DOI QR코드

DOI QR Code

Peridynamic Impact Fracture Analysis of Multilayered Glass with Nonlocal Ghost Interlayer Model

비국부 층간 결합 모델을 고려한 다중적층 유리의 페리다이나믹 충돌 파괴 해석

  • Ha, Youn Doh (Department of Naval Architecture and Ocean Engineering, Kunsan National Univ.) ;
  • An, Tae Sick (Department of Naval Architecture and Ocean Engineering, Kunsan National Univ.)
  • 하윤도 (군산대학교 조선해양공학과) ;
  • 안태식 (군산대학교 조선해양공학과)
  • Received : 2018.10.23
  • Accepted : 2018.10.30
  • Published : 2018.12.31

Abstract

We present the peridynamic dynamic fracture analysis to solve impact fracturing of multilayered glass impacted by a high-velocity object. In the most practical multilayered glass structures, main layers are glued by thin elastic masking films. Thus, it is difficult and expensive to construct the numerical model for such a multilayered structure. In this paper, we employ efficient numerical modeling of multilayered structures with a nonlocal ghost interlayer model in which ghost particles are distributed between main layers and they are interacting with each other in peridynamic way. We also consider a simple nonlocal contact condition in peridynamic frameworks to solve impact and penetration of the high-velocity impactor to the multilayered structure. Finally we can confirm the fracture capabilities of the method using a multilayered glass model in which 7 glass layers and a single elastic backing layer are affixed by polyvinyl butyral films.

본 논문에서는 다중적층 유리의 고속 충돌체에 의한 충돌/침투 파괴 현상을 해석하기 위해 페리다이나믹 동적 해석 기법을 적용한다. 대부분의 다중적층 유리 구조물들은 다수의 주요 유리층들이 상대적으로 매우 얇은 탄성 필름으로 접착되어서 만들어진다. 따라서 다중적층 구조물의 수치해석 모델을 구성하는 것은 까다롭고 비용이 많이 든다. 본 연구에서는 실제 절점을 대신하여 가상의 절점들을 주요층들 사이에 위치시키고 상호작용시키는 비국부 가상 층간구조 모델링을 도입하여 보다 효율적으로 다중적층 구조를 모델링하였다. 또한 고속 충돌체와의 충돌 및 침투 현상을 해석하기 위해 페리다이나믹 비국부 접촉 모델이 고려되었다. 7개의 유리층과 하나의 탄성 백킹층이 폴리비닐부티랄 필름으로 부착된 다중적층 유리의 충돌 파괴 해석을 통해 제안된 해석 모델의 손상 파괴 적용 가능성을 확인하였다.

Keywords

References

  1. Ahn, T.S., Ha, Y.D. (2017) Study on Peridynamic Interlayer Modeling for Multilayered Structures, J. Comput. Struct. Eng. Inst. Korea, 30(5), pp.389-396. https://doi.org/10.7734/COSEIK.2017.30.5.389
  2. Bless, S., Chen, T. (2010) Impact Damage in Layered Glass, Int. J. Fract., 162, pp.151-158. https://doi.org/10.1007/s10704-009-9379-7
  3. Bobaru, F., Ha, Y.D., Hu, W. (2012) Damage Progression from Impact in Layered Glass Modeled with Peridynamics, Cent. Eur. J. Eng., 2(4), pp.551-561.
  4. Bowden, F., Brunton, J., Field, J., Heyes, A. (1967) Controlled Fracture of Brittle Solids and Interruption of Electrical Current, Nature, 216, pp.38-42. https://doi.org/10.1038/216038a0
  5. Ha, Y.D., Bobaru, F. (2010) Studies of Dynamic Crack Propagation and Crack Branching with Peridynamics, Int. J. Fract., 162(1-2), pp.229-244. https://doi.org/10.1007/s10704-010-9442-4
  6. Ha, Y.D., Bobaru, F. (2011) Characteristics of Dynamic Brittle Fracture Captured with Peridynamics, Eng. Fract. Mech., 78(6), pp.1156-1168. https://doi.org/10.1016/j.engfracmech.2010.11.020
  7. Ha, Y.D., Cho, S. (2011) Dynamic Brittle Fracture Captured with Peridynamics: Crack Branching Angle & Crack Propagation Speed, J. Comput. Struct. Eng. Inst. Korea, 24(6), pp.637-643.
  8. Hu, W., Wang, Y., Yu, J., Yen, C., Bobaru, F. (2013) Impact Damage on a Thin Glass Plate with a Thin Polycarbonate Backing, Int. J. Imp. Eng., 62, pp.152-165. https://doi.org/10.1016/j.ijimpeng.2013.07.001
  9. Ravi-Chandar, K. (2004) Dynamic Fracture, Elsevier, Netherlands, p.246.
  10. Ramulu, M., Kobayashi, A.S. (1985) Mechanics of Crack Curving and Branching a Dynamic Fracture Analysis. Int. J. Fract., 27(3), pp.187-201. https://doi.org/10.1007/BF00017967
  11. Ramulu, M., Kobayashi, A., Kang, B., Barker, D. (1983) Further studies on dynamic crack branching. Exp. Mech., 23(4), pp.431-437. https://doi.org/10.1007/BF02330060
  12. Ravi-Chandar, K., Knauss, W. (1984a) An Experimental Investigation into Dynamic Fracture: III. on Steadystate Crack Propagation and Crack Branching, Int. J. Fract., 26(2), pp.141-154. https://doi.org/10.1007/BF01157550
  13. Ravi-Chandar, K., Knauss, W. (1984b) An Experimental Investigation into Dynamic Fracture: IV. on the Interaction of Stress Waves with Propagating Cracks, Int. J. Fract., 26(3), pp.189-200. https://doi.org/10.1007/BF01140627
  14. Silling, S.A. (2000) Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces, J. Mech. & Phys. Solids, 48, pp.175-209. https://doi.org/10.1016/S0022-5096(99)00029-0
  15. Silling, S.A., Askari, E. (2005) A Meshfree Method based on the Peridynamic Model of Solid Mechanics, Comput. & Struct., 83(17-18), pp.1526-1535. https://doi.org/10.1016/j.compstruc.2004.11.026