DOI QR코드

DOI QR Code

KOH/La2O3 촉매상에서 Styrenated Phenol과 Ethylene Carbonate의 반응으로부터 Styrenated Phenol Alkoxylate의 합성

Synthesis of Styrenated Phenol Alkoxylate from Styrenated Phenol with Ethylene Carbonate over KOH/La2O3 Catalyst

  • 이승민 (순천대학교 공과대학 고분자.화학공학부) ;
  • 손석환 (순천대학교 공과대학 고분자.화학공학부) ;
  • 정성훈 ((주)에스에프시) ;
  • 곽원봉 ((주)에스에프시) ;
  • 신은주 (순천대학교 공과대학 화학과) ;
  • 안호근 (순천대학교 공과대학 고분자.화학공학부) ;
  • 정민철 (순천대학교 공과대학 고분자.화학공학부)
  • Lee, Seungmin (School of Polymer and Chemical Engineering, Sunchon National University) ;
  • Son, Seokhwan (School of Polymer and Chemical Engineering, Sunchon National University) ;
  • Jung, Sunghun (SFC. Co., Ltd.) ;
  • Kwak, Wonbong (SFC. Co., Ltd.) ;
  • Shin, Eun Ju (Department of Chemistry, Sunchon National University) ;
  • Ahn, Hogeun (School of Polymer and Chemical Engineering, Sunchon National University) ;
  • Chung, Minchul (School of Polymer and Chemical Engineering, Sunchon National University)
  • 투고 : 2017.10.24
  • 심사 : 2017.11.22
  • 발행 : 2018.02.10

초록

Styrenated phenol alkoxylate (SP-A)는 일반적으로 균일계 염기 촉매 하에서 styrenated phenol (SP)과 ethylene oxide (EO)로부터 제조되어진다. 그러나, 취급이 용이하지 않은 EO를 사용하려면 고압반응장치를 이용한 반응공정 제어가 필요하다. 또한, 균일계 염기 촉매를 사용하면 반응종결 후에 잔존하는 염기를 제거하기 위한 중화공정이 필요하고, 촉매와 생성물의 분리가 어렵다는 문제점이 있다. 따라서, 본 연구에서는 균일계 염기 촉매를 사용하지 않고 불균일계염기 촉매를 사용하여 SP와 ethylene carbonate (EC)의 반응으로부터 제조된 SP-A에 대하여 보고하고자 한다. SP-A의 제조에 사용된 불균일계 염기 촉매는 KOH를 $La_2O_3$에 담지시킨 후, 소성하여 얻었다. 또한, EO 대신 EC를 사용함으로써 고압반응이 아닌 상압반응 조건에서 SP-A제조가 가능하였다. 합성된 SP-A의 평균 분자량 크기는 반응조건에 따라서 매우 다양하게 나타났다. $KOH/La_2O_3$촉매 하에서 제조된 SP-A의 평균 분자량 크기는 반응온도, 촉매의 첨가량 및 EC의 첨가량을 조절함으로써 임의로 조절이 가능하였다.

Styrenated phenol alkoxylates (SP-A) were prepared from styrenated phenol (SP) and ethylene oxide (EO) under a homogeneous base catalyst. However, to use EO that is difficult to handle, a high-pressure reaction device capable of controlling the reaction process should be used. Additionally, when a homogeneous base catalyst is used, a neutralization process is required to remove residual bases after the reaction, and it is also difficult to separate the catalyst and the product. Therefore, in this study, we report the results of SP-A prepared from the reaction of SP and EC using only heterogeneous base catalysts. The heterogeneous base catalyst was obtained by supporting KOH on $La_2O_3$ and calcintion. Using EC instead of EO, it was possible to produce SP-A under the atmospheric rather than high-pressure reaction condition. Average molecular weights of synthesized SP-A varied greatly depending on reaction conditions. The average molecular weight of SP-A prepared using the $KOH/La_2O_3$ catalyst could be controlled arbitrarily by controlling the reaction temperature and added catalyst and EC amounts.

키워드

참고문헌

  1. H. B. Song, G. E. Ahn, B. M. Hwang, U. H. Lee, J. R. Kim, B. J. Jung, and B. H. Gang, Water-based cleaning liquid composition for electronic materials and cleaning method using the same, Korean Patent 101,571,753 (2015).
  2. J. C. Lim, J. S. Park, D. S. Han, J. S. Kim, S. Lee, D. H. Mo, and J. S. Lee, A study on isoelectric point and softness of an ethylene oxide adducted amphoteric surfactant, Appl. Chem. Eng., 6, 521-528 (2012).
  3. C. Nie, Method for preparing phenoxyethanol, Chinese Patent 104,926,618 (2015).
  4. L. Wang and D. Qin, Method for producing alkoxylate through microchannel reactor, Chinese Patent 106,279,664 (2016).
  5. I. Toshiaki and U. Yoshitaka, Process for producing high purity 2-phenoxyethanol reaction solution, Japanese Patent 143,075 (2004).
  6. Klumpe and Marcus, Process for producing allyl alcohol alkoxylate, Korean Patent 100,005,856 (2014).
  7. H. J. Yun, Y. H. Lee, S. H. Son, M. C. Chung, M. K. Jang, E. J. Shin, S. H. Jung, W. B. Kwak, W. J. Jeong, and H. G. Ahn, Prepartion of styrenated phenol by alkylation of phenol with styrene over ${SO_4}^{2-}/ZrO_2$ catalyst, J. Nanosci. Nanotechnol., 17, 2776-2779 (2017).
  8. K. J. Kim and H. G. Ahn, Complete oxidation of toluene over bimetallic Pt-Au catalysts supported on Zno/$Al_2O_3$, Appl. Catal. B, 91, 308-318 (2009).
  9. R. M. Pacia, S. W. Pyo, and Y. S. Ko, Synthesis and adsorption characteristics of guanidine-based $CO_2$ adsorbent, Appl. Chem. Eng., 4, 473-478 (2017).
  10. K. W. Kim, S. M. Lee, and S. C. Hong, A study on characterization for catalytic oxidation of nitrogen monoxide over Mn/$TiO_2$ catalyst, Appl. Chem. Eng., 5, 474-480 (2014).
  11. S. M. Lee, H. J. Choi, and S. C. Hong, The effect of oxygen in low temperature SCR over Mn/$TiO_2$ Catalyst, Appl. Chem. Eng., 1, 119-123 (2012).
  12. A. K. Kinage, S. P. Gupte, R. K. Chaturvedi, and R. V. Chaudhari, Highly selective synthesis of mono-ethylene glycol phenyl ethers via hydroxyalkoxylation of phenols by cyclic carbonates using large pore zeolites, Catal. Commun., 9, 1649-1655 (2008).
  13. J. Wu, J. Zhang, X. Wang, and L. Sun, A preparation method of polybenzene polyether succinate and its sulfonate, Chinese Patent 102875799 (2013).
  14. J. Feng, X. Li, M. Wang, X. Zheng, J. Bai, L. Wang, and Y. Peng, One-pot, template-free synthesis of hydrophobic single-crystalline $La(OH)_3$ nanowires with tunable size and their $d^0$ ferromagnetic properties, RSC Adv., 5, 16093-16100 (2015).
  15. N. O. Savage, S. A. Akbar, and P. K. Dutta, Titanium dioxide based high temperature carbon monoxide selective sensor, Sens. Actuators B, 72, 239-248 (2001).
  16. B. Klingenberg and M. A. Vannice, NO adsorption and decomposition on $La_2O_3$ studied by driftes, Appl. Catal. B, 21, 19-33 (1999).
  17. C. Hu, H. Liu, W. Dong, Y. Zhang, G. Bao, C. Lao, and Z. L. Wang, $La(OH)_3$ and $La_2O_3$ nanobelts-synthesis and physical properties, Adv. Mater., 19, 470-474 (2007).
  18. A. A. Mohamad, N. S. Mohamed, M. Z. A. Yahya, R. Othman, S. Ramesh, Y. Alias, and A. K. Arof, Ionic conductivity studies of poly(vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel-zinc cells, Solid State Ion., 156, 171-177 (2003).
  19. P. Ziosi, T. Tabanelli, G. Fornasari, S. Cocchi, F. Cavani, and P. Righi, Carbonates as reactants for the production of fine chemicals: the synthesis of 2-phenoxyethanol, Catal. Sci. Technol., 4, 4386-4395 (2014).