EXISTENCE OF NON-CONSTANT POSITIVE
 SOLUTIONS FOR A RATIO-DEPENDENT PREDATOR-PREY SYSTEM WITH DISEASE IN THE PREY

Kimun Ryu*

Abstract

In this paper, we consider ratio-dependent predatorprey models with disease in the prey under Neumann boundary condition. We investigate sufficient conditions for the existence and non-existence of non-constant positive steady-state solutions by the effects of the induced diffusion rates.

1. Introduction

In this paper, we investigate the existence of non-constant positive steady-states of the following ratio-dependent predator-prey system with disease in the prey:
(1.1)

$$
\begin{cases}u_{t}-d \Delta u=u(a-a u-a v-v) & \\ v_{t}-d \Delta v=v\left(u-b_{2}-\frac{l w}{m w+v}\right) & \\ w_{t}-d_{3} \Delta w=w\left(-b_{1}+\frac{k l v}{m w+v}\right) & \text { in }(0, \infty) \times \Omega \\ \frac{\partial u}{\partial \nu}=\frac{\partial v}{\partial \nu}=\frac{\partial w}{\partial \nu}=0 & \text { on }(0, \infty) \times \partial \Omega \\ u(0, x)=u_{0}(x), \quad v(0, x)=v_{0}(x), \quad w(0, x)=w_{0}(x) & \text { in } \Omega,\end{cases}
$$

where $\Omega \subseteq \mathbb{R}^{N}$ is a bounded domain with a smooth boundary $\partial \Omega$; the given coefficients a, m, l, b_{i}, d and d_{3} are positive constants; ν is the outward directional derivative normal to $\partial \Omega$; and the nonnegative initial functions $u_{0}(x), v_{0}(x)$ and $w_{0}(x)$ are not identically zero in Ω. Here u, v

[^0]and w represent the population densities of susceptible prey, the infected prey and the predator, respectively.

The ratio-dependent predator-prey models have been proposed first by R. Arditi and L. R. Ginzburg in [2]. The actual evidence and justification of the ratio-dependent predator-prey models can be found in $[3,4,6,7]$, and the related models have been widely studied for spatially homogeneous case $[9,10,11,12]$ and for spatially inhomogeneous case [5, 16]. For the dynamics of diffusive ratio-dependent three species predator-prey interaction systems have been partially studied [13]. In [1], the authors investigate the asymptotic behavior of positive constant solutions and the non-negative equilibria to the system (1.1).

The main concern of this paper is to study the existence and nonexistence of positive steady-states of (1.1), that is, we investigate the existence and non-existence of non-constant positive solutions to the following elliptic system

$$
\begin{cases}-d \Delta u=u[a-a u-a v-v] & \tag{1.2}\\ -d \Delta v=v\left[u-b_{2}-\frac{l w}{m w+v}\right] & \\ -d_{3} \Delta w=w\left[-b_{1}+\frac{k l v}{m w+v}\right] & \text { in } \Omega, \\ \frac{\partial u}{\partial \eta}=\frac{\partial v}{\partial \eta}=\frac{\partial w}{\partial \eta}=0 & \text { on } \partial \Omega .\end{cases}
$$

Note that (1.1) have the following four non-negative equilibria:
(i) $\mathbf{e}_{\mathbf{0}}=(0,0,0)$,
(ii) $\mathbf{e}_{\mathbf{1}}=(1,0,0)$,
(iii) $\mathbf{e}_{\mathbf{2}}=\left(b_{2}, \frac{a\left(1-b_{2}\right)}{a+1}, 0\right)$ when $b_{2}<1$,
(iv) $\mathbf{u}_{*}=\left(u_{*}, v_{*}, w_{*}\right)$, where $u_{*}=b_{2}+\frac{k l-b_{1}}{k m}, v_{*}=\frac{a}{1+a}\left(1-u_{*}\right)$ and $w_{*}=\frac{k l-b_{1}}{b_{1} m} v_{*}$ when $k l>b_{1}$ and $b_{2}+\frac{k l-b_{1}}{k m}<1$.
In this paper, we define $\frac{v w}{m w+v}=0$ at $(v, w)=(0,0)$ to avoid the singularity at $(0,0)$. Note that $\lim _{(v, w) \rightarrow(0,0)} \frac{v w}{m w+v}=0$.

This paper is organized as follow. In Section 2, we state some useful known results of (1.1) obtained in [1]. Finally, in Section 3, we study the existence and non-existence of non-constant positive solutions of (1.2).

2. Preliminaries

In this section, we state some known results of the system (1.1) in [1], which is useful in the later section.

First, the following theorem shows that the solution of (1.1) is uniformly bounded, and thus no blow up occurs.

Non-constant positive solutions for a ratio-dependent predator-prey system 77
Theorem 2.1. Assume that $k l>b_{1}$. Then the non-negative solution (u, v, w) of (1.1) satisfies

$$
0 \leq u(t, x) \leq B_{1}, 0 \leq v(t, x) \leq B_{2}, 0 \leq w(t, x) \leq B_{3}
$$

on $[0, \infty) \times \bar{\Omega}$, where

$$
\begin{aligned}
B_{1} & :=\max \left\{1,\left\|u_{0}\right\|_{\infty}\right\} \\
B_{2} & :=\max \left\{\frac{a+b_{2}}{(1+a) b_{2}} B_{1}, \frac{1}{1+a}\left\|u_{0}\right\|_{\infty}+\left\|v_{0}\right\|_{\infty}\right\} \\
B_{3} & :=\max \left\{\left\|w_{0}\right\|_{\infty}, \frac{k l-b_{1}}{b_{1} m} B_{2}\right\}
\end{aligned}
$$

Proof. See Theorem 2.1 in [1].
Now we introduce the following notations, similarly as in [13] and [15].

Notation. (i) μ_{i} denotes the eigenvalue of $-\Delta$ on Ω under Neumann boundary condition.
(ii) $E\left(\mu_{i}\right)$ is the eigenspace corresponding to μ_{i}.
(iii) $\left\{\varphi_{i j}: j=1, \ldots, \operatorname{dim} E\left(\mu_{i}\right)\right\}$ is an orthonormal basis of $E\left(\mu_{i}\right)$.
(iv) $\mathbf{X}_{\mathbf{i j}}=\left\{\mathbf{c} \cdot \varphi_{i j} \mid \mathbf{c} \in \mathbb{R}^{3}\right\}$
(v) $\mathbf{X}=\left\{\mathbf{u}=(u, v, w) \in\left[C^{1}(\bar{\Omega})\right]^{3} \left\lvert\, \frac{\partial u}{\partial \nu}=\frac{\partial v}{\partial \nu}=\frac{\partial w}{\partial \nu}=0\right.\right.$ on $\left.\partial \Omega\right\}$.

We point out that $\mathbf{X}=\bigoplus_{i=1}^{\infty} \mathbf{X}_{\mathbf{i}}$, where $\mathbf{X}_{\mathbf{i}}=\bigoplus_{j=1}^{\operatorname{dim} E\left(\mu_{i}\right)} \mathbf{X}_{\mathbf{i} \mathbf{j}}$ (for more details, see $[13,15])$.

Theorem 2.2. (Asymptotic stability at \mathbf{u}_{*}) Assume that one of the followings holds:
(i) $\left(1-b_{2}\right) m \geq l, k>b_{1} / l$,
(ii) $l>\left(1-b_{2}\right) m, \frac{b_{1}}{\sqrt{l\left(l-\left(1-b_{2}\right) m\right)}} \geq k>b_{1} / l$.

Further, if
$a>\frac{b_{1}}{k l} \frac{k l-b_{1}}{b_{2} k m+k l-b_{1}} \max \left\{1, \frac{k^{2} l\left(m\left(1-b_{2}\right)-l\right)+b_{1}^{2}+\left(k l-b_{1}\right) b_{1}}{k^{2} l\left(m\left(1-b_{2}\right)-l\right)+b_{1}^{2}+\left(k l-b_{1}\right) b_{1} k m}\right\}$,
then the positive equilibrium point \mathbf{u}_{*} of (1.1) is locally asymptotically stable.

Proof. See Theorem 2.4 in [1].

3. Positive coexistence of (1.2)

In this section, we show the existence of a non-constant positive solution of elliptic system (1.2) by using the degree theory. To do this, it is necessary to estimate an a-priori bound of solutions for (1.2).

3.1. An a priori bound

First, we give an a-priori bound for (1.2).
Theorem 3.1. Assume $k l>b_{1}$. Then the non-negative solution (u, v, w) of (1.1) satisfies

$$
\begin{aligned}
\limsup _{t \rightarrow \infty} u & \leq 1, \limsup _{t \rightarrow \infty} v \leq \frac{a+b_{2}}{b_{2}(a+1)}, \\
\limsup _{t \rightarrow \infty} w & \leq\left(\frac{k l-b_{1}}{b_{1} m}\right) \frac{a+b_{2}}{b_{2}(a+1)} \text { on } \bar{\Omega} .
\end{aligned}
$$

Proof. See Theorem 2.2 in [1].
Next we estimate a positive lower bound of classical positive solutions for (1.2).

Theorem 3.2. Assume that $1-b_{2}-\frac{k l-b_{1}}{k m}>0$ and $k l>b_{1}$. Let $d \in\left[d^{*}, \infty\right)$ and $d_{3} \in\left[d^{*}, d_{3}^{*}\right]$ for a fixed positive d^{*} and d_{3}^{*}. Then there exists a positive constant $C_{\sharp}\left(N, \Omega, d^{*}, d_{3}^{*}, \Gamma\right)$ such that a positive solution (u,v,w) of (1.2) satisfies

$$
\begin{equation*}
\min _{\bar{\Omega}} u(x), \min _{\bar{\Omega}} v(x), \min _{\bar{\Omega}} w(x)>C_{\sharp}, \tag{3.1}
\end{equation*}
$$

if

$$
\begin{equation*}
1-b_{2}-\frac{l}{m}-\frac{k l-b_{1}}{m}>-2 \sqrt{b_{1} m} \sqrt{1-b_{2}} \tag{3.2}
\end{equation*}
$$

Proof. It is easy to see that $\frac{f_{1}}{d}, \frac{f_{2}}{d}, \frac{f_{3}}{d_{3}} \in C(\bar{\Omega})$ for $d, d_{3} \geq d^{*}$. By using Harnack inequality, there exists a positive constant $C_{*}\left(N, \Omega, d^{*}, \Gamma\right)$ such that

$$
\begin{equation*}
\max _{\bar{\Omega}} u \leq C_{*} \min _{\bar{\Omega}} u, \quad \max _{\bar{\Omega}} v \leq C_{*} \min _{\bar{\Omega}} v, \max _{\bar{\Omega}} w \leq C_{*} \min _{\bar{\Omega}} w \tag{3.3}
\end{equation*}
$$

Suppose by contradiction that (3.1) does not hold. Then there are sequences $\left\{d_{n}\right\},\left\{d_{3, n}\right\}$; and the corresponding positive solution $\left(u_{n}, v_{n}, w_{n}\right)$ of (1.2) such that $d_{n} \geq d^{*}, d_{3, n} \in\left[d^{*}, d_{3}^{*}\right]$ for $n \in \mathbb{N}$, and $\max _{\bar{\Omega}} u_{n} \rightarrow 0$ or $\max _{\bar{\Omega}} v_{n} \rightarrow 0$ or $\max _{\bar{\Omega}} w_{n} \rightarrow 0$ as $n \rightarrow \infty$.

By Theorem 2.1, it is easy to see that $\left\|u_{n}\right\|_{\infty},\left\|v_{n}\right\|_{\infty}$ and $\left\|w_{n}\right\|_{\infty}<$ ∞ for all $n \geq 1$. By Agmon, Douglis, and Nirenberg inequality,

$$
\left\|u_{n}\right\|_{W^{2, p}} \leq C\left(\left\|u_{n}\right\|_{L^{p}}+\left\|u_{n} f_{1}\left(u_{n}, v_{n}\right)\right\|_{L^{p}}\right)<\infty
$$

for all $n \geq 1, p \geq 2$, and some positive constant C. Then it follows from Sobolev imbedding theorem that $\left\{u_{n}\right\}$ is also bounded in $C^{1, \alpha_{-}}$-norm. Moreover, since $\left\|u_{n}\right\|_{C^{2, \alpha}} \leq C\left(\left\|u_{n}\right\|_{C^{0, \alpha}}+\left\|u_{n} f_{1}\left(u_{n}, v_{n}\right)\right\|_{C^{0, \alpha}}\right)$ for some constant C depending on α, we see that $\left\{u_{n}\right\}$ is also bounded in $C^{2, \alpha_{-}}$ norm by the Schauder estimate. By using similar arguments, one can show that $\left\{v_{n}\right\}$ and $\left\{w_{n}\right\}$ is bounded in $C^{2, \alpha}$-norm. Thus Arzela-Ascoli Theorem shows that there exists a subsequence of $\left\{\left(u_{n}, v_{n}, w_{n}\right)\right\}$, which is denoted by itself again for a convenience, and nonnegative functions $\widetilde{u}, \widetilde{v}, \widetilde{w} \in C^{2}(\bar{\Omega})$, such that $\left(u_{n}, v_{n}, w_{n}\right) \rightarrow(\widetilde{u}, \widetilde{v}, \widetilde{w})$ as $n \rightarrow \infty$. Since $\max _{\bar{\Omega}} u_{n} \rightarrow 0$ or $\max _{\bar{\Omega}} v_{n} \rightarrow 0$ or $\max _{\bar{\Omega}} w \rightarrow 0$ as $n \rightarrow \infty, \widetilde{u} \equiv 0$ or $\widetilde{v} \equiv 0$ or $\widetilde{w} \equiv 0$. We have the following five cases:
i) $\widetilde{u} \equiv 0, \widetilde{v} \not \equiv 0, \widetilde{w} \not \equiv 0$ or $\widetilde{u} \equiv 0, \widetilde{v} \not \equiv 0, \widetilde{w} \equiv 0$,
ii) $\widetilde{u} \not \equiv 0, \widetilde{v} \equiv 0, \widetilde{w} \not \equiv 0$ or $\widetilde{u} \equiv 0, \widetilde{v} \equiv 0, \widetilde{w} \not \equiv 0$,
iii) $\widetilde{u} \not \equiv 0, \widetilde{v} \not \equiv 0, \widetilde{w} \equiv 0$,
iv) $\widetilde{u} \not \equiv 0, \widetilde{v} \equiv 0, \widetilde{w} \equiv 0$,
v) $\widetilde{u} \equiv 0, \widetilde{v} \equiv 0, \quad \widetilde{w} \equiv 0$.

Case i) Note that $v_{n}, w_{n}>0$ and $\widetilde{u}, \widetilde{v}, \widetilde{w}$ satisfy the inequality (3.3). Thus $\widetilde{v}>0$ since $\widetilde{v} \not \equiv 0$. Also since $v_{n} \rightarrow \widetilde{v}>0$ and $u_{n} \rightarrow 0$ as $n \rightarrow \infty$, $v_{n} f_{2}\left(u_{n}, v_{n}, w_{n}\right)<0$ for a sufficient large n. By applying Green's first identity to the second equation in (1.2), we have $\int_{\Omega} v_{n} f_{2}\left(u_{n}, v_{n}, w_{n}\right)=0$. This derives a contradiction.

Case ii) since $w_{n}>0$ and $\widetilde{v}=0$, one can similarly show that $f_{3}\left(v_{n}, w_{n}\right)<0$ for a sufficient large n. This is a contradiction to the fact that $\int_{\Omega} w_{n} f_{3}\left(v_{n}, w_{n}\right)=0$ for all n.

Case iii) It is obvious that $u_{n}, v_{n}>0$ on $\bar{\Omega}$ for a sufficient large n. First, note that $\widetilde{v}>0$ as in the case i). Thus $\frac{v_{n}}{m w_{n}+v_{n}} \rightarrow 1$ uniformly on $\bar{\Omega}$ since $w_{n} \rightarrow 0$ uniformly on $\bar{\Omega}$, as $n \rightarrow \infty$. Since $k l>b_{1}$, this derives also a contradiction.

Case iv) By applying Green's first identity to the first equation in (1.2) and using the fact that $v_{n} \rightarrow \widetilde{v} \equiv 0$ as $n \rightarrow \infty$, we have $0=\int_{\Omega} u_{n} f_{1}\left(u_{n}, v_{n}\right) \rightarrow \int_{\Omega} \widetilde{u}(a-a \widetilde{u})$ as $n \rightarrow \infty$. Thus shows that $\widetilde{u} \equiv 1$ since $0<\widetilde{u} \leq 1$.

Consider the following elliptic system under Neumann boundary condition:

$$
\left\{\begin{array}{l}
-d_{n} \Delta V_{n}=V_{n} f_{2}\left(\widetilde{u}, V_{n}, W_{n}\right) \tag{3.4}\\
-d_{3, n} \Delta W_{n}=W_{n} f_{3}\left(V_{n}, W_{n}\right) \quad \text { in } \Omega
\end{array}\right.
$$

where $V_{n}=\frac{v_{n}}{\left\|v_{n}\right\|_{\infty}+\left\|w_{n}\right\|_{\infty}}$ and $W_{n}=\frac{w_{n}}{\left\|v_{n}\right\|_{\infty}+\left\|w_{n}\right\|_{\infty}}$. By applying Green's first identity, one can get the following integral equations

$$
\begin{equation*}
\int_{\Omega} V_{n} f_{2}\left(\widetilde{u}, V_{n}, W_{n}\right)=0, \quad \int_{\Omega} W_{n} f_{3}\left(V_{n}, W_{n}\right)=0 \text { for } n \geq 1 \tag{3.5}
\end{equation*}
$$

Similarly as in the case i), there exists a subsequence $\left(V_{n}, W_{n}\right)$, which is denoted by itself, such that $\lim _{n \rightarrow \infty} V_{n}=\widetilde{V}$ and $\lim _{n \rightarrow \infty} W_{n}=\widetilde{W}$ in $C^{2}(\bar{\Omega})$. Since $\left\|V_{n}\right\|_{\infty}+\left\|W_{n}\right\|_{\infty}=1,\|\widetilde{V}\|_{\infty}+\|\widetilde{W}\|_{\infty}=1$ and $\widetilde{V}+\widetilde{W}>0$ on $\bar{\Omega}$. And these nonnegative pairs satisfy the Harnack inequality.

Now We assume that $d_{n} \rightarrow D^{*} \in\left[d^{*}, \infty\right]$ and $d_{3, n} \rightarrow D_{3}^{*} \in\left[d^{*}, d_{3}^{*}\right]$, by taking a subsequence if necessary.

First, consider the case of $D^{*}<\infty$. If $\widetilde{W} \equiv 0$, then $\widetilde{V}>0$ on $\bar{\Omega}$ and $\int_{\Omega} \widetilde{V}\left(\widetilde{u}-b_{2}\right)=0$. But since $b_{2}<1 \equiv \widetilde{u}$ from the given assumption, this is a contradiction, and thus $\widetilde{W} \not \equiv 0$. If $\widetilde{V} \equiv 0$, then $\widetilde{W}>0$ and so we have $\int_{\Omega}-b_{1} \widetilde{W}=0$ which is also impossible. Hence $\widetilde{V}, \widetilde{W}>0$ on $\bar{\Omega}$ by Harnack inequality. After taking the limit in (3.5), by subtracting $\int_{\Omega} \widetilde{V} f_{2}(1, \widetilde{V}, \widetilde{W})=0$ from the equation $\int_{\Omega} \widetilde{W} f_{3}(\widetilde{V}, \widetilde{W})=0$, we have

$$
\int_{\Omega}\left[\frac{b_{1} m \widetilde{W}^{2}+\left(1-b_{2}\right) \widetilde{V}^{2}+\left(b_{1}+m\left(1-b_{2}\right)-l(k+1)\right) \widetilde{V} \widetilde{W}}{m \widetilde{W}+\widetilde{V}}\right]=0
$$

On the other hand, by using (3.2), one can easily show that the above integral is positive. This derives a contradiction.

Next, consider the case of $D^{*}=\infty, \widetilde{V}$. As in the case of $D^{*}<\infty$, one can show that $\widetilde{W}=A$ for some positive constant A. Thus $\widetilde{W} \equiv \frac{k l-b_{1}}{b_{1} m} A$ since \widetilde{W} satisfies

$$
\begin{cases}-D_{3}^{*} \Delta \widetilde{W}=\widetilde{W} f_{3}(A, \widetilde{W}) & \text { in } \Omega \\ \frac{\partial \widetilde{W}}{\partial \eta}=0 & \text { on } \partial \Omega\end{cases}
$$

Let $B=1-b_{2}-\frac{\widetilde{W}}{m \widetilde{W}+A}=0$, then $B=0$ since the first integral equation in (3.5) holds as $n \rightarrow \infty$, and thus we have $1-b_{2}-\frac{k l-b_{1}}{k m}=0$, which derives a contradiction.

Case v) Consider the system (3.4) with $\widetilde{u} \equiv 0$. Then one can get $\widetilde{V}+\widetilde{W}>0$ on $\bar{\Omega}$ and (3.5) with $\widetilde{u}=0$.

If $D^{*}=\infty$, then $\widetilde{V} \equiv A>0$ and $\widetilde{W} \equiv \frac{k l-b_{1}}{b_{1} m} A$ for some positive constant A. But, since $\int_{\Omega} A\left(-b_{2}-\frac{l \widetilde{W}}{m \widetilde{W}+A}\right)=0, A$ must be zero. This is a contradiction.

Now assume that $D^{*}<\infty$. If $\widetilde{W} \equiv 0$ or $\widetilde{V} \equiv 0$, then $\int_{\Omega} \widetilde{V}\left(-b_{2}\right)=0$ or $\int_{\Omega} \widetilde{W}\left(-b_{1}\right)=0$, and thus \widetilde{V} and $\widetilde{W}>0$ on $\bar{\Omega}$. By the way, $-D^{*} \Delta \widetilde{V}=$ $\widetilde{V}\left[-b_{2}-\frac{l \widetilde{W}}{m \widetilde{W}+\widetilde{V}}\right]<0$ in Ω and $\frac{\partial \widetilde{V}}{\partial \eta}=0$ on $\partial \Omega$. Moreover, by the strong maximum principle and Hopf Boundary Lemma, we see that $\frac{\partial \widetilde{V}}{\partial \eta}(p)>0$ at some point $p \in \partial \Omega$. (If not, then \widetilde{V} is a constant in Ω.) Hence \widetilde{V} is a nonnegative constant since $\frac{\partial \widetilde{V}}{\partial \eta}=0$ on $\partial \Omega$. As in the case of $D^{*}=\infty$, this derives a contradiction.

3.2. Nonexistence of non-constant positive solution

In this subsection, we investigate the nonexistence of non-constant positive solution of (1.2).

Theorem 3.3. Assume that $d_{3} \mu_{2}>k l-b_{1}>0$. If there exists a positive constant $\widetilde{D}\left(N, \Omega, d_{3}, \Gamma\right)$ such that $d>\widetilde{D}$, then (1.2) has no nonconstant positive solution, where μ_{2} is a eigenvalue defined in Notation.

Proof. Define $\bar{u}=\frac{1}{|\Omega|} \int_{\Omega} u, \bar{v}=\frac{1}{|\Omega|} \int_{\Omega} v$ and $\bar{w}=\frac{1}{|\Omega|} \int_{\Omega} w$. By multiplying $(u-\bar{u}),(v-\bar{v})$ and $(w-\bar{w})$ to the first, second and third equation in (1.2), respectively, we have

$$
\begin{cases}-d(u-\bar{u}) \Delta u & =u(u-\bar{u}) f_{1}(u, v) \tag{3.6}\\ -d(v-\bar{v}) \Delta v & =v(v-\bar{v}) f_{2}(u, v, w) \\ -d_{3}(w-\bar{w}) \Delta w & =w(w-\bar{w}) f_{3}(v, w)\end{cases}
$$

Therefore by Green's first identity and Cauchy inequality, we have

$$
\begin{align*}
& \int_{\Omega}\left(d|\nabla u|^{2}+d|\nabla v|^{2}+d_{3}|\nabla w|^{2}\right) \tag{3.7}\\
& =\int_{\Omega}\left[(u-\bar{u})\left(u f_{1}(u, v)-\bar{u} f_{1}(\bar{u}, \bar{v})\right)+(v-\bar{v})\left(v f_{2}(u, v, w)\right.\right. \\
& \left.\left.\quad-\bar{v} f_{2}(\bar{u}, \bar{v}, \bar{w})\right)+(w-\bar{w})\left(w f_{3}(v, w)-\bar{w} f_{3}(\bar{v}, \bar{w})\right)\right] \\
& =\int_{\Omega}\left[a(u-\bar{u})^{2}-a(u-\bar{u})^{2}(u+\bar{u})-(a+1) \bar{v}(u-\bar{u})^{2}\right. \\
& \quad-(a+1) u(v-\bar{v})(u-\bar{u})+v(u-\bar{u})(v-\bar{v})+\bar{u}(v-\bar{v})^{2} \\
& \quad-b_{2}(v-\bar{v})^{2}-\frac{l m w \bar{w}(v-\bar{v})^{2}}{(m w+v)(m \bar{w}+\bar{v})}-\frac{l v \bar{v}(v-\bar{v})(w-\bar{w})}{(m w+v)(m \bar{w}+\bar{v})}-b_{1}(w-\bar{w})^{2} \\
& \left.\quad+\frac{k l m w \bar{w}(v-\bar{v})(w-\bar{w})}{(m w+v)(m \bar{w}+\bar{v})}+\frac{k l v \bar{v}(w-\bar{w})^{2}}{(m w+v)(m \bar{w}+\bar{v})}\right]
\end{align*}
$$

$$
\begin{aligned}
& \leq \int_{\Omega}\left[a(u-\bar{u})^{2}+(a+1)|v-\bar{v}||u-\bar{u}|+\frac{a+b_{2}}{b_{2}(1+a)}|u-\bar{u}||v-\bar{v}|\right. \\
& \quad+(v-\bar{v})^{2}+l|w-\bar{w}||v-\bar{v}|+\frac{k l}{m}|w-\bar{w}||v-\bar{v}| \\
& \left.\quad+\left(k l-b_{1}\right)(w-\bar{w})^{2}\right]
\end{aligned} \begin{gathered}
\leq \int_{\Omega}\left[a(u-\bar{u})^{2}+\frac{a+1}{2}(u-\bar{u})^{2}+\frac{a+1}{2}(v-\bar{v})^{2}+\frac{a+b_{2}}{2 b_{2}(a+1)}(u-\bar{u})^{2}\right. \\
\quad+\frac{a+b_{2}}{2 b_{2}(a+1)}(v-\bar{v})^{2}+(v-\bar{v})^{2}+\frac{l+k l / m}{2 \varepsilon}(v-\bar{v})^{2} \\
\left.\quad+\frac{(l+k l / m) \varepsilon}{2}(w-\bar{w})^{2}+\left(k l-b_{1}\right)(w-\bar{w})^{2}\right]
\end{gathered}
$$

where ε is an arbitrary positive constant. Synthetically, we have (3.8)

$$
\begin{aligned}
& \int_{\Omega}\left(d|\nabla u|^{2}+d|\nabla v|^{2}+d_{3}|\nabla w|^{2}\right) \\
& \quad \leq \int_{\Omega}\left\{\left(a+\frac{a+1}{2}+\frac{a+b_{2}}{2 b_{2}(1+a)}\right)(u-\bar{u})^{2}+\left(\frac{a+1}{2}+\frac{a+b_{2}}{2 b_{2}(1+a)}+1\right.\right. \\
& \left.\left.\quad+\frac{l+k l / m}{2 \varepsilon}\right)(v-\bar{v})^{2}+\left(\frac{l+k l / m}{2} \varepsilon+k l-b_{1}\right)(w-\bar{w})^{2}\right\} .
\end{aligned}
$$

It follows from Poincaré inequality that

$$
\begin{aligned}
\int_{\Omega}\left(d|\nabla u|^{2}\right. & \left.+d|\nabla v|^{2}+d_{3}|\nabla w|^{2}\right) \\
& \geq \int_{\Omega} d \mu_{2}(u-\bar{u})^{2}+d \mu_{2}(v-\bar{v})^{2}+d_{3} \mu_{2}(w-\bar{w})^{2}
\end{aligned}
$$

Since $d_{3} \mu_{2}>k l-b_{1}$, there is a sufficient small ε_{0} such that $d_{3} \mu_{2}>$ $\frac{l+k l / m}{2} \varepsilon_{0}+k l-b_{1}$. Let $\widetilde{D}=\frac{1}{\mu_{2}} \max \left\{a+\frac{a+1}{2}+\frac{a+b_{2}}{2 b_{2}(1+a)}, \quad \frac{a+1}{2}+\frac{a+b_{2}}{2 b_{2}(1+a)}+\right.$ $\left.1+\frac{l+k l / m}{2 \varepsilon_{0}}\right\}$, then we conclude that $u=\bar{u}, v=\bar{v}$ and $w=\bar{w}$. This completes the proof.

3.3. Existence of non-constant positive solution

In this subsection, we study the existence of non-constant positive solution using Leray-Schauder Theorem. For the sake of convenience, define $\mathbf{u}=(u(x), v(x), w(x))^{T}$ and

$$
\mathcal{F}(\mathbf{u})=\left(\begin{array}{c}
(I-d \Delta)^{-1}\left[u\left(f_{1}(u, v)+1\right)\right] \\
(I-d \Delta)^{-1}\left[v\left(f_{2}(u, v, w)+1\right)\right] \\
\left(I-d_{3} \Delta\right)^{-1}\left[w\left(f_{3}(v, w)+1\right)\right]
\end{array}\right)
$$

Then (1.2) becomes $(\mathbf{I}-\mathcal{F}) \mathbf{u}=0$. Notice that $\mathcal{F}: \mathbf{X} \rightarrow \mathbf{X}$ is a compact operator and the operator $(I-\rho \Delta)^{-1}: C^{1}(\bar{\Omega}) \rightarrow C^{1}(\bar{\Omega})$ is compact for some positive constant ρ.

To apply the index theory, we must investigate the eigenvalue of the following problem

$$
\begin{equation*}
-\left(\mathbf{I}-\mathcal{F}_{\mathbf{u}}\left(\mathbf{u}_{*}\right)\right) \Psi=\lambda \Psi, \quad \Psi \neq \mathbf{0} \tag{3.9}
\end{equation*}
$$

where $\Psi=\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$ and \mathbf{u}_{*} is the unique positive equilibrium point of (1.2). Then by Leray-Schauder Theorem(Theorem 2.8.1 in [14]),

$$
\operatorname{index}\left(I-\mathcal{F}, \mathbf{u}_{*}\right)=(-1)^{\gamma}, \quad \gamma=\sum_{\lambda>0} n_{\lambda},
$$

where n_{λ} is the multiplicity of all the positive eigenvalues λ of (3.9). After some computations, one can have the following elliptic system which is equivalent to (3.9)
(3.10)

$$
\begin{cases}-d(\lambda+1) \Delta \psi_{1}+\left(\lambda+a u_{*}\right) \psi_{1}+(1+a) u_{*} \psi_{2}=0 \\ -d(\lambda+1) \Delta \psi_{2}+\left(-v_{*}\right) \psi_{1}+\left(\lambda-\frac{l v_{*} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}\right) \psi_{2}+\frac{l v_{*}^{2}}{\left(m w_{*}+v_{*}\right)^{2}} \psi_{3}=0 \\ -d_{3}(\lambda+1) \Delta \psi_{3}+\left(-\frac{k l m w_{*}^{2}}{\left(m w_{*}+v_{*}\right)^{2}}\right) \psi_{2}+\left(\lambda+\frac{k l m v_{*} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}\right) \psi_{3}=0 & \text { in } \Omega \\ \frac{\partial \psi_{1}}{\partial \eta}=\frac{\partial \psi_{2}}{\partial \eta}=\frac{\partial \psi_{3}}{\partial \eta}=0 & \text { on } \partial \Omega, \\ \psi_{1} \neq 0, \psi_{2} \neq 0, \psi_{3} \neq 0 . & \end{cases}
$$

Hence we see that investigating the eigenvalue of (3.9) is equivalent to find positive roots of the characteristic equation $B_{k}(\lambda)=0$, where

$$
B_{k}(\lambda)=\operatorname{det}\left(\begin{array}{ccc}
\lambda+\frac{d \mu_{k}+a u_{*}}{1+d \mu_{k}} & \frac{(1+a) u_{*}}{1+d \mu_{k}} & 0 \\
-\frac{v_{*}}{1+d \mu_{k}} & \lambda+\frac{d \mu_{k}-\frac{l w_{*} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}}{1+d \mu_{k}} & \frac{1}{1+d \mu_{k}} \frac{l v_{*}^{2}}{\left(m w_{*}+v_{*}\right)^{2}} \\
0 & -\frac{1}{1+d_{3} \mu_{k}} \frac{k l m w_{*}^{2}}{\left(m w_{*}+v_{*}\right)^{2}} & \lambda+\frac{d_{3} \mu_{k}+\frac{k l m v_{*}+w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}}{1+d_{3} \mu_{k}}
\end{array}\right)
$$

for $k \geq 1$. Therefore it follows from Leray-Schauder Theorem that

$$
\operatorname{index}\left(I-\mathcal{F}, \mathbf{u}_{*}\right)=(-1)^{\gamma}, \quad \gamma=\sum_{k \geq 1} \sum_{\lambda_{k}>0} n_{\lambda_{k}},
$$

where $n_{\lambda_{k}}=m_{\lambda_{k}} \operatorname{dim} E\left(\mu_{k}\right)$ and $m_{\lambda_{k}}$ is the multiplicity of λ_{k} as a positive root of $B_{k}(\lambda)=0$.

In view of Theorem 3.3, we see that there is no nonconstant positive solution of (1.2) if $d>\widetilde{D}$ for a sufficient large \widetilde{D} when $d_{3}>\frac{k l-b_{1}}{\mu_{2}}$. Thus it is necessary to investigate the index value at \mathbf{u}_{*} when d is a sufficient large.

Lemma 3.4. Assume that $k>\max \left\{\frac{b_{1}}{l}, \frac{1}{m}\right\}$ and $\min \left\{a-\frac{b_{1}}{\frac{k l}{D}}+\right.$ $\left.\frac{b_{1}}{l} m, \quad 1-b_{2}-\frac{k l-b_{1}}{k m}\right\}>0$. If there exists a positive constants $\widehat{D}=$ $\widehat{D}\left(N, \Omega, \Gamma, d_{3}\right)$ such that $d \geq \widehat{D}$, then

$$
\operatorname{index}\left(I-\mathcal{F}, \mathbf{u}_{*}\right)=1
$$

Proof. It is easy to see that the unique positive constant solution \mathbf{u}_{*} exists.

Since $\mu_{1}=0$, we have

$$
\begin{aligned}
B_{1}(\lambda)= & \lambda^{3}+\left(\frac{k l m v_{*} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}+a u_{*}-\frac{l v_{*} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}\right) \lambda^{2}+\left((1+a) u_{*} v_{*}\right. \\
& \left.+a \frac{k l m u_{*} v_{*} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}-a \frac{l u_{*} v_{*} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}\right) \lambda+(a+1) \frac{k l m u_{*} v_{*}^{2} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}} .
\end{aligned}
$$

Since $k m>1$ and $a-\frac{b_{1}}{k l}+\frac{b_{1}}{l} m>0, \lambda>0$ and $\lambda^{2}>0$, and thus $B_{1}(\lambda)>0$ for all $\lambda \geq 0$.

Now assume that $k \geq 2$. Note that $\mu_{k}>0$. Then

$$
B_{k}(\lambda)=(\lambda+1)^{2}\left(\lambda+\frac{d_{3} \mu_{k}+\frac{k l m v_{*} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}}{1+d_{3} \mu_{k}}\right)+\mathcal{O}\left(\frac{1}{d}\right)
$$

Thus there exists a large positive constant \widehat{D} depending on Γ, N, Ω and d_{3} such that $B_{k}(\lambda)>0$ for all $d \geq \widehat{D}$ and $\lambda \geq 0$.

Therefore one can conclude that $B_{k}(\lambda)>0$ for all $\lambda \geq 0, k \geq 1$ and $d \geq \widehat{D}$, and so $\gamma=\sum_{k \geq 1} \sum_{\lambda_{k}>0} n_{\lambda_{k}}=0$. This implies the desired result.

Lemma 3.5. Assume that $\tilde{\mu} \in\left(\mu_{k_{0}}, \mu_{k_{0}+1}\right)$ for some $k_{0} \geq 2$ and

$$
\begin{align*}
& 1<k m \\
& \frac{k l-b_{1}}{k m}<1-b_{2}<\left(\frac{b_{1}}{k l}+1\right) \frac{k l-b_{1}}{k m} \tag{3.11}\\
& a b_{2}<\left(\frac{b_{1}}{k l}-a\right) \frac{k l-b_{1}}{k m}<b_{1} \frac{m}{l} \frac{k l-b_{1}}{k m}
\end{align*}
$$

where

$$
\begin{align*}
\widetilde{\mu}=\frac{1}{2 d}\{ & \frac{l v_{*} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}-a u_{*} \tag{3.12}\\
& \left.+\sqrt{\left(a u_{*}-\frac{l v_{*} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}\right)^{2}-4\left((1+a) u_{*} v_{*}-\frac{a l u_{*} v_{*} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}\right)}\right\}
\end{align*}
$$

Then there exist a positive constant $\widehat{D}_{3}(N, \Omega, \Gamma, d)$ such that the polynomial $B_{k}(\lambda)=0$ has one simple positive root for $2 \leq k \leq k_{0}$, provided that $d_{3} \geq \widehat{D}_{3}$.

Proof. If $k=1$, the similarly as in Lemma 3.4, we have $k>\max \left\{\frac{b_{1}}{l}, \frac{1}{m}\right\}$ and $a-\frac{b_{1}}{k l}+\frac{b_{1}}{l} m>0$ and thus $B_{1}(\lambda)>0$ for all $\lambda \geq 0$.

If $k \geq 2$, then

$$
B_{k}(\lambda)=(\lambda+1)\left(\lambda^{2}+p\left(\mu_{k}\right) \lambda+q\left(\mu_{k}\right)\right)+\mathcal{O}\left(\frac{1}{d_{3}}\right)
$$

where

$$
p\left(\mu_{k}\right)=\frac{2 d \mu_{k}+a u_{*}-\frac{l v_{*} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}}{1+d \mu_{k}}
$$

and

$$
q\left(\mu_{k}\right)=\frac{\left(d \mu_{k}+a u_{*}\right)\left(d \mu_{k}-\frac{l v_{*} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}\right)+(1+a) u_{*} v_{*}}{\left(1+d \mu_{k}\right)^{2}}
$$

Note that $a u_{*}-\frac{l v_{*} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}<0$ and $(1+a) u_{*} v_{*}-\frac{a l u_{*} v_{*} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}<0$ since $a b_{2}<\left(\frac{b_{1}}{k l}-a\right) \frac{k l-b_{1}}{k m}$ and $1-b_{2}<\left(\frac{b_{1}}{k l}+1\right) \frac{k l-b_{1}}{k m}$ in (3.11).

Now we investigate roots of $r_{k}(\lambda)=\lambda^{2}+p\left(\mu_{k}\right) \lambda+q\left(\mu_{k}\right)=0$. First, if $p\left(\mu_{k}\right)^{2}-4 q\left(\mu_{k}\right)>0$, then $r_{k}(\lambda)=0$ has two real roots. In fact, $p^{2}\left(\mu_{k}\right)-4 q\left(\mu_{k}\right)=\frac{1}{\left(1+d \mu_{k}\right)^{2}}\left[(G+H)^{2}-4\left(G \cdot H+(1+a) u_{*} v_{*}\right)\right]$, where $G=d \mu_{k}+a u_{*}$ and $H=d \mu_{k}-\frac{l v_{*} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}$. We know that $(G-H)^{2}-4(1+$ a) $u_{*} v_{*}=\left(a u_{*}+\frac{l v_{*} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}\right)^{2}-4(1+a) u_{*} v_{*}=\left(a u_{*}-\frac{l v_{*} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}\right)^{2}-$ $4\left[(1+a) u_{*} v_{*}-\frac{a l u_{*} v_{*} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}\right]>0$, and hence $r_{k}(\lambda)=0$ has two real roots.

Next, we investigate the sign of $q\left(\mu_{k}\right)=\frac{1}{\left(1+d \mu_{k}\right)^{2}} \widetilde{q}\left(\mu_{k}\right)$, where $\widetilde{q}\left(\mu_{k}\right)=$ $d^{2} \mu_{k}^{2}+\left(a u_{*}-\frac{l v_{*} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}\right) d \mu_{k}+(1+a) u_{*} v_{*}-\frac{a l u_{*} v_{*} w_{*}}{\left(m w_{*}+v_{*}\right)^{2}}$. It is easy to check that the equation $\widetilde{q}\left(\mu_{k}\right)=0$ has two real roots. Moreover, these two roots has a different sign. Since $\mu_{k}>0$ for $k \geq 2$, we just handle the only positive one $\widetilde{\mu}$, defined in (3.12). By the given assumption $\widetilde{\mu} \in\left(\mu_{k_{0}}, \mu_{k_{0}+1}\right)$, it is concluded that $q\left(\mu_{k}\right)<0$ for $2 \leq k \leq k_{0}$. Consequently, we see that $r_{k}(\lambda)=0$ has two roots which have a different sign for $2 \leq k \leq k_{0}$.

If $k \geq k_{0}+1$, then $q\left(\mu_{k}\right)>0$ and $p\left(\mu_{k}\right)>0$ since $\widetilde{\mu} \in\left(\mu_{k_{0}}, \mu_{k_{0}+1}\right)$. Thus $r_{k}(\lambda)=0$ has two negative real roots.

Therefore the coefficients of $B_{k}(\lambda)$ converge to the coefficients of $(\lambda+$ 1) $\left(\lambda^{2}+p\left(\mu_{k}\right) \lambda+q\left(\mu_{k}\right)\right)$ as $d_{3} \rightarrow \infty$. If $d_{3} \geq \widehat{D}_{3}$ for some positive constant \widehat{D}_{3}, then we have the desired result.

REmark 3.6. The condition (3.11) guarantees the existence of positive constant \mathbf{u}_{*}. Moreover, this violates the inequality $\frac{b_{1}}{k l} \frac{k l-b_{1}}{k m} \leq$
$\min \left\{a\left(b_{2}+\frac{k l-b_{1}}{k m}\right), \quad 1-b_{2}-\frac{k l-b_{1}}{k m}\right\}$ in Theorem 2.2. Hence we may expect the non-constant positive solutions.

Finally, we show the existence of non-constant positive solutions of (1.2) by using Theorem 3.1-3.3 and Lemma 3.4, 3.5.

Theorem 3.7. Assume that (3.2), (3.11) and $\widetilde{\mu} \in\left(\mu_{k_{0}}, \mu_{k_{0}+1}\right)$ for some $k_{0} \geq 2$. If $\sum_{k=2}^{k_{0}} \operatorname{dim} E\left(\mu_{k}\right)$ is odd, then there exist a positive constant $\widehat{D}_{3}=\widehat{D}_{3}(\Gamma, N, \Omega, d)$ such that (1.2) has at least one non-constant positive solution when $d_{3} \geq \widehat{D}_{3}$.

Proof. For $\theta \in[0,1]$, define

$$
\mathcal{F}_{\theta}(u)=\left(\begin{array}{c}
(I-\theta d \Delta-(1-\theta) \widehat{D} \Delta)^{-1}\left[u\left(f_{1}(u, v)+1\right)\right] \\
(I-\theta d \Delta-(1-\theta) \widehat{D} \Delta)^{-1}\left[v\left(f_{2}(u, v, w)+1\right)\right] \\
\left(I-\theta d_{3} \Delta-(1-\theta)\left(\frac{k l-b_{1}}{\mu_{2}}+1\right) \Delta\right)^{-1}\left[w\left(f_{3}(v, w)+1\right)\right]
\end{array}\right),
$$

where \widehat{D} is a constant defined in Lemma 3.4 with $\widehat{D} \geq \widetilde{D}$. Here \widetilde{D} is a constant defined in Theorem 3.3. By Theorem 3.1 and 3.2 , there exist positive constants $C_{\sharp}\left(\Gamma, \widetilde{D}, \widehat{D}_{3}, N, \Omega\right)$ and $C^{\sharp}(\Gamma)$ such that the positive solutions of problem $\mathcal{F}_{\theta}(\mathbf{u})=0$ is contained in $\Lambda=\left\{\mathbf{u} \in \mathbf{X} \mid C_{\sharp}<\right.$ $\left.u, v, w<C^{\sharp}\right\}$ for all $\theta \in[0,1]$. Then for all $\mathbf{u} \in \partial \Lambda, \mathcal{F}_{\theta}(\mathbf{u}) \neq 0$. Thus the degree $\operatorname{deg}\left(I-\mathcal{F}_{\theta}(\mathbf{u}), \Lambda, 0\right)$ is well-defined since $\mathcal{F}_{\theta}(\mathbf{u}): \Lambda \times[0,1] \rightarrow X$ is compact. Moreover, by applying the homotopy invariance of the LeraySchauder degree theory, we have

$$
\operatorname{deg}\left(I-\mathcal{F}_{0}(\mathbf{u}), \Lambda, 0\right)=\operatorname{deg}\left(I-\mathcal{F}_{1}(\mathbf{u}), \Lambda, 0\right)
$$

If $\theta=0$, then $\mathcal{F}_{0}(\mathbf{u})=0$ has no non-constant positive solutions by Theorem 3.3 since $\widehat{D} \geq \widetilde{D}$. Hence $\operatorname{deg}\left(I-\mathcal{F}_{0}(\mathbf{u}), \Lambda, 0\right)=\operatorname{index}(I-$ $\left.\mathcal{F}_{0}, \mathbf{u}_{*}\right)$. Furthermore, Lemma 3.4 gives

$$
\operatorname{index}\left(I-\mathcal{F}_{0}, \mathbf{u}_{*}\right)=1
$$

On the other hand, we have

$$
\operatorname{deg}\left(I-\mathcal{F}_{1}(\mathbf{u}), \Lambda, 0\right)=\operatorname{index}\left(I-\mathcal{F}_{1}, \mathbf{u}_{*}\right)=(-1)^{\sum_{k=2}^{k_{0}} \operatorname{dim} E\left(\mu_{k}\right)}=-1
$$

by Leray-Schauder Theorem. This contradiction implies the existence of non-constant positive solutions of (1.2), the desired result.

References

[1] I. Ahn, W. Ko, and K. Ryu, Asymptotic behavior of a ratio-dependent predatorprey system with disease in the prey, Discrete Contin. Dyn. Syst. Special (2013), 11-19.
[2] R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: ratio dependence, J. Theor. Biol. 139 (1989), 311-326.
[3] R. Arditi, L. R. Ginzburg, and H. R. Akcakaya, Variation in plankton densities among lakes: a case for ratio-dependent models, American Naturalist. 138 (1991), 1287-1296.
[4] R. Arditi and H. Saiah, Empirical evidence of the role of heterogeneity in ratiodependent consumption, Ecology, 73 (1992), 1544-1551.
[5] R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response, J. Math. Anal. Appl. 257 (2001), no. 1, 206-222.
[6] C. Cosner, D. L. DeAngelis, J. S. Ault, and D. B. Olson, CEffects of spatial grouping on the functional response of predators, Theoret. Population Biol. 56 (1999), 65-75.
[7] A. P. Gutierrez, The physiological basis of ratio-dependent predator-prey theory: a metabolic pool model of Nicholson's blowflies as an example, Ecology. 73 (1992), 1552-1563.
[8] D. Henry, Geometric Theory of Semilinear Parabolic Equations: Lecture Notes in Mathematics, Springer, Berlin, New York, 840, 1993.
[9] S. B. Hsu, T. W. Hwang, and Y. Kuang, Global analysis of the Michaelis-Mententype ratio-dependent predator-prey system, J. Math. Biol. 42 (2001), no. 6, 489506.
[10] S. B. Hsu, T. W. Hwang, and Y. Kuang, Rich dynamics of a ratio-dependent one-prey two-predators model, J. Math. Biol. 43 (2001), no. 5, 377-396.
[11] S. B. Hsu, T. W. Hwang, and Y. Kuang, A ratio-dependent food chain model and its applications to biological control, Math. Biosci. 181 (2003), no. 1, 55-83.
[12] Y. Kuang and E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol. 36 (1998), no. 4, 389-406.
[13] Z. Lin and M. Pedersen, Stability in a diffusive food-chain model with MichaelisMenten functional response, Nonlinear Anal. 57 (2004), 421-433.
[14] L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute of Mathematical Science, New York, 1973.
[15] P. Y. H. Pang and M. X. Wang, Stragey and stationary pattern in a three-species predator-prey model, J. Differential Equations. 200 (2004), 245-273.
[16] P. Y. H. Pang and M. X. Wang, Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Roy. Soc. Edinburgh Sect. A. 133 (2003), no. 4, 919-942.

*

Department of Mathematics Education
Cheongju University
Cheongju 28503, Republic of Korea
E-mail: ryukm@cju.ac.kr

[^0]: Received January 05, 2018; Accepted January 19, 2018.
 2010 Mathematics Subject Classification: 35J60, 35Q80.
 Key words and phrases: positive steady-states, ratio-dependent, disease-free, nonconstant positive solution.

 This work was supported by the research grant of Cheongju University (2016.03. 01. $\sim 2018.02 .28$.).

