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THE FAST TRUNCATED LAGRANGE METHOD FOR

IMAGE DEBLURRING WITH ANTIREFLECTIVE

BOUNDARY CONDITIONS

SeYoung Oh* and SunJoo Kwon**

Abstract. In this paper, under the assumption of the symmetry
point spread function, antireflective boundary conditions(AR-BCs)
are considered in connection with the fast truncated Lagrange(FTL)
method. The FTL method is proposed as an image restoration
method for large-scale ill-conditioned BTTB(block Toeplitz with
Toeplitz block) and BTHHTB(block Toeplitz-plus-Hankel matrix
with Toeplitz-plus-Hankel blocks) linear systems([13, 17]). The im-
plementation and efficiency of the FTL method in the AR-BCs are
further illustrated. Especially, by employing the AR-BCs, both the
continuity of the image and the continuity of its normal derivative
are preserved at the boundary. A reconstructed image with less
artifacts at the boundary is obtained as a result.

1. Introduction

The discrete mathematical model of blurred image gives an equation

(1.1) Af = y,

where y is the observed image. A large scale ill-conditioned matrix
A blurring the unknown true image f is modeled with the spatially
invariant discrete point spread function(PSF).

To find an useful approximation of the true image, the discrete ill-
posed problems of the image reconstruction frequently use a Tikhonov
regularization form

min
f
‖Af − y‖22 + λ ‖f‖22 ,(1.2)
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where λ is a positive regularization parameter.

The purpose of deblurring problem is to recover the true image from
blurred and noisy images. Because of the blurring process, the boundary
values of degraded image are not completely determined by the original
image inside the scene. The choice of the most reasonable boundary
condition is an important aspect in the modelization of image blurring.

The PSF matrix imposed antireflective boundary conditions(AR-BCs)
is related to a Toeplitz+Hankel plus 2 rank correction matrix, where the
corrections are placed at the first and the last column. This matrix is not
diagonalizable by unitary transformations including the case of quadran-
tally symmetric blur. Nevertheless, it is possible to transform it into a
simple matrix by means of trigonometric transforms by using two differ-
ent approaches in [3]. These approaches are based on the fact that the
eigenvector basis of the antireflective matrix of order n is made by n−2
sine frequency functions and 2 more linear functions. In particular, the
latter linear functions are low frequencies associated with the eigenvalue
one of multiplicity two. To exploite this property, in [3] the components
corresponding to the linear eigenvectors are first reconstructed. Then
the remaining problem of order n−2 is diagonalized by the discrete sine
transform. At the boundary the continuity of the image and its normal
derivative (C1 continuity)are preserved by the AR-BCs. Therefore typi-
cal artifacts called ringing effects are negligible with respect to the other
BCs[19], at least for piecewise smooth images.

The fast truncated Lagrange(FTL) method is well suited for large-
scale ill-conditioned BTTB(block Toeplitz with Toeplitz block) and BTH-
HTB(block Toeplitz-plus-Hankel matrix with Toeplitz-plus-Hankel blocks)
linear systems which is from an image restoration problem with zero
and reflective boundary condition ([13, 17]). FTL method uses a quasi-
Newton method applying to the first-order optimality conditions of the
Lagrangian function for the equality constrained minimization of (1.2).
Since the Hessian of the Lagrangian can be approximated by a BCCB
(block circulant with circulant block) and BTHHTB matrix, the two-
dimensional fast Fourier transform(FFT) and Discrete cosine transform
(DCT) are used to compute the quasi-Newton step. The quasi-Newton
iteration is terminated according to the discrepancy principle. The cor-
responding Lagrange multiplier of an iterative Lagrange method acts as
a regularization parameter.

For the purpose of comparing for the AR-BCs with the reflective BCs,
we tested three images in [9] and two blurring models, Gaussian model
and out-of-focus blurring model, are used as in [10, 11]. According to
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the computed results with our algorithm written by Matlab, all three
test images in our experiment gave the smaller relative accuracies and
the higher PSNR under the AR-BCs, and thus, the more quality image
under the AR-BCs than reflective BCs. And there are little ringing
effect in the reconstructed images from the AR-BCs.

In this paper, the FTL-method is applied to the image restoration
problem with the AR-BCs. The outline of this paper is organized as fol-
lows: Section 2 recalls the characteristics of AR-BCs. Section 3 describes
the usage of the AR-BCs in the FTL method. The related simulation is
illustrated in Section 4. Finally, Section 5 concludes this paper.

2. The Antireflective Matrices

In this section, the structure of the matrix A representing the blurring
operator with the AR-BCs in [1, 2, 5, 6, 7] are reviewed.

Let Q
(1)
n be the n-dimensional discrete sine transform(DST I), or-

thogonal and symmetric matrix:

(2.1) (Q(1)
n )ij =

√
2

n+ 1
sin(

jiπ

n+ 1
), i, j = 1, . . . , n.

And let Q
(d)
n = Q

(1)
n ⊗ · · · ⊗Q(1)

n be d (≥ 1) time Kronecker products of

Q
(1)
n . Then we define τ

(d)
n to be the space of all the matrices that can

be diagonalized by Q
(d)
n :

τ (d)
n = {Q(d)

n DQ(d)
n : D is a real diagonal matrix of size nd}.

The classes of nd × nd matrices S(d) is defined by the following. For
d = 1, A ∈ S(1) if

A =

 α

v Â w
β

 ,

with α, β ∈ R, v,w ∈ Rn−2 and Â ∈ τ (1)
n−2. For d > 1, A ∈ S(d) if

A =

 α
v A∗ w

β

 ,

with α, β ∈ S(d−1),v,w ∈ R(n−2)nd−1×nd−1
, v = (vj)

n−2
j=1 , w = (wj)

n−2
j=1 ,

vj , wj ∈ S(d−1), and A∗ = (A∗i,j)
n−2
i,j=1 having an external τ

(1)
n−2 structure,

with A∗ = (A∗i,j) ∈ S(d−1).
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For the case of one dimensional(d = 1) objects, the spectral decom-
position of the coefficient matrix obtained by imposing AR-BCs is de-
scribed by using the AR(antireflective)-transform in [1, 7].

AR-BCs are imposed by a central symmetry around the boundary
point by f1−j = f1 − (fj+1 − f1) = 2f1 − fj+1, and fn+j = fn − (fn−j −
fn) = 2fn − fn−j , for j = 1, . . . ,m. Then (1.1) becomes

(2.2) Af =
[
zeT1 − (0|Tl)J̃ + T − (Tr|0)Ĵ + weTn

]
f = y,

where ek is the kth vector of the canonical basis J̃ =

(
0 0
0 J

)
, Ĵ =(

J 0
0 0

)
with J denoting the (n− 1)-dimensional flip matrix and the

matrices Tl, T, and Tr are lower triangular Toeplitz, Toeplitz, and upper
triangular Toeplitz respectively. The linear system (2.2) can be solved
by using three FST in O(n log n) operations ([19]).

If a PSF h =
(
h−m . . . h0 . . . hm

)
is symmetric and

∑m
j=−m hj

= 1, the precise structure of the coefficient A in (2.2) is Toeplitz+Hakel
plus 2 rank correction matrix

(2.3) A =



z1 + h0 0 . . . 0 0
z2 + h1 0

... hm
zm + hm−1 Â zm + hm−1

hm
...

0 z2 + h1

0 0 . . . 0 z1 + h0


,

where A1,1 = An,n = 1, zj = 2
∑m

k=j hk, Â ∈ τ
(1)
n−2.

The eigenvalues of the τ
(1)
n−2 matrix as indicated in [1] are given by

the cosine function h(x) evaluated at the grid point xi = iπ/(n− 1) for
i = 1, . . . , n− 2,

(2.4) h(x) =

m∑
j=−m

hje
ijx, i =

√
−1.

Lemma 2.1. [19] For the symmetric blurring function h, the matrix

Â in (2.3) can be diagonalized by Q
(1)
n−2;

Â = (Q
(1)
n−2)Hdiag(h(x))Q

(1)
n−2,
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and Â = PAP T with

P =

 0 0
... In−2

...
0 0

 ∈ R(n−2)×n.

Also, the eigenvalues of A are given by 1 with multiplicity 2 and by the

eigenvalues of Â.

Note that the eigenvalues h(xi) can be easily computed by Di,i =
[Q

(1)
n−2(Âe1)]i

[Q
(1)
n−2e1]i

, i = 1, . . . , n−2. That is, applying a DST I transform to the

first column of Â, the eigenvalues of Â can be founded.

In [1, 7], the AR-transform is defined by the matrix

(2.5) Tn =

 α−1
n 0

α−1
n p Q

(1)
n−2 α−1

n Jp
0 α−1

n

 ,

where the vector p̃ = [1,pT , 0]T is the sampling of the function 1−x on

the grid j/(n − 1) for j = 0, . . . , n − 1, αn = ‖p̃‖2 =
√

n(2n−1)
6(n−1) and J

is the n− 2 dimensional flip matrix, i.e., [J ]s,t = 1 if s+ t = n− 1 and
zero otherwise. The inverse of the AR-transform is obtained as

(2.6) T−1
n =

 αn 0

−Q(1)
n−2p Q

(1)
n−2 −Q(1)

n−2p
0 αn

 .

The spectral decomposition of the antireflective matrix A in (2.3) is

(2.7) A = An(h) = TnDnT
−1
n ,

where Dn = diag(h(x)) with x defined as x1 = xn = 0 and xj+1 = jπ
n−1

for j = 1, . . . , n− 2.

Tikhonov regularization problem (1.2) can be rewritten as the linear
system

(2.8) (ATA+ λI)f = AT y,

which has an unique solution. For the matrix A under AR-BCs, since
AT 6= A even for a symmetric PSF and the antireflective algebra is
not closed under transposition, it was proposed to replace AT by A
in regularization process in [4]. Thus the associated Tikhonov linear
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system becomes (A2 + λI)f = Ay and the reblurring equation to be
solved becomes

(2.9) An(h2 + λ)f = An(h)y.

Generally, the expanding matrix with AR-BCs in d-level case is de-
scribed as follows.

Theorem 2.2. [2] Let h be the d-dimensional PSF then the nd × nd
blurring matrix A with n ≥ 3 and AR-BCs has the form

(2.10) A =



z1 + h0 0 . . . 0 0
z2 + h1 0

... hm
zm + hm−1 A∗ zm + hm−1

hm
...

0 z2 + h1

0 0 . . . 0 z1 + h0


,

where zeros denote null matrices of proper order, where

1. hj ∈ Rn
d−1×nd−1

is the AR-BC matrix related to the (d − 1)-

dimensional PSF h
(d)
(d−1,{1},j) = (hj,k)

m
k1,...,kd−1=−m and zj = 2

∑m
k=j hk.

2. A ∈ S(d).

In [6], it was shown that matrix operations such as inversion, ma-
trix vector product, computation of the eigenvalues, and solving linear
systems can all be done by using a constant number of d-level sine trans-
forms, and therefore the resulting cost is O(nd log n).

If h is a d-variate real-valued cosine symbol related to the d-dimensional
symetric and normalized mask h, then

A = An(h) = T (d)
n Dn(T (d)

n )
−1
, T (d)

n = Tn ⊗ · · · ⊗ Tn
where Dn is a diagonal matrix containing the eigenvalues of An(h).

3. The Fast Truncated Lagrange Method for AR-BCs

This section investigates the fast truncated Lagrange(FTL) method
method for the image restoration problem with the antireflective bound-
ary condition. The FTL method does not require any prior good esti-
mates of the regularization parameter. The detailed information regard-
ing FTL method is further discussed in [13].
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To minimize the problem (1.2), the equality constrained minimiza-
tion,

min
f

1

2
‖f‖2

subject to
1

2
‖Af − y‖2 = ε,

(3.1)

can be solved for f . The ε is a small positive parameter such as 0 <

ε � δ2

2 if δ is explicitly known as the error. The problem (3.1) is re-
placed with the unconstrained minimization problem of the Lagrangian
function L(f, λ), where the Lagrangian function for (3.1) is

L(f, λ) =
1

2
‖f‖2 + λ

(
1

2
‖Af − y‖2 − ε

)
(3.2)

and λ the Lagrange multiplier. The Hessian matrix of L(f, λ) is∇2
ffL(f, λ)

= I + λATA. By applying the first order optimality conditions for this
problem, the new constrained minimization problem

min
f,λ

L(f, λ)

subject to ∇f,λL(f, λ) = 0, λ ≥ 0
(3.3)

is obtained. Let k(f) = 1
2 ‖Af − y‖

2 − ε. The iterative solution of the
above problem can be drived as in the following theorem.

Theorem 3.1. The iterative solution of problem (3.3) with antire-
flective BCs in the FTL method is

(3.4) fi+1 = fi + ∆f, λi+1 = λi + ∆λ,

where the search direction (∆fT ,∆λ) is

∆λ = (∇fk(fi)
TAn(1 + λh2)−1∇fk(fi))

−1{k(fi)

−∇fk(fi)
TAn(1 + λh2)−1∇fL(fi, λi)},

∆f = −An(1 + λh2)−1(∇fL(fi, λi) +∇fk(fi)∆λ).

(3.5)

Proof. The coefficient matrix A obtained by considering antireflective
BCs is related to a Toeplitz+Hankel plus a structured low rank matrix.
Thus it needs to replace AT by A. The Hessian of L(f, λ) can be approx-
imated by An(1+λh2) which is symmetric and positive definite. From a
truncated Taylor series expansions of ∇f,λL(fi+1, λi+1) about (fTi , λi),

∇f,λL(fi + ∆f, λi + ∆λ)

≈ ∇f,λL(fi, λi) +

(
An(1 + λh2) ∇fk(fi)
∇fk(fi)

T 0

)(
∆f
∆λ

)
,

(3.6)
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we can obtain the system

(3.7)

(
An(1 + λh2) ∇fk(fi)
∇fk(fi)

T 0

)(
∆f
∆λ

)
= −

(
∇fL(fi, λi)

k(fi)

)
.

The solution (∆fT ,∆λ) of (3.7) becomes the quasi-Newton direction in
(3.5).

The step length αi can be selected by the first number of { 1
2j−1 }j=1,2,...

which satisfies the Armijo’s condition:

m(f + α∆f, λ+ α∆λ) ≤ m(f, λ) + µα(∆fT ,∆λ)∇f,λm(f, λ),

where the merit function m(x, λ) = 1
2 ‖∇f,λL(f, λ)‖2 and µ = 10−4. By

including the step length αi along (∆fT ,∆λ), (3.4) is replaced by

(3.8) fi+1 = fi + αi∆f, λi+1 = λi + αi∆λ.

The iteration (3.8) is stopped if an iterate fi has been found such that
‖Afi − y‖ ≤ ρδ, where ρ ≥ 1 is a fixed parameter. In case without
finding an approximated solution satisfying this condition, the method
is terminated when a maximum number Max of iterations has been
reached. The basic structure of FTL method for the image deblurring
problem with AR-BCs is as follows.

Algorithm 1. FTL algorithm for image deblurring problem with
antireflective BCs.

1. Input f0, λ0, y, ρ, δ, Max.

2. For i = 0, 1, 2, . . . .

i. Compute

∆λ = (∇fk(fi)
TAn(1 + λh2)−1∇fk(fi))

−1{k(fi)

−∇fk(fi)
TAn(1 + λh2)−1∇fL(fi, λi)},

∆f = −An(1 + λh2)−1(∇fL(fi, λi) +∇fk(fi)∆λ).

ii. Find the step length αi along (∆fT ,∆λ).
iii. fi+1 = fi + αi∆f , λi+1 = λi + αi∆λ.

iv. If ‖Afi+1 − y‖ ≤ ρδ or i ≥Max, then stop.

4. Experimental Results

This section demonstrates the efficiency of employing AR-BCs over
reflective BCs for image restoration problems. Two-dimensional AR-
transform(including FSTs) and FCTs are used to compute the restored
images for each of the antireflective and the reflective BCs.

Our test images are planet, text, and a as in [9] and two blurring
models are used as in [10, 11]. The first blurring is modeled by the



Fast truncated Lagrange method for image deblurring with antireflective BCs145

Gaussian PSF, A(x−x′, y− y′) = 1
2πσσ̄ exp

(
−1

2

(
x−x′
σ

)2
− 1

2

(
y−y′
σ̄

)2
)
,

where σ̄ and σ are two constants for the blurring in the x and y directions
respectively, such as σ = σ̄ = 5. The second blurring is the out-of focus
blur whose PSF is

A(x− x′, y − y′) =

{
(πr2)−1,

√
(x− x′)2 + (y − y′)2 ≤ r,

0, otherwise,

where the parameter r characterizes the defocus such as r = 10. The
Matlab code of psfGauss and psfDefocus are taken from RestoreTools
package [14].

To measure the quality of the reconstructed image, the relative accu-

racy, rel =
‖ftrue−fapprox‖

‖ftrue‖ ; and the PSNR values of the recovered images,

PSNR = 10 log 10
(

2552

MSE

)
are used, whereMSE(I, J) =

Σi,j(I(i,j)−J(i,j))2

mn

is the mean square error for two m× n monochrome images I and J .
Considering the AR-BCs in the 2-dimensional case, coefficient matrix

A in (1.2) becomes a 2-level Toeplitz+Hankel plus a 2-level structured
low rank matrix. The bidimensional AR-transform can be defined as

(4.1) T (2)
n = Tn ⊗ Tn.

Thus the coefficient matrix A can be diagonalized,

(4.2) A = An(h) = T (2)
n DnT

(2)
n ,

where h is a bidimensional trigonometric function depending on the coef-
ficient of the PSF, andDn is a diagonal matrix containing the eigenvalues
of An(h).

The Matlab code for the AR-transform, its inverse transform and the
computation of the eigenvalues of the antireflective matrix are available
at [8]. Especially, the spectrum ofA can be computed by using dARt2(A)
which contains the two-dimensional discrete sine transform dst2. Thus
the product y = Af is obtained as

y = vector (idARt2(dARt2(A). ∗ dARt2(F ))) ,

where idARt2 is the inverse process of dARt2. Then the solution $ =
(I + λATA)−1f ≈ An(1 + λh2)−1f is computed as

$ = vector(idAR2(dARt2(F )./(1 + λdARt2(A).∧2))),

where ./ and .∧ are the component-wise division and squaring of the
matrix dARt2(A) respectively.

Figure 1(a) shows the Gaussian blurred and noisy image of the planet.
Figure 1(b) is the reconstructed image under the AR-BCs by FTL
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 (a) (b)  (c)

Figure 1. Gaussian blur : Restored image with (b) AR-
BCs (rel = 7.10×10−2, PSNR = 37.26) and (c) reflective
BCs (rel = 4.12× 10−1, PSNR = 21.98)

scheme. Armijo’s step lengths are α1 = α2 = . . . = α10 = 1, α11 = 1
2 ,

α12 = 1
22

, α13 = . . . = α16 = 1
23

, α17 = . . . = α20 = 1
24

, α21 =

α22 = . . . = α25 = 1
25

, . . . and | ‖Afapprox − y‖ − δ| = 3513.3. The
relative accuracy for antireflective and reflective BCs for each case of
Gaussian and out-of-focus blur are presented in Table 1. The relative
error and PSNR of reconstructed image by applying the AR-BCs are
7.10 × 10−2 and 37.26 respectively as shown in Figure 1(b), while the
reflective BC brings the result that the relative error is 4.12 × 10−1

and PSNR is 21.98 as shown in the reconstructed image of Figure 1(c).
In this case, Armijo’s step lengths are α1 = α2 = . . . = α12 = 1,
α13 = . . . = α14 = 1

2 , α15 = . . . = α17 = 1
22

, α18 = . . . = α20 = 1
23

,

α21 = α22 = . . . = α25 = 1
24

, . . . and | ‖Axapprox − y‖ − δ| = 17231.6.

Table 1. Relative accuracy for antireflective and reflec-
tive BCs for each case of Gaussian and out-of-focus blur

Blur Image Antireflective BCs Reflective BCs

Gaussian planet 7.10× 10−2 4.12× 10−1

text 6.87× 10−1 7.36× 10−1

a 8.78× 10−2 6.51× 10−1

out-of-focus planet 4.06× 10−2 4.49× 10−1

text 7.32× 10−1 7.89× 10−1

a 4.25× 10−2 1.95× 100
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 (a) (b)  (c)

Figure 2. Out-of-focus blur : Restored image with (b)
AR-BCs (rel = 4.05 × 10−2, PSNR = 42.12) and (c)
reflective BCs (rel = 4.48× 10−1, PSNR = 21.24)

The simulation results for out-of-focus blurring of the planet image
are presented in Figure 2 and Table 1. By imposing the AR-BCs, the
relative accuracy and the ringing effect are reduced. Consequently, the
blurred Planet image is reconstructed by using the AR-BCs which is
better than the reflective BCs.

As shown in Table 1 presenting the comparison of relative accuracy
for three test images, the relative accuracy is smaller and PSNR is higher
under the AR-BCs, and the more quality image under the AR-BCs for all
three test images are obtained in our experiments. And there are little
ringing effects in the reconstructed images from the AR-BCs . Thus AR-
BCs brings the better results than reflective BCs in our experiments with
three test images.

5. Conclusion

In the modelization of image deblurring, the choice of the most appro-
priate boundary conditions must be the one of the main aspect. Using
the AR-BCs can eliminate the artificial boundary discontinuities. A
large-scale ill-conditioned coefficient brought from the AR-BCs is re-
lated to the Toeplitz+Hankel plus 2 rank correction matrix. The fast
truncated Lagrange(FTL) method is suitable to find appropriate solu-
tion of this system. Numerical results presented show that the AR-BCs
provide an effective model for image restoration problems, for both the
computational cost and minimizing the ringing effects near the bound-
ary. Comparing reflective BCs, the AR-BCs provides the smaller relative
accuracy and the higher PSNR.
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The application of FTL algorithm to image restoring problem with
the synthetic BCs can be our next research in the future.
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