DOI QR코드

DOI QR Code

Preparation of Surface Functionalized Gold Nanoparticles and their Lateral Flow Immunoassay Applications

표면 개질된 금나노입자의 제조 및 이의 측방유동면역 센서 응용

  • Kim, Dong Seok (Department of Chemical Engineering, Kangwon National University) ;
  • Choi, Bong Gill (Department of Chemical Engineering, Kangwon National University)
  • 김동석 (강원대학교 화학공학과) ;
  • 최봉길 (강원대학교 화학공학과)
  • Received : 2017.10.24
  • Accepted : 2017.12.13
  • Published : 2018.02.10

Abstract

In this work, the surface of gold nanoparticles (AuNPs) was modified with small molecules including mercaptoundecanoic acid (MUA) and L-lysine for the development of highly sensitive lateral flow (LF) sensors. Uniformly sized AuNps were synthesized by a modified Turkevich-Frens method, showing an average size of $16.7{\pm}2.1nm$. Functionalized AuNPs were then characterized by transmission electron microscopy, UV-vis spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The stable conjugation of AuNPs and antibodies was obtained at pH 7.07 and the antibody concentration of $10{\mu}g/mL$. The functionalized AuNP-based LF sensor exhibited lower detection limit of 10 ng/mL for hepatitis B surface antigens than that of using the bare AuNP-based LF sensor (100 ng/mL).

본 연구에서는 높은 민감성을 가진 측방유동면역분석(lateral flow immunoassay) 스트립 센서를 제작하기 위하여 mercaptoundecanoic acid (MUA)와 L-lysine 단분자를 사용하여 금나노입자 표면을 개질할 수 있는 합성법을 개발하였다. 균일한 사이즈의 금나노입자를 합성하기 위하여 Turkevich-Frens 합성법을 이용하였으며 $16.7{\pm}2.1nm$ 크기의 금나노 입자를 제조하였다. 기능화된 금나노입자의 특성을 확인하기 위하여 투과전자현미경(TEM), 자외선-가시광선 분광광도계(UV-vis spectroscopy), X선 광전자분광기(XPS), 푸리에 변환 적외선 분광기(FT-IR)를 사용하여 분석하였다. 금나노입자와 항체 간의 안정적인 접합(conjugation)을 위한 pH 및 항체의 농도 조건은 pH 7.07, 항원의 농도 $10{\mu}g/mL$로 최적화되었다. B형간염 표면항원을 검출하기 위하여 측방유동면역분석 스트립 센서를 제작하였으며, 표면개질된 금나노입자로 제작된 면역스트립 센서에서 10 ng/mL로 낮은 검출한계를 나타내었으며, 이는 기능화되지 않은 금나노입자 기반 면역스트립센서의 100 ng/mL보다 높았다.

Keywords

References

  1. S. J. Vella, P. Beattie, R. Cademartiri, A. Laromaine, A. W. Martinez, S. T. Phillips, K. A. Mirica, and G. M. Whitesides, Measuring markers of liver function using a micropatterned paper device designed for blood from a fingerstick, Anal. Chem., 84, 2883-2891 (2012).
  2. Y. Zhao, M. Cao, J. F. McClelland, Z. Shao, and M. Lu, A photoacoustic immunoassay for biomarker detection, Biosens. Bioelectron., 85, 261-266 (2016).
  3. A. K. Yetisen, M. S. Akram, and C. R. Lowe, Pater-based microfluidic point-of-care diagnostic devices, Lab Chip, 13, 2210-2251 (2013).
  4. J. Hu, S. Wang, L. Wang, F. Li, B. Pingguan-Murphy, T. J. Lu, and F. Xu, Advances in paper-based point-of-care diagnostics, Biosens. Bioelectron., 54, 585-597 (2014).
  5. J. Sun, Y. Xianyu, and X. Jiang, Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics, Chem. Soc. Rev., 43, 6239-6253 (2014).
  6. S. Y. Toh, M. Citartan, S. C. B. Gopinath, and T.-H. Tang, Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay, Biosens. Bioelectron., 64, 392-403 (2015).
  7. S. Zhang, A. Garcia-D'Angeli, J. P. Brennan, and Q. Huo, Predicting detection limits of enzyme-linked immunosorbent assay (ELISA) and bioanalytical techniques in general, Analyst, 139, 439-445 (2014).
  8. C. Hirtz, J. Vialaret, A. Gabelle, N. Nowak, Y. Dauvilliers, and S. Lehmann, From radioimmunoassay to mass spectrometry: a new method to quantify orexin-A (hypocretin-1) in cerebrospinal fluid, Sci. Rep., 6, 25162-25172 (2016).
  9. Y. Zhang, C. Tan, R. Fei, X. Liu, Y. Zhou, J. Chen, H. Chen, R. Zhou, and Y. Hu, Sensitive chemiluminescence immunoassay for E. coli O157:H7 detection with signal dual-amplification using glucose oxidase and laccase, Anal. Chem., 86, 1115-1122 (2014).
  10. E. B. Bahadir and M. K. Sezginturk, Lateral flow assays: principles, designs and labels, Trends Anal. Chem., 82, 286-306 (2016).
  11. C. M. Niemeyer, Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science, Angew. Chem. Int. Ed., 40, 4128-4158 (2001).
  12. L. Dykman and N. Khlebtsov, Gold nanoparticles in biomedical applications: recent advances and perspectives, Chem. Soc. Rev., 41, 2256-2282 (2012).
  13. W. Zhou, X. Gao, D. Liu, and X. Chen, Gold nanoparticles for in vitro diagnostics, Chem. Rev., 115, 10575-10636 (2015).
  14. N. G. Bastus, J. Comenge, and V. Puntes, Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus ostwald ripening, Langmuir, 27, 11098-11105 (2011).
  15. D. S. Kim, Y. T. Kim, S. B. Hong, J. Kim, N. S. Heo, M.-K. Lee, S. J. Lee, B. I. Kim, I. S. Kim, Y. S. Huh, and B. G. Choi, Development of lateral flow assay based on size-controlled gold nanoparticles for detection of hepatitis B surface antigen, Sensors, 16, 2154-2164 (2016).
  16. S. Lou, J. Ye, K. Li, and A. Wu, A gold nanoparticle-based immunochromatographic assay: the influence of nanoparticulate size, Analyst, 137, 1174-1181 (2012).
  17. P. Zhao, N. Li, and D. Astruc, State of the art in gold nanoparticle synthesis, Coord. Chem. Rev., 257, 638-665 (2013).
  18. M. Wuithschick, A. Birnbaum, S. Witte, M. Sztucki, U. Vainio, N. Pinna, K. Rademann, F. Emmerling, R. Kraehnert, and J. Plote, Turkevich in new robes: key questions answered for the mos common gold nanoparticle synthesis, ACS Nano, 9, 7052-7071 (2015)
  19. X. Liu, H. Huang, Q. Jin, and J. Ji, Mixed charged zwitterionic self-assembled monolayers as a facile way to stabilize large gold nanoparticles, Langmuir, 27, 5242-5251 (2011).
  20. L. U. Syed, L. Z. Swisher, H. Huff, C. Rochford, F. Wang, J. Liu, J. Wu, M. Richter, S. Balivada, D. Troyer, and J. Li, Luminol-labeled gold nanoparticles for ultrasensitive chemiluminescence-baded chemical analyses, Analyst, 138, 5600-5609 (2013).
  21. O. Horovitz, A. Mocanu, G. Tomoaia, L. Bobos, D. Dubert, I. Daian, T. Yupsanis, and M. Tomoaia-Cotisel, Lysine mediated assembly of gold nanoparticles, Stud. Univ. Babes-Bolyai, Chem., 52, 97-108 (2007).

Cited by

  1. 암 바이오마커 검출용 비색법 기반 측면 흐름 면역 크로마토그래피 분석법(LFIA) 스트립의 최신 연구 동향 vol.31, pp.6, 2020, https://doi.org/10.14478/ace.2020.1093