참고문헌
- M. Z. Jacobson, Air Pollution and Global Warming: History, Science, and Solutions (ISBN: 978-1107691155), 2nd Ed., Cambridge University Press, UK (2012).
-
L. Schill, S. S. R. Putluru, R. Fehrmann, and A. D. Jensen, Low-temperature
$NH_3$ -SCR of NO on mesoporous$Mn_{0.6}Fe_{0.4}$ /$TiO_2$ prepared by a hydrothermal method, Catal. Lett., 144, 395-402 (2014). - X. Cheng and X. T. Bi, A review of recent advances in selective catalytic NO reduction reactor technologies, Particuology, 16, 1-18 (2014).
-
S. Brandenberger, O. Krocher, M. Casapu, A. Tissler, and R. Althoff, Hydrothermal deactivation of Fe-ZSM-5 catalysts for the selective catalytic reduction of NO with
$NH_3$ , Appl. Catal. B, 101, 649-659 (2011). -
P. S. Metkar, M. P. Harold, and V. Balakotaiah, Experimental and kinetic modeling study of
$NH_3$ -SCR of$NO_x$ on Fe-ZSM-5, Cu-chabazite and combined Fe- and Cu-zeolite monolithic catalysts, Chem. Eng. Sci., 87, 51-66 (2013). -
K. Zhang, L. Xu, S. Niu, C. Lu, D. Wang, Q. Zhang, and J. Li, Iron-manganese-magnesium mixed oxides catalysts for selective catalytic reduction of
$NO_x$ with$NH_3$ , Korean J. Chem. Eng., 34, 1858-1866 (2017). -
L. Xu, S. Niu, C. Lu, D. Wang, K. Zhang, and J. Li,
$NH_3$ -SCR performance and characterization over magnetic iron-magnesium mixed oxide catalysts, Korean J. Chem. Eng., 34, 1576-1583 (2017). -
Z. Guan, J. Ren, D. Chen, L. Hong, F. Li, D. Wang, Y. Ouyang, and Y. Gao,
$NO_x$ removal by non-thermal plasma at low temperatures with amino groups additives, Korean J. Chem. Eng., 33, 3102-3108 (2016). - K. Eranen, L. E. Lindfors, F. Klingstedt, and D. Y. Murzin, Continuous reduction of NO with octane over a silver/alumina catalyst in oxygen-rich exhaust gases: Combined heterogeneous and surface-mediated homogeneous reactions, J. Catal., 219, 25-40 (2003).
-
Y. J. Kim, H. J. Kwon, I. Heo, I.-S. Nam, B. K. Cho, J. W. Choung, M.-S. Cha, and G. K. Yeo, Mn-Fe/ZSM5 as a low-temperature SCR catalyst to remove
$NO_x$ from diesel engine exhaust, Appl. Catal. B, 126, 9-21 (2012). -
T. T. Yang, H. T. Bi, and X. X. Cheng, Effects of
$O_2$ ,$CO_2$ and$H_2O$ on NOx adsorption and selective catalytic reduction over Fe/ZSM-5, Appl. Catal. B, 102, 163-171 (2011). -
L. Zhang, X.-L. Sha, L. Zhang, H. He, Z. Ma, L. Wang, Y. Wang, and L. She, Synergistic catalytic removal
$NO_x$ and the mechanism of plasma and hydrocarbon gas, AIP Adv., 6, 075015 (2016). -
T. Y. Lee and H. Bai, Low temperature selective catalytic reduction of
$NO_x$ with$NH_3$ over Mn-based catalyst: A review, AIMS Environ. Sci., 3, 261-289 (2016). -
C. Ciardelli, I. Nova, E. Tronconi, D. Chatterjee, and B. Bandl-Konrad, A "nitrate route" for the low temperature "fast SCR" reaction over a
$V_2O_5$ -$WO_3$ /$TiO_2$ commercial catalyst, Chem. Comm., 23, 2718-2719 (2004). -
M. Iwasaki and H. Shinjoh, A comparative study of "standard", "fast" and "N
$O_2$ " SCR reactions over Fe/zeolite catalyst, Appl. Catal. A, 390, 71-77 (2010). -
M. Koebel, G. Madia, and M. Elsener, Selective catalytic reduction of NO and
$NO_2$ at low temperatures, Catal. Today, 73, 239-247 (2002). -
A. Grossale, I. Nova, E. Tronconi, D. Chatterjee, and M. Weibel, The chemistry of the NO/
$NO_2$ -$NH_3$ "fast" SCR reaction over Fe-ZSM5 investigated by transient reaction analysis, J. Catal., 256, 312-322 (2008). -
M. Piumetti, S. Bensaid, D. Fino, and N. Russo, Catalysis in diesel engine
$NO_x$ after treatment: A review, Catal. Struct. React., 1, 155-173 (2015). -
R. G. Tonkyn, S. E. Barlowa, and J. W. Hoard, Reduction of
$NO_x$ in synthetic diesel exhaust via two-step plasma-catalysis treatment, Appl. Catal. B, 40, 207-217 (2003). -
H. Pan, Y. Guo, Y. Jian, and C. He, Synergistic effect of non-thermal plasma on
$NO_x$ Reduction by$CH_4$ over an In/H-BEA catalyst at low temperatures, Energy Fuels, 29, 5282-5289 (2015). - H. L. Chen, H. M. Lee, S. H. Chen, M. B. Chang, S. J. Yu, and S. N. Li, Removal of volatile organic compounds by single-stage and two-stage plasma catalysis systems: A review of the performance enhancement mechanisms, current status, and suitable applications, Environ. Sci. Technol., 43, 2216-2227 (2009).
- Q. H. Trinh and Y. S. Mok, Environmental plasma-catalysis for the energy-efficient treatment of volatile organic compounds, Korean J. Chem. Eng., 33, 735-748 (2016).
- J. C. Whitehead, Plasma-catalysis: The known knowns, the known unknowns and the unknown unknowns, J. Phys. D, 49, 243001 (2016).
-
C. E. Stere, W. Adress, R. Burch, S. Chansai, A. Goguet, W. G. Graham, F. De Rosa, V. Palma, and C. Hardacre, Ambient temperature hydrocarbon selective catalytic reduction of
$NO_x$ using atmospheric pressure non-thermal plasma activation of a Ag/$Al_2O_3$ catalyst, ACS Catal., 4, 666-673 (2014). -
Q. Yu, T. Liu, H. Wang, L. Xiao, M. Chen, X. Jiang, and X. Zheng, Cold plasma-assisted selective catalytic reduction of NO over
$B_2O_3$ /g-$Al_2O_3$ , Chin. J. Catal., 33, 783-789 (2012). -
N. Jiang, K.-F. Shang, N. Lu, H. Li, J. Li, and Y. Wu, High-efficiency removal of
$NO_x$ from flue gas by multitooth wheel-cylinder corona discharge plasma facilitated selective catalytic reduction process, IEEE Trans. Plasma Sci., 44, 2738-2744 (2016). -
B. Guan, H. Lin, Q. Cheng, and Z. Huang, Removal of
$NO_x$ with selective catalytic reduction based on nonthermal plasma preoxidation, Ind. Eng. Chem. Res., 50, 5401-5413 (2011). -
P. Talebizadeh, M. Babaie, R. Brown, H. Rahimzadeh, Z. Ristovski, and M. Arai, The role of non-thermal plasma technique in
$NO_x$ treatment: A review, Renew. Sustain. Energy Rev., 40, 886-901 (2014). -
M. K. Kim, P. S. Kim, B. K. Cho, I.-S. Nam, and S. H. Oh, Enhanced
$NO_x$ reduction and byproduct removal by (HC + OHC)/SCR over multifunctional dual-bed monolith catalyst, Catal. Today, 184, 95-106 (2012). -
C. Hamill, R. Burch, A. Goguet, D. Rooney, H. Driss, L. Petrov, and M. Daous, Evaluation and mechanistic investigation of a AuPd alloy catalyst for the hydrocarbon selective catalytic reduction (HC-SCR) of
$NO_x$ , Appl. Catal. B, 147, 864-870 (2014). - M. Magureanu, D. Dobrin, N. B. Mandache, B. Cojocaru, and V. I. Parvulescu, Toluene oxidation by non-thermal plasma combined with palladium catalysts, Front. Chem., 1, 7 (2013).
- Q. H. Trinh and Y. S. Mok, Plasma-catalytic oxidation of acetone in annular porous monolithic ceramic-supported catalysts, Chem. Eng. J., 251, 199-206 (2014).
-
H. He, C. Zhang, and Y. Yu, A comparative study of Ag/
$Al_2O_3$ and Cu/$Al_2O_3$ catalysts for the selective catalytic reduction of NO by$C_3H_6$ , Catal. Today, 90, 191-197 (2004). - Y. S. Mok, V. Ravi, H. C. Kang, and B. S. Rajanikanth, Abatement of nitrogen oxides in a catalytic reactor enhanced by nonthermal plasma discharge, IEEE Trans. Plasma Sci., 31, 157-165 (2003).
-
B. K. Cho, J.-H. Lee, C. C. Crellin, K. L. Olson, D. L. Hilden, M. K. Kim, P. S. Kim, I. Heo, S. H. Oh, and I.-S. Nam, Selective catalytic reduction of
$NO_x$ by diesel fuel: Plasma-assisted HC/SCR system, Catal. Today, 191, 20-24 (2012). -
X. Y. Bao, M. A. Malik, D. G. Norton, V. B. Neculaes, K. H. Schoenbach, R. Heller, O. P. Siclovan, S. E. Corah, A. Caiafa, L. P. Inzinna, and K. R. Conway, Shielded sliding discharge-assisted hydrocarbon selective catalytic reduction of
$NO_x$ over Ag/$Al_2O_3$ catalysts using diesel as a reductant, Plasma Chem. Plasma Process., 34, 825-836 (2014). - R. Dorai and M. J. Kushner, Effect of multiple pulses on the plasma chemistry during the remediation of NOx using dielectric barrier discharges, J. Phys. D, 34, 574-583 (2001).
-
B. S. Rajanikanth and A. D. Srinivasan, Pulsed plasma promoted adsorption/catalysis for
$NO_x$ removal from stationary diesel engine exhaust, IEEE Trans. Dielectr. Electr. Insul., 14, 302-311 (2007).