DOI QR코드

DOI QR Code

PDMS-HNT과 PDMS-mHNT 복합막을 통한 CO2와 N2의 기체투과

Gas Permeation of CO2 and N2 through PDMS-HNT and PDMS-mHNT Composite Membranes

  • 투고 : 2017.09.24
  • 심사 : 2017.11.27
  • 발행 : 2018.02.10

초록

본 연구에서는 PDMS에 halloysite nanotube (HNT)와 modified HNT (mHNT)를 첨가하여 PDMS-HNT 복합막과 PDMS-mHNT 복합막을 제조하였다. 그리고 물리 화학적 특성을 조사하기 위하여 FT-IR, XRD, TGA, SEM을 사용하였고, $N_2$$CO_2$ 기체에 대한 투과도와 선택도 성질을 고찰하였다. 특히, $35^{\circ}C$에서 PDMS-HNT 10 wt% 복합막과 PDMS-mHNT 5 wt% 복합막은 가장 높은 $CO_2/N_2$ 선택도와 $CO_2$ 투과도를 보였다. 전체적으로 PDMS-HNT 복합막과 PDMS-mHNT 복합막은 PDMS 막보다 $CO_2/N_2$ 선택도가 증가하였다.

In this study, PDMS-HNT and PDMS-mHNT composite membranes were prepared by the addition of halloysite nanotube (HNT) and modified HNT (mHNT) to PDMS. To investigate the physico-chemical characteristics of composite membranes, analytical methods such as FT-IR, XRD, TGA, and SEM were utilized. The gas permeability and selectivity properties of $N_2$ and $CO_2$ were evaluated. In particular, the PDMS-HNT with 10 wt% HNT and PDMS-mHNT with 5 wt% mHNT showed the highest $CO_2/N_2$ selectivity and $CO_2$ permeability at $35^{\circ}C$, respectively. Overall, PDMS-HNT and PDMS-mHNT composite membranes improved the $CO_2/N_2$ selectivity compared to that of using PDMS membrane.

키워드

참고문헌

  1. B. D. Freeman, Basis of permeability/selectivity tradeoff relations in polymeric gas separation membrane, Macromolecules, 32, 375-380 (1999).
  2. L. M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci., 62, 165-185 (1991).
  3. F. Peng, L. Lu, H. Sun, Y. Wang, J. Liu, and Z. Jiang, Hybrid organic-inorganic membrane: solving the trade-off between permeability and selectivity, Chem. Mater., 17, 6790-6796 (2005).
  4. L. M. Robeson, The upper bound revisited, J. Membr. Sci., 320, 390-400 (2008).
  5. Y. Shen and A. C. Lua, Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic filler (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation, Chem. Eng. J., 192, 201-210 (2012).
  6. R. S. Murali, A. F. Ismail, M. A. Rahman, and S. Sridhar, Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations, Sep. Purif. Technol., 129, 1-8 (2014).
  7. R. Mahajan and W. J. Koros, Mixed matrix membrane materials with glassy polymers. Part 1., Polym. Eng. Sci., 42, 1420-1431 (2002).
  8. A. F. Ismail, N. H. Rahim, A. Mustafa, T. Matsuura, B. C. Ng, S. Abdullah, and S. A. Hashemifard, Gas separation performance of polyethersulfone/multi-walled carbon nanotubes mixed matrix membranes, Sep. Purif. Technol., 80, 20-31 (2011).
  9. H. Cong, J. Zhang, M. Radosz, and Y. Shen, Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-1,4-phenylene oxide) for gas separation, J. Membr. Sci., 294, 178-185 (2007).
  10. L. Ge, Z. Zhu, and V. Rudolph, Enhanced gas permeability by fabricating functionalized multi-walled carbon nanotubes and polyethersulfone nanocomposite membrane, Sep. Purif. Technol., 78, 76-82 (2011).
  11. H. W. Yoon, H. D. Lee, and H. B. Park, Gas transport behavior of modified carbon nanotubes/hydrogel composite membranes, Membr. J., 23(5), 375-383 (2013).
  12. Y. Xie, P. R. Chang, S. Wang, J. Yu, and X. Ma, Preparation and properties of halloysite nanotubes/plasticized Dioscorea opposita Thunb. starch composites, Carbohydr. Polym., 83, 186-191 (2011).
  13. R. T. Silva, P. Pasbakhsh, K. L. Goh, S. P. Chai, and H. Ismail, Physico-chemical characterisation of chitosan/halloysite composite membranes, Polym. Test., 32, 265-271 (2013).
  14. R. S. Murali, M. Padaki, T. Matsuura, M. S. Abdullah, and A. F. Ismail, Polyaniline in situ modified halloysite nanotubes incorporated asymmetric mixed matrix membrane for gas separation, Sep. Purif. Technol., 132, 187-194 (2014).
  15. Y. Joo, Y. Jeon, S. U. Lee, J. H. Sim, J. Ryu, S. Lee, H. Lee, and D. Sohn, Aggregation and stabilization of carboxylic acid functionalized halloysite nanotubes, J. Phys. Chem. C, 116, 18230-18235 (2012).
  16. S. Deng, J. Zhang, L. Ye, and J. Wu, Toughening epoxies with halloysite naotubes, Polymer, 49, 5119-5127 (2008).
  17. M. Du, B. Guo, and D. Jia, Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene), Eur. Polym. J., 42, 1362-1369 (2006).
  18. M. Du, B. Guo, Y. Lei, M. Liu, and D. Jia, Carboxylated butadiene-styrene rubber/halloysite nanotube nanocomposites: interfacial interaction and performance, Polymer, 49, 4871-4876 (2008).
  19. K. Hedicke-Hochstotter, G. T. Lim, and V. Altstadt, Novel polyamide nanocomposites based on silicate nanotubes of the mineral halloysite, Compos. Sci. Technol., 69, 330-334 (2009).
  20. P. Pasbakhsh, H. Ismail, M. N. A. Fauzi, and A. A. Bakar, EPDM/modified halloysite nanocomposites, Appl. Clay Sci., 48, 405-413 (2010).
  21. C. M. Atayde and I. Doi, Highly stable hydrophilic surfaces of PDMS thin layer obtained by UV radiation and oxygen plasma treatments, Phys. Status Solidi C, 7, 189-192 (2010).
  22. R. D. Raharjo, B. D. Freeman, D. R. Paul, G. C. Sarti, and E. S. Sanders, Pure and mixed gas $CH_4$ and $n-C_4H_{10}$ permeability and diffusivity in poly(dimethylsiloxane), J. Membr. Sci., 306, 75-92 (2007).
  23. T. C. Merkel, R. P. Gupta, B. S. Turk, and B. D. Freeman, Mixed-gas permeation of syngas components in poly(dimethylsiloxane) and poly(1-trimethylsiyl-1-propyne) at elevated temperature, J. Membr. Sci., 191, 85-94 (2001).
  24. M. Sadrzadeh, K. Shahidi, and T. Mohammadi, Effect of operating parameters on pure and mixed gas permeation properties of a synthesized composite PDMS/PA membrane, J. Membr. Sci., 342, 327-340 (2009).
  25. G. Defontaine, A. Barichard, S. Letaief, C. Feng, T. Matsuura, and C. Detellier, Nanoporous polymer-clay hybrid membrane for gas separation, J. Colloid Interface Sci., 343, 622-627 (2010).
  26. M. Nour, K. Berean, S. Balendhran, J. Z. Ou, J. D. Plessis, C. McSweeney, M. Bhaskaran, S. Sriram, and K. Kalantar-zaden, CNT/PDMS composite membranes for $H_2$ and $CH_4$ gas separation, Int. J. Hydrogen Energy, 38, 10494-10501 (2013).
  27. M. Nour, K. Berean, M. J. Griffin, G. I. Matthews, M. Bhaskaran, S. Sriram, and K. Kalantar-zadeh, Nanocomposite carbon-PDMS membranes for gas separation, Sens. Actuators B, 161, 982-988 (2012).
  28. T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, Gas sorption, diffusion, and permeation in poly(dimethylsiloxane), J. Polym. Sci. B, 38, 415-434 (2000).
  29. S. A. Hashemifard, A. F. Ismail, and T. Matsuura, Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNT) as filler for gas separation, J. Colloid Interface Sci., 359, 359-370 (2011).
  30. C. K. Yeom, S. H. Lee, and J. M. Lee, Study of transport of pure and mixed $CO_2$/$N_2$ gases through polymeric membranes, J. Appl. Polym. Sci., 78, 179-189 (2000).