prosdent.2004.08.021
  25. De Crescenzio F, Fantini M, Ciocca L, Persiani F, Scotti R. Design and manufacturing of ear prosthesis by means of rapid prototyping technology. Proc Inst Mech Eng H 2011;225:296-302.
  26. Qiu J, Gu XY, Xiong YY, Zhang FQ. Nasal prosthesis rehabilitation using CAD-CAM technology after total rhinectomy: a pilot study. Support Care Cancer 2011;19:1055-9. https://doi.org/10.1007/s00520-011-1157-1
  27. Sun J, Xi j, Chen X, Xiong Y. A CAD/CAM system for fabrication of facial prostheses. Rapid Prototyping J 2011;17:253-61. https://doi.org/10.1108/13552541111138379
  28. Liacouras P, Garnes J, Roman N, Petrich A, Grant GT. Designing and manufacturing an auricular prosthesis using computed tomography, 3-dimensional photographic imaging, and additive manufacturing: a clinical report. J Prosthet Dent 2011;105:78-82. https://doi.org/10.1016/S0022-3913(11)60002-4
  29. Sabol JV, Grant GT, Liacouras P, Rouse S. Digital image capture and rapid prototyping of the maxillofacial defect. J Prosthodont 2011;20:310-4. https://doi.org/10.1111/j.1532-849X.2011.00701.x
  30. Curi MM, Oliveira MF, Molina G, Cardoso CL, Oliveira Lde G, Branemark PI, Ribeiro Kde C. Extraoral implants in the rehabilitation of craniofacial defects: implant and prosthesis survival rates and peri-implant soft tissue evaluation. J Oral Maxillofac Surg 2012;70:1551-7. https://doi.org/10.1016/j.joms.2012.03.011
  31. Suska F, Kjeller G, Tarnow P, Hryha E, Nyborg L, Snis A, Palmquist A. Electron Beam melting manufacturing technology for individually manufactured jaw prosthesis: A case report. J Oral Maxillofac Surg 2016;74:1706.e1-1706.e15. https://doi.org/10.1016/j.joms.2016.03.046
  32. Curi MM, Oliveira MF, Molina G, Cardoso CL, Oliveira Lde G, Branemark PI, Ribeiro Kde C. Extraoral implants in the rehabilitation of craniofacial defects: implant and prosthesis survival rates and peri-implant soft tissue evaluation. J Oral Maxillofac Surg 2012;70:1551-7. https://doi.org/10.1016/j.joms.2012.03.011
  33. Marunick MT, Harrison R, Beumer J 3rd. Prosthodontic rehabilitation of midfacial defects. J Prosthet Dent 1985;54:553-60. https://doi.org/10.1016/0022-3913(85)90433-0
  34. Lemon JC, Chambers MS, Wesley PJ, Reece GP, Martin JW. Rehabilitation of a midface defect with reconstructive surgery and facial prosthetics: a case report. Int J Oral Maxillofac Implants 1996;11:101-5.
  35. Karakoca S, Aydin C, Yilmaz H, Bal BT. Survival rates and periimplant soft tissue evaluation of extraoral implants over a mean follow-up period of three years. J Prosthet Dent 2008;100:458-64. https://doi.org/10.1016/S0022-3913(08)60265-6
  36. Balik A, Ozdemir-Karatas M, Peker K, Cifter ED, Sancakli E, Gokcen-Rohlig B. Soft tissue response and survival of extraoral implants: A long-term follow-up. J Oral Implantol 2016;42:41-5. https://doi.org/10.1563/aaid-joi-D-14-00086
  37. Holgers KM, Tjellstrom A, Bjursten LM, Erlandsson BE. Soft tissue reactions around percutaneous implants: a clinical study of soft tissue conditions around skin-penetrating titanium implants for bone-anchored hearing aids. Am J Otol 1988;9:56-9.
  38. Granstrom G, Bergstrom K, Odersjo M, Tjellstrom A. Osseointegrated implants in children: experience from our first 100 patients. Otolaryngol Head Neck Surg 2001;125:85-92. https://doi.org/10.1067/mhn.2001.116190
  39. Johnson F, Cannavina G, Brook I, Watson J. Facial prosthetics: techniques used in the retention of prostheses following ablative cancer surgery or trauma and for congenital defects. Eur J Prosthodont Restor Dent 2000;8:5-9.
  40. Agrawal KS, Bachhav MV, Naik CS, Gupta S, Sarda AV, Desai V. "Ride-on" technique and other simple and logical solutions to counter most common complications of silicone implants in augmentation rhinoplasty. Indian J Plast Surg 2015;48:172-7. https://doi.org/10.4103/0970-0358.163056
  41. Wondergem M, Lieben G, Bouman S, van den Brekel MW, Lohuis PJ. Patients' satisfaction with facial prostheses. Br J Oral Maxillofac Surg 2016;54:394-9. https://doi.org/10.1016/j.bjoms.2015.09.011
  42. Bhandari A, Manvi P, Mehrotra A, Rao Y. A simplified and easy approach for the fabrication of nasal prosthesis: A clinical report. J Indian Prosthodont Soc 2014;14:313-8.
  43. Lunenburger H, Roknic N, Klein M, Wermker K. Treatment outcome of the transfacial titanium epiplating system for total nasal defects. Plast Reconstr Surg 2016;137:405e-413e. https://doi.org/10.1097/01.prs.0000475792.38984.37
  44. Abu-Serriah MM, McGowan DA, Moos KF, Bagg J. Outcome of extra-oral craniofacial endosseous implants. Br J Oral Maxillofac Surg 2001;39:269-75. https://doi.org/10.1054/bjom.2000.0578
  45. Flood TR, Russell K. Reconstruction of nasal defects with implant-retained nasal prostheses. Br J Oral Maxillofac Surg 1998;36:341-5. https://doi.org/10.1016/S0266-4356(98)90644-1
  46. Roumanas ED, Freymiller EG, Chang TL, Aghaloo T, Beumer J 3rd. Implant-retained prostheses for facial defects: an up to 14-year follow-up report on the survival rates of implants at UCLA. Int J Prosthodont 2002;15:325-32.
  47. Rubenstein JE. Attachments used for implant-supported facial prostheses: a survey of United States, Canadian, and Swedish centers. J Prosthet Dent 1995;73:262-6. https://doi.org/10.1016/S0022-3913(05)80203-3
  48. Proussaefs P. Use of the frontal process of the maxillary bone for implant placement to retain a nasal prosthesis: a clinical report. Int J Oral Maxillofac Implants 2004;19:901-5.
  49. Goncalves LM, Goncalves TM, Rodrigues AH, Lanza MD, do Nascimento PR, Girundi FM. Intra- and extraoral prostheses retained by zygoma implants following resection of the upper lip and nose. J Prosthodont 2015;24:172-7. https://doi.org/10.1111/jopr.12178
  50. Ethunandan M, Downie I, Flood T. Implant-retained nasal prosthesis for reconstruction of large rhinectomy defects: the Salisbury experience. Int J Oral Maxillofac Surg 2010;39:343-9. https://doi.org/10.1016/j.ijom.2010.01.003
  51. Vera C, Barrero C, Shockley W, Rothenberger S, Minsley G, Drago C. Prosthetic reconstruction of a patient with an acquired nasal defect using extraoral implants and a CAD/CAM copy-milled bar. J Prosthodont 2014;23:582-7. https://doi.org/10.1111/jopr.12165
  52. Hooper SM, Westcott T, Evans PL, Bocca AP, Jagger DC. Implant-supported facial prostheses provided by a maxillofacial unit in a U.K. regional hospital: longevity and patient opinions. J Prosthodont 2005;14:32-8. https://doi.org/10.1111/j.1532-849X.2005.00004.x
  53. Selcuk CT, Sahin U, Celebioglu S, Erbas O, Aydin C, Yuce S. Complex craniofacial reconstruction with prostheses as an alternative method to autogenous reconstruction. J Craniofac Surg 2011;22:2090-3. https://doi.org/10.1097/SCS.0b013e3182326db1
  54. de Carvalho BM, Freitas-Pontes KM, de Negreiros WA, Verde MA. Single-stage osseointegrated implants for nasal prosthodontic rehabilitation: A clinical report. J Prosthet Dent 2015;114:293-6. https://doi.org/10.1016/j.prosdent.2015.02.027
  55. Tjellstrom A, Rosenhall U, Lindstrom J, Hallen O, Albrektsson T, Branemark PI. Five-year experience with skin-penetrating bone-anchored implants in the temporal bone. Acta Otolaryngol 1983;95:568-75. https://doi.org/10.3109/00016488309139444
  56. Rotenberg BW, James AL, Fisher D, Anderson J, Papsin BC. Establishment of a bone-anchored auricular prosthesis (BAAP) program. Int J Pediatr Otorhinolaryngol 2002;66:273-9. https://doi.org/10.1016/S0165-5876(02)00252-5
  57. Wang R. Preoperative auricular wax pattern duplication for surgical template fabrication. J Prosthet Dent 1999;81:634-7. https://doi.org/10.1016/S0022-3913(99)70222-2
  58. Nishimura RD, Roumanas E, Moy PK, Sugai T. Nasal defects and osseointegrated implants: UCLA experience. J Prosthet Dent 1996;76:597-602. https://doi.org/10.1016/S0022-3913(96)90436-9
  59. Wang R. Presurgical confirmation of craniofacial implant locations in children requiring implant-retained auricular prosthesis. J Prosthet Dent 1999;81:492-5. https://doi.org/10.1016/S0022-3913(99)80020-1
  60. Ozcelik TB, Tanner PB. A surgical guide for craniofacial implant placement for an implant-retained auricular prosthesis. J Prosthet Dent 2010;103:253-5. https://doi.org/10.1016/S0022-3913(10)60040-6
  61. Wang S, Leng X, Zheng Y, Zhang D, Wu G. Prosthesisguided implant restoration of an auricular defect using computed tomography and 3-dimensional photographic imaging technologies: a clinical report. J Prosthet Dent 2015;113:152-6. https://doi.org/10.1016/j.prosdent.2014.08.014
  62. Zopf DA, Mitsak AG, Flanagan CL, Wheeler M, Green GE, Hollister SJ. Computer aided-designed, 3-dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction. Otolaryngol Head Neck Surg 2015;152:57-62. https://doi.org/10.1177/0194599814552065
  63. Zhao Y, Wang Y, Zhuang H, Jiang H, Jiang W, Hu X, Hu S, Wang S, Pan B. Clinical evaluation of three total ear reconstruction methods. J Plast Reconstr Aesthet Surg 2009;62:1550-4. https://doi.org/10.1016/j.bjps.2008.07.009
  64. Reiffel AJ, Kafka C, Hernandez KA, Popa S, Perez JL, Zhou S, Pramanik S, Brown BN, Ryu WS, Bonassar LJ, Spector JA. High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and other auricular deformities. PLoS One 2013;8:e56506. https://doi.org/10.1371/journal.pone.0056506
  65. Romo T 3rd, Presti PM, Yalamanchili HR. Medpor alternative for microtia repair. Facial Plast Surg Clin North Am 2006;14:129-36. https://doi.org/10.1016/j.fsc.2006.01.006
  66. Nayyer L, Patel KH, Esmaeili A, Rippel RA, Birchall M, O'toole G, Butler PE, Seifalian AM. Tissue engineering: revolution and challenge in auricular cartilage reconstruction. Plast Reconstr Surg 2012;129:1123-37. https://doi.org/10.1097/PRS.0b013e31824a2c1c
  67. Zopf DA, Mitsak AG, Flanagan CL, Wheeler M, Green GE, Hollister SJ. Computer aided-designed, 3-dimensionally printed porous tissue bioscaffolds for craniofacial soft tissue reconstruction. Otolaryngol Head Neck Surg 2015;152:57-62. https://doi.org/10.1177/0194599814552065
  68. Isogai N, Kusuhara H, Ikada Y, Ohtani H, Jacquet R, Hillyer J, Lowder E, Landis WJ. Comparison of different chondrocytes for use in tissue engineering of cartilage model structures. Tissue Eng 2006;12:691-703. https://doi.org/10.1089/ten.2006.12.691
  69. van Osch GJ, van der Veen SW, Verwoerd-Verhoef HL. In vitro redifferentiation of culture-expanded rabbit and human auricular chondrocytes for cartilage reconstruction. Plast Reconstr Surg 2001;107:433-40. https://doi.org/10.1097/00006534-200102000-00020
  70. Puelacher WC, Kim SW, Vacanti JP, Schloo B, Mooney D, Vacanti CA. Tissue-engineered growth of cartilage: the effect of varying the concentration of chondrocytes seeded onto synthetic polymer matrices. Int J Oral Maxillofac Surg 1994;23:49-53. https://doi.org/10.1016/S0901-5027(05)80328-5
  71. Lee JS, Hong JM, Jung JW, Shim JH, Oh JH, Cho DW. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication 2014;6:024103. https://doi.org/10.1088/1758-5082/6/2/024103
  72. Mowade TK, Dange SP. An innovative technique for customizing the stock acrylic resin ocular prosthesis. Indian J Dent Res 2011;22:716-8. https://doi.org/10.4103/0970-9290.93463
  73. Goiato MC, Bannwart LC, Haddad MF, dos Santos DM, Pesqueira AA, Miyahara GI. Fabrication techniques for ocular prostheses--an overview. Orbit 2014;33:229-33. https://doi.org/10.3109/01676830.2014.881395
  74. Ow RK, Amrith S. Ocular prosthetics: use of a tissue conditioner material to modify a stock ocular prosthesis. J Prosthet Dent 1997;78:218-22. https://doi.org/10.1016/S0022-3913(97)70129-X
  75. Aggarwal H, Singh K, Kumar P, Alvi HA. A multidisciplinary approach for management of postenucleation socket syndrome with dermis-fat graft and ocular prosthesis: a clinical report. J Prosthodont 2013;22:657-60. https://doi.org/10.1111/jopr.12051
  76. Greig AV, Jones S, Haylock C, Joshi N, McLellan G, Clarke P, Kirkpatrick WN. Reconstruction of the exenterated orbit with osseointegrated implants. J Plast Reconstr Aesthet Surg 2010;63:1656-65. https://doi.org/10.1016/j.bjps.2009.04.023
  77. Lerner TH, Huryn JM. Orbital prosthesis with a magnetically retained ocular component supported by osseointegrated implants. J Prosthet Dent 1993;69:378-80. https://doi.org/10.1016/0022-3913(93)90184-P
  78. Nishimura RD, Roumanas E, Moy PK, Sugai T, Freymiller EG. Osseointegrated implants and orbital defects: U.C.L.A. experience. J Prosthet Dent 1998;79:304-9. https://doi.org/10.1016/S0022-3913(98)70242-2
  79. Aggarwal H, Kumar P, Eachempati P, Alvi HA. Different intraorbital implant situations and ocular prosthetic rehabilitation. J Prosthodont 2016;25:687-93. https://doi.org/10.1111/jopr.12369
  80. Sethi T, Kheur M, Haylock C, Harianawala H. Fabrication of a custom ocular prosthesis. Middle East Afr J Ophthalmol 2014;21:271-4. https://doi.org/10.4103/0974-9233.134694
  81. Prithviraj DR, Gupta V, Muley N, Suresh P. Custom ocular prosthesis: comparison of two different techniques. J Prosthodont Res 2013;57:129-34. https://doi.org/10.1016/j.jpor.2012.08.006
  82. Patil SB, Meshramkar R, Naveen BH, Patil NP. Ocular prosthesis: a brief review and fabrication of an ocular prosthesis for a geriatric patient. Gerodontology 2008;25:57-62. https://doi.org/10.1111/j.1741-2358.2007.00171.x
  83. He Y, Xue GH, Fu JZ. Fabrication of low cost soft tissue prostheses with the desktop 3D printer. Sci Rep 2014;4:6973.
  84. Shaikh SR, Gangurde AP, Shambharkar VI. Changing ocular prostheses in growing children: a 5-year follow-up clinical report. J Prosthet Dent 2014;111:346-8. https://doi.org/10.1016/j.prosdent.2013.09.021
  85. Jazayeri HE, Tahriri M, Razavi M, Khoshroo K, Fahimipour F, Dashtimoghadam E, Almeida L, Tayebi L. A current overview of materials and strategies for potential use in maxillofacial tissue regeneration. Mater Sci Eng C Mater Biol Appl 2017;70:913-29. https://doi.org/10.1016/j.msec.2016.08.055
  86. Jazayeri HE, Fahmy MD, Razavi M, Stein BE, Nowman A, Masri RM, Tayebi L. Dental App lications of Natural-Origin Polymers in Hard and Soft Tissue Engineering. J Prosthodont 2016;25:510-7. https://doi.org/10.1111/jopr.12465
  87. Fahmy MD, Jazayeri HE, Razavi M, Masri R, Tayebi L. Threedimensional bioprinting materials with potential application in preprosthetic surgery. J Prosthodont 2016;25:310-8. https://doi.org/10.1111/jopr.12431
  88. Khoshroo K, Jafarzadeh Kashi TS, Moztarzadeh F, Tahriri M, Jazayeri HE, Tayebi L. Development of 3D PCL micro-sphere/$TiO_{2}$ nanotube composite scaffolds for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 2017;70:586-98. https://doi.org/10.1016/j.msec.2016.08.081
  89. Khojasteh A, Fahimipour F, Eslaminejad MB, Jafarian M, Jahangir S, Bastami F, Tahriri M, Karkhaneh A, Tayebi L. Development of PLGA-coated ${\beta}$-TCP scaffolds containing VEGF for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 2016;69:780-8. https://doi.org/10.1016/j.msec.2016.07.011
  90. Nojehdehian H, Moztarzadeh F, Baharvand H, Mehrjerdi NZ, Nazarian H, Tahriri M. Effect of poly-L-lysine coating on retinoic acid-loaded PLGA microspheres in the differentiation of carcinoma stem cells into neural cells. Int J Artif Organs 2010;33:721-30. https://doi.org/10.1177/039139881003301005
  91. Tahriri M, Moztarzadeh F. Preparation, characterization, and in vitro biological evaluation of PLGA/nano-fluorohydroxyapatite (FHA) microsphere-sintered scaffolds for biomedical applications. Appl Biochem Biotechnol 2014;172:2465-79. https://doi.org/10.1007/s12010-013-0696-y
  92. Almela T, Brook IM, Khoshroo K, Rasoulianboroujeni M, Fahimipour F, Tahriri M, Dashtimoghadam E, El-Awa A, Tayebi L, Moharamzadeh K. Simulation of cortico-cancellous bone structure by 3D printing of bilayer calcium phosphatebased scaffolds. Bioprinting 2017;6:1-7. https://doi.org/10.1016/j.bprint.2017.04.001
  93. Fahimipour F, Rasoulianboroujeni M, Dashtimoghadam E, Khoshroo K, Tahriri M, Bastami F, Lobner D, Tayebi L. 3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering. Dent Mater 2017;33:1205-16. https://doi.org/10.1016/j.dental.2017.06.016
  94. Tahriri M, Moztarzadeh F, Tahriri A, Eslami H, Khoshroo K, Jazayeri HE, Tayebi L. Evaluation of the in vitro biodegradation and biological behavior of poly(lactic-co-glycolic acid)/nano-fluorhydroxyapatite composite microsphere-sintered scaffold for bone tissue engineering. J Bioact Compat Polym 2017;33:146-59.
  95. Kim K, Evans GRD. Tissue engineering: the future of stem cells. Top Tissue Eng 2005;2:1-21.
  96. Knight MA, Evans GR. Tissue engineering: Progress and challenges. Plastic Reconstructive Surg 2004;114:26e-37e. https://doi.org/10.1097/01.PRS.0000132678.97041.53
  97. Fuchs JR, Nasseri BA, Vacanti JP. Tissue engineering: a 21st century solution to surgical reconstruction. Ann Thorac Surg 2001;72:577-91. https://doi.org/10.1016/S0003-4975(01)02820-X
  98. Stock UA, Vacanti JP. Tissue engineering: current state and prospects. Annu Rev Med 2001;52:443-51. https://doi.org/10.1146/annurev.med.52.1.443
  99. Shieh SJ, Vacanti JP. State-of-the-art tissue engineering: from tissue engineering to organ building. Surgery 2005;137:1-7. https://doi.org/10.1016/j.surg.2004.04.002
  100. Vats A, Tolley NS, Polak JM, Gough JE. Scaffolds and biomaterials for tissue engineering: a review of clinical applications. Clin Otolaryngol Allied Sci 2003;28:165-72. https://doi.org/10.1046/j.1365-2273.2003.00686.x
  101. Whitaker MJ, Quirk RA, Howdle SM, Shakesheff KM. Growth factor release from tissue engineering scaffolds. J Pharm Pharmacol 2001;53:1427-37. https://doi.org/10.1211/0022357011777963
  102. Naughton GK. From lab bench to market: critical issues in tissue engineering. Ann N Y Acad Sci 2002;961:372-85. https://doi.org/10.1111/j.1749-6632.2002.tb03127.x
  103. Koh CJ, Atala A. Therapeutic cloning and tissue engineering. Curr Top Dev Biol 2004;60:1-15.
  104. Vats A, Tolley NS, Polak JM, Buttery LD. Stem cells: sources and applications. Clin Otolaryngol Allied Sci 2002;27:227-32. https://doi.org/10.1046/j.1365-2273.2002.00579.x
  105. Atala A. Tissue engineering and regenerative medicine: concepts for clinical application. Rejuvenation Res 2004;7:15-31. https://doi.org/10.1089/154916804323105053

피인용 문헌

  1. Does Complete Digitization in Maxillofacial Rehabilitation Become a Reality in Near Future? vol.9, pp.3, 2018, https://doi.org/10.5005/jp-journals-10019-1245
  2. Accuracy of Mobile Device–Compatible 3D Scanners for Facial Digitization: Systematic Review and Meta-Analysis vol.22, pp.10, 2020, https://doi.org/10.2196/22228
  3. CAD/CAM-fabricated inlay restorations: Can the resin-coating technique improve bond strength and internal adaptation? vol.39, pp.6, 2018, https://doi.org/10.4012/dmj.2019-309