DOI QR코드

DOI QR Code

Antioxidant Activities of Selenium-Treated Spinacia oleracea L.

셀레늄 강화 시금치의 항산화 활성

  • Song, Won-Yeong (Department of Food and Nutrition, International University of Korea) ;
  • Chun, Sung-Sik (Department of Food and Nutrition, International University of Korea) ;
  • Choi, Jeong-Hwa (Department of Food and Nutrition, International University of Korea)
  • 송원영 (한국국제대학교 식품영양학과) ;
  • 전성식 (한국국제대학교 식품영양학과) ;
  • 최정화 (한국국제대학교 식품영양학과)
  • Received : 2018.08.16
  • Accepted : 2018.09.12
  • Published : 2018.12.30

Abstract

In the present study, we investigated the anti-oxidant activities of selenium-treated Spinacia oleracea L. by utilizing experiments in vitro assays. The selenium content of non-treated spinach in this study was noted at $61.19{\mu}g/kg$, whereby the selenium-treated spinach which was treated by a 2000 mg/kg selenium was 1000-fold diluted, and was reported to be about 4 times higher than that of non-treated spinach. In this case, the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity in the concentration of selenium-treated spinach, 0.1~1.0 mg/mL was measured as stronger than that of the identified non-treated spinach. By the same token, the DPPH radical activity of non-treated spinach and selenium-treated spinach was recorded as 46.05~52.75% and 49.52~59.09% respectively. It is emphasized that the 2,2'-azino-di-2-ethyl-benzthiazoline-sulphonate (ABTS) radical scavenging activity as revealed in the concentration of selenium-treated spinach, 0.1~1.0 mg/mL was noted as being stronger than that of non-treated spinach. The ABTS radical activity of non-treated spinach and selenium-treated spinach was 11.85~52.01% and 27.14~53.59% respectively. In this respect, the nitric oxide (NO) radical scavenging activity and reducing power activity in the concentration of selenium-treated spinach, 0.1~1.0 mg/mL was identified and noted as stronger than that of non-treated spinach. These results suggest that selenium-treated spinach could possibly be more useful as a potential antioxidant to improve human health outcomes, than the non-treated spinach.

본 연구에서는 셀레늄 강화 시금치의 항산화 활성을 측정하여 무처리군와 비교하여 증가된 항산화 활성을 관찰하고자 하였다. 0.10, 0.25, 0.50, 0.75, 1.00 mg/mL의 농도를 이용하여 무처리 시금치와 셀레늄 강화 시금치의 항산화 활성을 in vitro 실험을 통해 관찰하였다. 셀레늄 함량은 무처리 시금치의 경우 $61.19{\pm}2.35mg/kg$, 셀레늄 강화시금치의 경우 $239.0{\pm}3.73mg/kg$으로 셀레늄 강화시금치에서 약 3.9배 증가되었다. DPPH radical 소거능은 무처리 시금치에 비해 셀레늄 강화 시금치가 모든 농도에서 약 11~12% 유의적으로 증가하는 경향을 보였다. ABTS radical 소거능은 0.10 mg/mL의 낮은 농도에서 무처리 시금치에 비해 셀레늄 강화시금치에서 22.9%의 높은 증가율을 나타냈으며, 셀레늄 강화 시금치의 경우 무처리 시금치에 비해 유의적으로 높은 소거 능력이 나타났다. NO radical 소거능 또한 같은 농도에서 비교했을 때 셀레늄 강화 시금치의 경우 무처리 시금치에 비해 유의적으로 높은 소거 능력을 보여주었으며, 활성 산소 종 및 유리기에 전자를 공여하는 환원력에서도 무처리 시금치에 비해 셀레늄 강화 시금치에서 더 높은 활성이 나타났다. 이러한 결과는 시금치에 함유된 여러 항산화성분과 더불어 강화 처리로 인해 증가된 셀레늄이 효과적으로 여러 활성산소종의 소거에 관여하여 항산화능의 상승효과에 관여하였다고 사료되어진다.

Keywords

References

  1. Lim, S.J.: Retention of ascorbic acid in vegetable as influenced by various blanching methods. Korean J. Soc. Food Sci., 8, 411-419 (1992).
  2. Maeda, N., Hada, T., Murakami-Nakai, C., Kuriyama, I., Ichikawa, H., Fukumory, Y., Hiratsuka. J., Yoshida, H., Sakaguchi, K., Mizushina, Y.: Effects of DNA polymerase inhibitory and antitumor activities of lipase-hydrolyzed glycolipid fractions form spinach. J. Nutr. Biochem., 16, 121-128 (2005). https://doi.org/10.1016/j.jnutbio.2004.08.005
  3. Matsubara, K., Matsumoto, H., Mizushinal, Y., Mori, M., Nakajima, N., Fuchigami, M., Yoshida, H., Hada, T.: Inhibitory effect of glycolipids from spinach on in vitamin and ex vivo angiogenesis. Oncol. Rep., 14, 157-161 (2005).
  4. Combs, G.F.: Selenium I global food systems. Brit. J. Nutr., 85, 517-547 (2001). https://doi.org/10.1079/BJN2000280
  5. Choi, Y.S., Hesketh, J.E. Nutritional biochemistry of selenium. J. Korean Soc. Food Sci. Nutr., 35, 661-670 (2006). https://doi.org/10.3746/jkfn.2006.35.5.661
  6. Ellis D.R., Salt, D.E.: Plants selenium and human health. Cur. Opin.Plant Biol., 6, 273-279 (2003). https://doi.org/10.1016/S1369-5266(03)00030-X
  7. Moriarty, P.M., Picciano, M.F., Beard, J.L., Reddy, C.C.: Classical selenium-dependent glutathione peroxidase expression is decreased secondary to iron deficiency in rats. J. Nutr., 125, 293-301 (1995).
  8. Flohe, L., Gunzler, W.A., Schock, H.H.: Glutathione peroxidase: a selenoenzyme. FEBS Lett., 32, 132-134 (1973). https://doi.org/10.1016/0014-5793(73)80755-0
  9. Kim, H.J., Kim, W.S., Choi, H.S.: Effect of selenium treatment the quality of wonwhang pear fruit. Korean J. Food Preserv., 16, 838-842 (2009).
  10. Park, K.W., Yang, D.S.: Production of functional Korean ginseng by selenium supplement in hydroponic system. Acta. Hortic., 629, 307-331 (2004).
  11. Mahn, A.: Modelling of the effect of selenium fertilization on the content of bioactive compounds in broccoli heads. Food Chemistry., 233, 492-499 (2017). https://doi.org/10.1016/j.foodchem.2017.04.144
  12. Choi, J.H., Park, Y.H., Lee, S.G., Lee, S.H., Yu, M.H., Lee, S.H., Park, S.H., Lee, I.S., Kim, H.J.: Antioxidant activities and ${\alpha}$-Glucosidase inhibition effects of chicories grown in hydroponics added with $Cr^{3+}$ or selenium. J. Fd. Hyg. Safety., 29, 53-39 (2013).
  13. Lee, S.Y., Jang, M.S., Kim, G.H.: Antioxidant activities and quality characteristics oforganic and conventional Spinach (Spinacia oleracea). J. Korean Soc. Food Cult., 30, 813-817 (2015). https://doi.org/10.7318/KJFC/2015.30.6.813
  14. Mercedes Diaz-Somoano, M., Antonia Lopez-Anton M., Rosa Martinez-Tarazona.: Determination of selenium by ICP-MS and HG-ICP-MS in coal, fly ashes and sorbents used for flue gas cleaning. Fuel., 83, 231-235 (2004). https://doi.org/10.1016/S0016-2361(03)00259-X
  15. Blois, M.S.: Antioxidant determination by the use of a stable free radical. Nature., 181, 1199-1200 (1958). https://doi.org/10.1038/1811199a0
  16. Re, R.N., Pellegrini, A., Proteggente, A., Pannala, M., Yang, M., Rice-Evans, C.: Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 26, 1231-1237 (1999). https://doi.org/10.1016/S0891-5849(98)00315-3
  17. Oyaizu, M.: Studies on products of browning reactions antioxidative activities of products of browning reaction prepared from glucosamine. Japanese J. Mutr., 44, 307-315 (1986).
  18. Kato H., Lee, I.E., Chyuen, N.V., Kim, S.B., Hayase, F.: Inhibitory of nitrosamine formation by non-dialyzable melanoidins. Agric. Biol. Chem., 51, 1333-1338 (1987).
  19. Sreel, R.G.D., Torrie, J.H.: Principles and procedures of statistics. Mcgrow Hill, New York, NY, USA (1990).
  20. Lee, C.K., Cho, K.C., Lee, J.H., Cho, J.Y., Seo, B.S., Yang, W.M.: Effects of selenium supplying methods on the growth and Se uptake of hydroponically grown tomato plants. J. Bio-Environment Control., 4, 284-288 (2005).
  21. Na, H.S., Kim, Y.J., Mun, H., Choi, G.C., Jeong, S.H., Cho, J.Y., Ma, S.J.: Physicochemical properties of shinan seomcho (Spinacia olerecea L.). Korean J. Food Preserv., 5, 652-658 (2010).
  22. Lee, Y.M., Shin, H.D., Lee, J.J., Lee, M.Y.: Antioxidative effect of chaenomelis fructus ethanol extract. Korean J. Food Preserv., 14, 177-182 (2007).
  23. Molan, A.L., Flanagan, J., Wei, W., Moughan, P.J.: Selenium-containing green tea has higher antioxidant and prebiotic activities than regular green tea. Food Chem., 114, 829-835 (2009). https://doi.org/10.1016/j.foodchem.2008.10.028
  24. Miller, N.J., Rice-Evans, C., Davies, M.J., Gopinathan, V.: A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Sci., 84, 407-412 (1993). https://doi.org/10.1042/cs0840407
  25. Zekovic, Z., Vidovic, S., Mujic, I.: Selenium and zinc content and radical scavenging capacity of edible mushrooms Armilaria mellea and Lycoperdon saccatum. Croat. J. Food Sci. Technol., 2, 16-21 (2010).
  26. Schwarz, K., Mertz, W.: Chromium (III) and the glucosetolerance factor. Arch. Biochem. Biophys., 85, 292-295 (1959). https://doi.org/10.1016/0003-9861(59)90479-5
  27. Kim, H. Y., Lee, K. B., Lim, H. Y.: Contents of minerals andvitamins in organic vegetables. Korean J, Food Preserv., 11, 424-429 (2004).
  28. Kim, J.D., Lee, O.H., Lee, J.S., Park, K.Y.: Antioxidative effects of common and organic kale juices. J. Korean Soc. Food Sci. Nutr., 43, 668-674 (2014). https://doi.org/10.3746/jkfn.2014.43.5.668
  29. Ha, H.J., Lee, C.B.: Antioxidant and anti-inflammation activity of red cabbage extract. Korean J. Culinary Res., 20, 16-26 (2014).