DOI QR코드

DOI QR Code

Evaluation of Pharmacological Activities of Ethanol Extracts Prepared from Selected Korean Medicinal Plants

  • Khan, Imran (Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University) ;
  • Eum, IM Zi (Forest Resources Development Institute of Gyeongsangbuk-do) ;
  • Oh, Deog-Hwan (Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University)
  • Received : 2018.08.13
  • Accepted : 2018.10.11
  • Published : 2018.12.30

Abstract

In this study, 23 ethanolic extracts from 20 medicinal plants were evaluated for biological activities. Results revealed that of 23 samples, seven samples have demonstrated good antimicrobial activity. Minimum inhibitory concentrations were 0.4-2.0 mg/mL, while minimum bactericidal concentrations were mostly high 0.8-2.0 mg/mL for selected seven samples. Five samples revealed > 70 mg gallic acid equivalent (GAE)/g of total phenolic contents. Among test samples, six samples exhibited > 80% inhibition of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and only two samples exhibited > 80% inhibition of 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radicals. A total of five test samples revealed Trolox equivalent antioxidant capacity more than $1000{\mu}m/g$. The MTT assay indicated that eight test samples exhibited > 90% viability of murine macrophage cells (RAW 264.7) at $250{\mu}g/mL$ and suppressed iNOS mRNA expression at transcriptional level when stimulated by lipopolysaccharide (LPS). Some medicinal plants revealed promising results, and so they have prospective for further more inclusive studies.

Keywords

References

  1. Zohra, T., Ovais, M., Khalil, A.T., Qasim, M., Ayaz, M., Shinwari, Z.K.: Extraction optimization, total phenolic, flavonoid contents, HPLC-DAD analysis and diverse pharmacological evaluations of Dysphania ambrosioides (L.) Mosyakin & Clemants. Nat. Prod. Res. 12, 1-7 (2018).
  2. Khan, I., Yasinzai, M.M., Mehmood, Z., Ilahi, I., Khan, J., Khalil, A.T., et al. Comparative study of green fruit extract of Melia azedarach Linn. with its ripe fruit extract for antileishmanial, larvicidal, antioxidant and cytotoxic activity. Am. J. Phytomed. Clin. Ther. 2, 442-454 (2014).
  3. Dias, D.A., Urban, S., Roessner, U.: A historical overview of natural products in drug discovery. Metabolites. 2, 303-336 (2012). https://doi.org/10.3390/metabo2020303
  4. Zhang, A., Sun, H., Wang, X.: Recent advances in natural products from plants for treatment of liver diseases. Eur. J. Med. Chem. 63, 570-577 (2013). https://doi.org/10.1016/j.ejmech.2012.12.062
  5. Hicks, S.: Desert Plants and People. 1st. Naylor Co.; San Antonio, TX, USA: p. 75. (2009).
  6. Kinghorn, A.D., Pan, L., Fletcher, J.N., Chai, H.: The relevance of higher plants in lead compound discovery programs. J. Nat. Prod. 74, 1539-1555 (2011). https://doi.org/10.1021/np200391c
  7. Hyun, T., Kim, H., Kim, J.: In vitro screening for antioxidant, antimicrobial, and antidiabetic properties of some Korean native plants on Mt. Halla, Jeju Island. Ind. J Pharm. Sci. 77, 668 (2015). https://doi.org/10.4103/0250-474X.174984
  8. Ali, N., Shah, S.W., Shah, I., Ahmed, G., Ghias, M., Khan, I.: Cytotoxic and anthelmintic potential of crude saponins isolated from Achillea Wilhelmsii C. Koch and Teucrium Stocksianum boiss. BMC Complementary Altern. Med. 11, 106 (2011). https://doi.org/10.1186/1472-6882-11-106
  9. Ali, N., Ahmed, G., Shah, S.W.A., Shah, I., Ghias, M., Khan, I.: Acute toxicity, brine shrimp cytotoxicity and relaxant activity of fruits of callistemon citrinus curtis. BMC Complementary Altern. Med. 11, 99 (2011). https://doi.org/10.1186/1472-6882-11-99
  10. Khalil, A.T., Khan, I., Ahmad, K., Khan, Y.A., Khan, M., Khan, M.J.: Synergistic antibacterial effect of honey and Herba Ocimi Basilici against some bacterial pathogens. J. Trad. Chinese Med. 33, 810-814 (2013). https://doi.org/10.1016/S0254-6272(14)60017-0
  11. Ali, N., Shah, S.W.A., Shah, I., Ahmed, G., Ghias, M., Khan, I., et al.: Anthelmintic and relaxant activities of Verbascum Thapsus Mullein. BMC Complementary Altern. Med. 12, 1 (2012). https://doi.org/10.1186/1472-6882-12-1
  12. Ilahi, I., Khan, I., Tariq, M., Ahmad, I.: Larvicidal activities of different parts of Melia azedarach Linn. against Culex quinquefasciatus Say. (Diptera: Culicidae). J. Basic Appl. Sci. 8, 23-28 (2012).
  13. Ilahi, I., Samar, S., Khan, I., Ahmad, I.: In vitro antioxidant activities of four medicinal plants on the basis of DPPH free radical scavenging. Pak. J. Pharm. Sci. 26, 949-952 (2013).
  14. Khan, I., Umar, M.N.: Evaluation of crude extract of Melia azedarach Linn. against attenuated amphotericin b resistant Leishmania tropica strain. J. Basic Appl. Sci. 11, 314 (2015). https://doi.org/10.6000/1927-5129.2015.11.46
  15. Khan, I., Ahmad, K., Khalil, A.T., Khan, J., Khan, Y.A., Saqib, M.S., et al.: Evaluation of antileishmanial, antibacterial and brine shrimp cytotoxic potential of crude methanolic extract of Herb Ocimum basilicum (Lamiacea). J. Trad. Chinese Med. 35, 316-322 (2015). https://doi.org/10.1016/S0254-6272(15)30104-7
  16. Li, C., Wang, M.-H.: In vitro biological evaluation of 100 selected methanol extracts from the traditional medicinal plants of Asia. Nut. Res. Prac. 8, 151-517 (2014). https://doi.org/10.4162/nrp.2014.8.2.151
  17. CLSI. (Clinical and Laboratory Standards Institute). Performance standards for antimicrobial disk susceptibility tests; approved standard-eleventh edition. CLSI document M02-A11. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087 USA.: Clinical and Laboratory Standards Institute; 2012.
  18. Khan, R., Islam, B., Akram, M., Shakil, S., Ahmad, A.A., Ali, S.M., et al.: Antimicrobial activity of five herbal extracts against multi drug resistant (MDR) strains of bacteria and fungus of clinical origin. Molecules. 14, 586-5897 (2009). https://doi.org/10.3390/molecules14020586
  19. Tawaha, K., Alali, F.Q., Gharaibeh, M., Mohammad, M., El-Elimat, T.: Antioxidant activity and total phenolic content of selected Jordanian plant species. Food Chem. 104, 1372-1378 (2007). https://doi.org/10.1016/j.foodchem.2007.01.064
  20. Miser-Salihoglu, E., Akaydin, G., Caliskan-Can, E., Yardim-Akaydin, S.: Evalution of antioxidant activity of various herbal folk medicines. J. Nut. Food Sci. 2013, (2013).
  21. Saeed, N., Khan, M.R., Shabbir, M.: Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complementary Altern. Med. 12, 221 (2012). https://doi.org/10.1186/1472-6882-12-S1-P221
  22. Arts, M.J.T.J., Haenen, G.R.M.M., Voss, H.-P., Bast, A.: Antioxidant capacity of reaction products limits the applicability of the Trolox Equivalent Antioxidant Capacity (TEAC) assay. Food Chem. Toxicol. 42, 45-49 (2004). https://doi.org/10.1016/j.fct.2003.08.004
  23. Salman, M.T., Khan, R.A., Shukla, I.: Antimicrobial activity of Nigella sativa Linn. seed oil against multi-drug resistant bacteria from clinical isolates. Nat. Prod. Rad. 7, 10-14 (2008).
  24. Sato, M., Tanaka, H., Oh-Uchi, T., Fukai, T., Etoh, H., Yamaguchi, R.: Antibacterial activity of phytochemicals isolated from Erythrina zeyheri against vancomycin-resistant enterococci and their combinations with vancomycin. Phytother. Res. 18, 906-910 (2004). https://doi.org/10.1002/ptr.1556
  25. Ahmad, I., Aqil, F.: In vitro efficacy of bioactive extracts of 15 medicinal plants against $ES{\beta}L$-producing multidrugresistant enteric bacteria. Microbiol. Res. 162, 264-275 (2007). https://doi.org/10.1016/j.micres.2006.06.010
  26. Chowdhury, M.A.N., Ashrafuzzaman, M., Ali, M.H., Liza, L.N., Zinnah, K.M.A.: Antimicrobial activity of some medicinal plants against multi drug resistant human pathogens. Adv. Biosci. Bioengineer. 1, 1 (2013). https://doi.org/10.11648/j.abb.20130101.11
  27. Moghaddam, K.M., Arfan, M., Rafique, J., Rezaee, S., Fesharaki, P.J., Gohari, A.R., et al.: The antifungal activity of Sarcococca saligna ethanol extract and its combination effect with fluconazole against different resistant Aspergillus species. Appl. Biochem. Biotechnol. 162, 127-133 (2010). https://doi.org/10.1007/s12010-009-8737-2
  28. Poonam, V., Kumar, G., S Reddy L, C., Jain, R., K Sharma, S., K Prasad, A., et al.: Chemical constituents of the genus Prunus and their medicinal properties. Cur. Med. Chem. 18, 3758-3824 (2011). https://doi.org/10.2174/092986711803414386
  29. Ilic, S.V., Konstantinovic, S.S., Todorovic, Z.B.: Antimicrobial activity of bioactive component from flower of Linum capitatum Kit. Facta universitatis-series: Phy. Chem. Technol. 3, 73-77 (2004). https://doi.org/10.2298/FUPCT0401073I
  30. Bajko, E., Kalinowska, M., Borowski, P., Siergiejczyk, L., Lewandowski, W.: 5-O-Caffeoylquinic acid: A spectroscopic study and biological screening for antimicrobial activity. LWT-Food Sci. Technol. 65, 471-479 (2016). https://doi.org/10.1016/j.lwt.2015.08.024
  31. Ozkirim, A., Keskin, N., Kurkcuoglu, M., Baser, K.H.C.: Evaluation of some essential oils as alternative antibiotics against American foulbrood agent Paenibacillus larvae on honey bees Apis mellifera L. J. Essent. Oil Res. 24, 465-470 (2012). https://doi.org/10.1080/10412905.2012.703504
  32. Jagannath, N., Ramakrishnaiah, H., Krishna, V., Gowda, P.J.: Chemical composition and antimicrobial activity of essential oil of Heracleum rigens. Nat. Prod. Com. 7, 943-946 (2012).
  33. Janovska, D., Kubikova, K., Kokoska, L.: Screening for antimicrobial activity of some medicinal plants species of traditional Chinese medicine. Czech J. Food Sci. 21, 107-110 (2003).
  34. Lee, H.A., Hong, S., Oh, H.G., Park, S.H., Kim, Y.C., Park, H., et al.: Antibacterial Activity of Sanguisorba officinalis against Helicobacter pylori. Lab Anim. Res. 26, 257-263 (2010). https://doi.org/10.5625/lar.2010.26.3.257
  35. Funatogawa, K., Hayashi, S., Shimomura, H., Yoshida, T., Hatano, T., Ito, H., et al.: Antibacterial activity of hydrolyzable tannins derived from medicinal plants against Helicobacter pylori. Microbiol. Immunol. 48, 251-261 (2004). https://doi.org/10.1111/j.1348-0421.2004.tb03521.x
  36. Kim, H., Lee, B., Yun, K.W.: Evaluation of antimicrobial activity and total phenolic content of three Pinus species. J. Ecol. Env. 36, 57-63 (2013). https://doi.org/10.5141/ecoenv.2013.007
  37. Sultana, B., Anwar, F., Ashraf, M.: Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules. 14, 2167-2180 (2009). https://doi.org/10.3390/molecules14062167
  38. Petti, S., Scully, C.: Polyphenols, oral health and disease: A review. J. Dent. 37, 413-423 (2009). https://doi.org/10.1016/j.jdent.2009.02.003
  39. Shui, G., Leong, L.P.: Separation and determination of organic acids and phenolic compounds in fruit juices and drinks by high-performance liquid chromatography. J. Chromatogr. A. 977, 89-96 (2002). https://doi.org/10.1016/S0021-9673(02)01345-6
  40. Song, F.-L., Gan, R.-Y., Zhang, Y., Xiao, Q., Kuang, L., Li, H.-B.: Total phenolic contents and antioxidant capacities of selected Chinese medicinal plants. Int. J. Mol. Sci. 11, 2362-2372 (2010). https://doi.org/10.3390/ijms11062362
  41. Prakash, A. Antioxidant Activity, Medallion Laboratoris Analytical Proges, 19 (2). Sunarni; 2001.
  42. Amzad Hossain, M., Shah, M.D.: A study on the total phenols content and antioxidant activity of essential oil and different solvent extracts of endemic plant Merremia borneensis. Arab. J. Chem. 8, 66-71 (2015). https://doi.org/10.1016/j.arabjc.2011.01.007
  43. Abdille, M.H., Singh, R., Jayaprakasha, G., Jena, B.: Antioxidant activity of the extracts from Dillenia indica fruits. Food Chem. 90, 891-896 (2005). https://doi.org/10.1016/j.foodchem.2004.09.002
  44. Deighton, N., Brennan, R., Finn, C., Davies, H.V.: Antioxidant properties of domesticated and wild Rubus species. J. Sci. Food Agri. 80, 1307-1313 (2000). https://doi.org/10.1002/1097-0010(200007)80:9<1307::AID-JSFA638>3.0.CO;2-P
  45. Vinson, J.A., Hao, Y., Su, X., Zubik, L.: Phenol antioxidant quantity and quality in foods: vegetables. J. Agri. Food Chem. 46, 3630-3634 (1998). https://doi.org/10.1021/jf980295o
  46. Shi, F., Jia, X., Zhao, C., Chen, Y.: Antioxidant activities of various extracts from Artemisisa selengensis Turcz (LuHao). Molecules. 15, 4934-4946 (2010). https://doi.org/10.3390/molecules15074934
  47. Mathew, S., Abraham, T.E.: In vitro antioxidant activity and scavenging effects of Cinnamomum verum leaf extract assayed by different methodologies. Food Chem. Toxicol. 44, 198-206 (2006). https://doi.org/10.1016/j.fct.2005.06.013
  48. Yu, L., Haley, S., Perret, J., Harris, M., Wilson, J., Qian, M.: Free radical scavenging properties of wheat extracts. J. Agri. Food Chem. 50, 1619-1624 (2002). https://doi.org/10.1021/jf010964p
  49. Wang, M., Li, J., Rangarajan, M., Shao, Y., LaVoie, E.J., Huang, T.-C., et al.: Antioxidative phenolic compounds from sage (Salvia officinalis). J. Agri. Food Chem. 46, 4869-4873 (1998). https://doi.org/10.1021/jf980614b
  50. Arts, M., Haenen, G., Voss, H.-P., Bast, A.: Masking of antioxidant capacity by the interaction of flavonoids with protein. Food Chem. Toxicol. 39, 787-791 (2001). https://doi.org/10.1016/S0278-6915(01)00020-5
  51. Mira, L., Silva, M., Rocha, R., Manso, C.: Measurement of relative antioxidant activityof compounds: a methodological note. Redox Rep. 4, 69-74 (1999). https://doi.org/10.1179/135100099101534666
  52. Nemudzivhadi, V., Masoko, P.: In vitro assessment of cytotoxicity, antioxidant, and anti-inflammatory activities of Ricinus communis (Euphorbiaceae) leaf extracts. Evid-Based Complement. Altern. Med. 2014, (2014).
  53. Morobe, I., Mthethwa, N., Bisi-Johnson, M., Vasaikar, S., Obi, C., Oyedeji, A., et al.: Cytotoxic effects and safety profiles of extracts of active medicinal plants from South Africa. J. Microbiol. Res. 2, 176-182 (2012). https://doi.org/10.5923/j.microbiology.20120206.04
  54. Kanno, S.-i., Shouji, A., Tomizawa, A., Hiura, T., Osanai, Y., Ujibe, M., et al.: Inhibitory effect of naringin on lipopolysaccharide (LPS)-induced endotoxin shock in mice and nitric oxide production in RAW 264.7 macrophages. Life Sci. 78, 673-681 (2006). https://doi.org/10.1016/j.lfs.2005.04.051
  55. Poltorak, A., He, X., Smirnova, I., Liu, M.-Y., Van Huffel, C., Du, X., et al.: Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science. 282, 2085-2088 (1998). https://doi.org/10.1126/science.282.5396.2085
  56. Choi, Y.H., Kim, G.-Y., Lee, H.H.: Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-${\kappa}B$ signaling pathways. Drug Des. Dev. Ther. 8, 1941 (2014).
  57. Guo, D., Xu, L., Cao, X., Guo, Y., Ye, Y., Chan, C.O., et al.: Anti-inflammatory activities and mechanisms of action of the petroleum ether fraction of Rosa multiflora Thunb. hips. J Ethnopharmacol. 138, 717-722 (2011). https://doi.org/10.1016/j.jep.2011.10.010
  58. Park, G.-H., Lee, J.-Y., Kim, D.-H., Cho, Y.-J., An, B.-J.: Anti-oxidant and antiinflammatory effects of Rosa multiflora root. J. Life Sci. 21, 1120-1126 (2011). https://doi.org/10.5352/JLS.2011.21.8.1120
  59. Alam, M., Joy, S., Susan, T., Ali, S.U.: Anti-inflammatory activiy of Premna tomentosa Willd. in albino rats. Ancient Sci. Life. 13, 185 (1993).
  60. Aguilar, J.L., Rojas, P., Marcelo, A., Plaza, A., Bauer, R., Reininger, E., et al.: Anti-inflammatory activity of two different extracts of Uncaria tomentosa (Rubiaceae). J. Ethnopharmacol. 81, 271-276 (2002). https://doi.org/10.1016/S0378-8741(02)00093-4
  61. Meda, L., Cassatella, M.A., Szendrei, G.I., Otvos, L., Baron, P., Villalba, M., et al.: Activation of microglial cells by ${\beta}$-amyloid protein and interferon-${\gamma}$. Nature. 374, 647-50 (1995). https://doi.org/10.1038/374647a0
  62. Dandona, P., Chaudhuri, A., Dhindsa, S.: Proinflammatory and prothrombotic effects of hypoglycemia. Diabetes Care. 33, 1686-1687 (2010). https://doi.org/10.2337/dc10-0503