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EXISTENCE OF NON-CONSTANT POSITIVE
SOLUTIONS FOR A RATIO-DEPENDENT
PREDATOR-PREY SYSTEM WITH DISEASE IN THE
PREY

KimMuN Ryu*

ABSTRACT. In this paper, we consider ratio-dependent predator-
prey models with disease in the prey under Neumann boundary
condition. We investigate sufficient conditions for the existence and
non-existence of non-constant positive steady-state solutions by the
effects of the induced diffusion rates.

1. Introduction

In this paper, we investigate the existence of non-constant positive
steady-states of the following ratio-dependent predator-prey system with
disease in the prey:

(1.1)
uy — dAu = u(a — au — av — v)

v — dAY = v(u — by — L)

mw-+uv
wy — d3Aw = w(—by + m%j—v) in (0,00) x Q,
%:%:%’:0 on (0,00) x 09,

uw(0,z) = uo(z), v(0,z)=uvo(x), w(0,z) =wo(x) in Q,

where Q C RY is a bounded domain with a smooth boundary 0€2; the
given coefficients a, m, [, b;, d and d3 are positive constants; v is the
outward directional derivative normal to 9€2; and the nonnegative initial
functions ug(x), vo(z) and wy(z) are not identically zero in Q. Here u, v
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and w represent the population densities of susceptible prey, the infected
prey and the predator, respectively.

The ratio-dependent predator-prey models have been proposed first
by R. Arditi and L. R. Ginzburg in [2]. The actual evidence and jus-
tification of the ratio-dependent predator-prey models can be found in
[3, 4, 6, 7], and the related models have been widely studied for spa-
tially homogeneous case [9, 10, 11, 12] and for spatially inhomogeneous
case [5, 16]. For the dynamics of diffusive ratio-dependent three species
predator-prey interaction systems have been partially studied [13]. In
[1], the authors investigate the asymptotic behavior of positive constant
solutions and the non-negative equilibria to the system (1.1).

The main concern of this paper is to study the existence and non-
existence of positive steady-states of (1.1), that is, we investigate the
existence and non-existence of non-constant positive solutions to the
following elliptic system

—dAu = u[a — au — av — ]

—dAv = vu — by — 2]

mw-+uv
(12) —dsAw = w[-by + ] in Q,
P _guw—g on 9N

o — 9n — g
Note that (1.1) have the following four non-negative equilibria:
(i) eo = (0,0,0),
(ii) e1 = (1,0,0),
(iii) ey = (bQ, “(1‘b2),0) when by < 1,
)

a+1
(iv) ux = (us, vy, ws), where u, = by + ké}i’l, Ve = #“a(l — uy) and
w, = E=0y, when kI > by and by + 520 < 1
In this paper, we define 2~ = 0 at (v,w) = (0,0) to avoid the singu-
larity at (0,0). Note that lim(, )5 (0,0) muts = 0-

This paper is organized as follow. In Section 2, we state some useful
known results of (1.1) obtained in [1]. Finally, in Section 3, we study the
existence and non-existence of non-constant positive solutions of (1.2).

2. Preliminaries

In this section, we state some known results of the system (1.1) in
[1], which is useful in the later section.

First, the following theorem shows that the solution of (1.1) is uni-
formly bounded, and thus no blow up occurs.
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THEOREM 2.1. Assume that kl > by. Then the non-negative solution
(u,v,w) of (1.1) satisfies

0 <u(t,x) < By, 0<w(t,z) < By, 0 <w(t,x) < Bs
on [0,00) x Q, where

B1 := max{1, ||ug||eo},

a+ by 1
B = B
S max{(1+a)b2 1, 1+a||UO||oo+HUOHOO},

El—b
Bs = max{||w0H007 blmlBg}.

Proof. See Theorem 2.1 in [1]. O

Now we introduce the following notations, similarly as in [13] and
[15].

NOTATION. (i) p; denotes the eigenvalue of —A on €2 under Neu-
mann boundary condition.

(ii) E(p;) is the eigenspace corresponding to fi;.

(iii) {cpw j=1,...,dim E(u;)} is an orthonormal basis of E(f;).
(iv) Xj5 = {C ‘PU|C € R’}

(v) X = {u=(uv,w) e [CHQP|L = % = —( on aQ}.

We point out that X = ;2 Xj, where X; = @?i‘iE(’“) Xjj (for
more details, see [13, 15]).

THEOREM 2.2. (Asymptotic stability at u,) Assume that one of the
followings holds:

(i) I=b2)m =1, k>bi/l,

.. _ by
(11) > (1 bz)m, 7l(l—(1—bg)m) > k> bl/l.

Further, if

b Kb R =) — 1) 4 b+ (R by)by
_ M=
” %l bokm + Kl — by " R2U(m(1 = by) — 1) + b2 + (kl — by)bikm

then the positive equilibrium point u, of (1.1) is locally asymptotically
stable.

Proof. See Theorem 2.4 in [1]. O
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3. Positive coexistence of (1.2)

In this section, we show the existence of a non-constant positive so-
lution of elliptic system (1.2) by using the degree theory. To do this, it
is necessary to estimate an a-priori bound of solutions for (1.2).

3.1. An a priori bound
First, we give an a-priori bound for (1.2).

THEOREM 3.1. Assume kl > by. Then the non-negative solution
(u,v,w) of (1.1) satisfies

. : a+ bo
limsupu <1, limsupv < ———,
teoop n t~)oop ba(a+1)
. kil — by a+ by —
1 < Q.
PN < bim > baa+1)
Proof. See Theorem 2.2 in [1]. O

Next we estimate a positive lower bound of classical positive solutions
for (1.2).

THEOREM 3.2. Assume that 1 — by — % > 0 and kl > by. Let
d € [d*,00) and d3 € [d*,d}] for a fixed positive d* and dj. Then there
exists a positive constant Cy(N, 2, d*,d3,1") such that a positive solution
(u,v,w) of (1.2) satisfies

(3.1) minu(z), minv(z), minw(z) > Cy,
Q Q Q
if

I kl—b
(3.2) L=by— — = = L —2y/bimy/1 = bs.

Proof. Tt is easy to see that %, %2, % € C(Q) for d, d3 > d*. By
using Harnack inequality, there exists a positive constant Cy (N, Q,d*,T")

such that

(3.3) maxu < Cyminu, maxv < C,minv, maxw < C, minw.
Q Q Q Q Q

Suppose by contradiction that (3.1) does not hold. Then there are se-
quences {dy }, {ds »}; and the corresponding positive solution (u,, vy, wy)
of (1.2) such that d, > d*, ds,, € [d*,d3] for n € N, and maxgu, — 0
or maxg v, — 0 or maxgw, — 0 as n — oo.

By Theorem 2.1, it is easy to see that ||un||oo, ||Un|loo and [|wy||e <
oo for all n > 1. By Agmon, Douglis, and Nirenberg inequality,
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unllw2p < ClJunl|Lr + |[un fi(un, vn)||Lr) < oo

forall n > 1, p > 2, and some positive constant C. Then it follows from
Sobolev imbedding theorem that {u,} is also bounded in C%®-norm.
Moreover, since ||un||c2z.e < C(||un||coa + ||tunfi(tn, vn)||co.a) for some
constant C' depending on «, we see that {u,} is also bounded in C%“-
norm by the Schauder estimate. By using similar arguments, one can
show that {v,} and {w,} is bounded in C*%*mnorm. Thus Arzela-Ascoli
Theorem shows that there exists a subsequence of {(uy,, vy, wy,)}, which
is denoted by itself again for a convenience, and nonnegative functions
u,v,w € C?(Q), such that (un,vn,w,) — (U,0,w) as n — oco. Since
maxg U, — 0 or maxg v, — 0 or maxgw — 0asn — oo, u=00rv=0
or w = 0. We have the following five cases:

Hu=0, v£0, w#0 or u=0, v#0, w=0,
ii)uz0, v=0, w#0 or u=0, v=0, w#0,
i) W£0, 7£0, @ =0,
iv) u0, v=0, w=0,
v u=0, v=0, w=0.

Case i) Note that vy, w, > 0 and u, v, w satisfy the inequality (3.3).
Thus v > 0 since v # 0. Also since v,, = v > 0 and u, — 0 as n — oo,
Un f2 (U, Un, wy) < 0 for a sufficient large n. By applying Green’s first
identity to the second equation in (1.2), we have [, vy fa(tn, Un, wyn) = 0.
This derives a contradiction.

Case ii) since w, > 0 and v = 0, one can similarly show that
f3(vp,wy) < 0 for a sufficient large n. This is a contradiction to the
fact that [, wy f3(vn, wy) = 0 for all n.

Case iii) It is obvious that w,, v, > 0 on Q for a sufficient large n.

First, note that v > 0 as in the case i). Thus oo — 1 uniformly on

Q since w,, — 0 uniformly on Q, as n — co. Since kl > by, this derives
also a contradiction.

Case iv) By applying Green’s first identity to the first equation
in (1.2) and using the fact that v, — v = 0 as n — oo, we have
0= Jounfi(un,vn) = [oU(a — att) as n — co. Thus shows that & = 1
since 0 < u < 1.

Consider the following elliptic system under Neumann boundary con-
dition:

(3.4) { —dn AV, = ang(ﬁ, Vi, Wn)

—d3 AW, = Wi f3(V,, Wy,)  in Q,
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where V,, = and W,

" lon IIoo+HwnHoo n = Ton Hoo+||wn|| !
first identity, one can get the following integral equations

. By applying Green’s

(3.5) /Qang(ZZ,Vn,Wn)zo, /anfg(vn,wn):o for n>1.

Similarly as in the case i), there exists a subsequence (Vy,, Wy), which
is denoted by itself, such that hmn_>OO V., = V and lim,, o0 Wn = W in
02@). Since ||[Valloo + [|Whlloo = 1, HVHOO+HWHOO =land V+W >0
on ). And these nonnegative pairs satisfy the Harnack inequality.

Now We assume that d,, — D* € [d*, 00| and d3,, — Dj € [d*,d3],
by taking a subsequence if necessary.

First, consider the case of D* < oco. If W = 0, then V >0on
and [, V(@ — by) = 0. But since by < 1 = & from the given assumption,
this is a contradiction, and thus w Z£0. If V= 0, then W > 0 and so
we have fQ —blw = 0 which is also impossible. Hence 17, W >0onQ
by Harnack inequality. After taking the limit in (3. 5) by subtracting
[y Va(1,V, W) = 0 from the equation Jo W f3(V,W) = 0, we have

/ bmW?2 4+ (1 — bo)V2 + (by +m(1 — bo) — I(k + 1))VW
Q mW +V
On the other hand, by using (3.2), one can easily show that the above
integral is positive. This derives a contradiction.

Next, consider the case of D* = 0o, V. As in the case of D* < o0, one

can show that W = A for some positive constant A. Thus W = kl=bi g

= bim

since W satisfies

{ —D{AW =W f3(A, W) inQ,

881/:]/ =0 on 0f).

Let B=1—by— II;V 1= = 0, then B = 0 since the first integral equation

in (3.5) holds as n — oo, and thus we have 1 — by — % = 0, which
derives a contradiction.

Case v) Consider the system (3.4) with w = 0. Then one can get
V +W >0on and (35) with = 0.

If D* = oo, then V=A>0and W = ké;—mblA for some positive

constant A. But, since fQ A( by — v ) = 0, A must be zero. This
W+A

is a contradiction.
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Now assume that D* < co. If W =0or V = 0, then fQ XN/(—bg) =0
or [q W(=b1) = 0, and thus V and W > 0 on Q. By the way, —D*AV =

by — MW i v _
V[ bo ] < 0in 2 and oy — 0on 0. Moreover, by the strong

maximum principle and Hopf Boundary Lemma, we see that %—‘;(p) >0

at some point p € 9Q.(If not, then V is a constant in Q.) Hence Visa
nonnegative constant since %‘; = 0 on 0. As in the case of D* = oo,

this derives a contradiction. O

3.2. Nonexistence of non-constant positive solution

In this subsection, we investigate the nonexistence of non-constant
positive solution of (1.2).

THEOREM 3.3. Assume that dzps > kl — by > 0. If there exists a
positive constant D(N,Q,ds,T") such that d > D, then (1.2) has no non-
constant positive solution, where o is a eigenvalue defined in Notation.

Proof. Define u = ﬁ Jou, 7= ﬁ Jovand w = ﬁ Jow. By multi-
plying (u—1), (v—"7) and (w—w) to the first, second and third equation
in (1.2), respectively, we have

—d(u—u)Au  =u(u—u)fi(u,v),
(3.6) —d(v—7)Av =v(v—7)fa(u,v,w),
—d3(w —w)Aw = w(w —w) f3(v,w).

Therefore by Green’s first identity and Cauchy inequality, we have
(3.7)
Jo(d|Vul?* + d|Vv|? + d3|Vw|?)

= Jo [ = @) (ufi () = w1 (@, 9)) + (0 = ) (0falu,v,w)
—ofo(@,9,)) + (w — ) (wfa(v, w) — Wfs(0.0)) |
-y [a(u — )2 — a(u—0)*(u+ ) — (a + 1)o(u — 7)?

—(a+ VDu(v —v)(u —u) +v(u —u)(v —v) +u(v — v)?

—\2 Imww(v—70)? w0 (v—2)(w—w) —\2
_bQ(U —(U) )(_ (rm)quv)(mﬁJr(ﬁ) N )(anw+v)(mﬁ+§) — b (w - U))
klmww(v—)(w—w klvo(w—w
+ (mw+v) (mw+v) + (mw+v) (mw-+v)
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< Jo olw = + (a+ Do = ] Ju— 7 + 5525 u — 7] o - 7]
+(v—70) + 1w - | [v — 7] + Ejw — | |v — 7]
(kL — by)(w — @)2}
< Jo [a(u =1 + 2w — ) + 2 (0 = 0)? + 52 (u — a0
— — l+kl/m _
+2b2(a+1) (v="1)%+(v—1)*+ %(U —)?

o+ (EERmE (4 — )2 4 (kL = by) (w0 — )2

where € is an arbitrary positive constant. Synthetically, we have
(3.8)
JodVul?> + d|Vv|? + d3|Vw|?)
1 +b )2 1 +b
< Jo {(a + 4+ QbZ(l-ia)> (u—u)*+ (ﬂ + Shtitay T 1
+l+’§l£/m) (0—1)% + (”’“l/m + Kl — b1>(w - @)2}.

It follows from Poincaré inequality that
/ (d|Vul? + d|Vo|? + ds|Ve[2)
Q
> / dps(u — 1) 4 dus(v — 0)? + dzpa(w — )2
Q

Since dsuo > kl — b1, there is a sufficient small g9 such that dsus >

Hkl/ma +kl—by. Let D=L -~ max {a—i— atl | zbgabja), Lgl + szalfa) +

l+k:l/m

1+
completes the proof. ]

}, then we conclude that v = u, v = ¥ and w = w. This

3.3. Existence of non-constant positive solution

In this subsection, we study the existence of non-constant positive
solution using Leray-Schauder Theorem. For the sake of convenience,
define u = (u(x),v(z),w(z))” and

(I = dA) Mu(fr(u,v) +1)]
]:(u) = (I - dA)il[v(fQ(uvrl)?w) + 1)]
(I = d3A) M w(f3(v, w) +1)]

Then (1.2) becomes (I — F)u = 0. Notice that F : X — X is a compact
operator and the operator (I — pA)~!: CY(Q) — C1(Q) is compact for
some positive constant p.
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To apply the index theory, we must investigate the eigenvalue of the
following problem

(3.9) —(I = Fu(w))¥ = AU, ¥ £ 0,

where ¥ = (11, 12,13) and u, is the unique positive equilibrium point
of (1.2). Then by Leray-Schauder Theorem(Theorem 2.8.1 in [14]),

index(I — F,u,) = (—1)7, v= Zm\,
A>0

where n) is the multiplicity of all the positive eigenvalues A of (3.9).
After some computations, one can have the following elliptic system
which is equivalent to (3.9)

(3.10)
(—d(A+ 1A+ (A + au)r + (14 a)ushe =0
—d(A + 1) At + (—vi)ih1 + ()\ -7 b )1/12 + (mwl:}lv*)? Y3 =0

Mws—+vx)?

—ds(A+ DAY + (= i Yoy + (A + At gy = 0 in

Mws~+vx)? Mws—+vx)?

0 0 2]
ot _ 0% on 99,
Y1 # 0,92 # 0,93 # 0.

Hence we see that investigating the eigenvalue of (3.9) is equivalent to
find positive roots of the characteristic equation B(\) = 0, where

Ay taus (1+a)ux
A+ T T+ 0
dum e
— _ Ux Mwsx+Ux o
Bk()‘) = det 1+dpg A+ 14+dpg, 1+dpg (mwgl+v*)2
MU W
0 1 Elmw? d3ﬂk+m

T I4dspr (mws+vs)? + 1+d3pk

for k > 1. Therefore it follows from Leray-Schauder Theorem that

index(I — F,u,) = (1), v= Z Z Mg

k>1 A\ >0

where ny, = my, dim E(u;) and my, is the multiplicity of A; as a posi-
tive root of B(\) = 0.

In view of Theorem 3.3, we see that there is no nonconstant positive
solution of (1.2) if d > D for a sufficient large D when d3 > %. Thus
it is necessary to investigate the index value at u, when d is a sufficient
large.
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LEMMA 3.4. Assume that k > max{le, L1 and min{a — % +

b71m, 1— by — %} > 0. If there exists a positive constants D =
D(N,Q,T,ds) such that d > D, then

index(I — F,u,) = 1.

Proof. 1t is easy to see that the unique positive constant solution u,
exists.
Since p1 = 0, we have

Bl()\) = /\3 + (ML% + auy — M))\z + ((1 + a)u*v*

(maws~+vs) (mawsx+ux)?
klmusvsws LU Vs W klmuv2w,
+a (mwetv:)? — Ylmwatv.)? At (a+1) (maws+uvs)?”

Since km > 1 anda—%—i—b%m >0, A > 0 and A2 > 0, and thus
Bi(A) >0 for all A > 0.
Now assume that £ > 2. Note that ug > 0. Then

Bu(\) = (A +1)? <A+ (e . ) +0(7).

1+ dspg d

Thus there exists a large positive constant D depending on I'; N, © and
ds such that By()\) > 0 for all d > D and A > 0.

Therefore one can conclude that Bi(A) > 0 for all A > 0, & > 1
and d > D, and so v = > k12050, = 0. This implies the desired
result. O

LEMMA 3.5. Assume that i € (pig,, pry+1) for some kg > 2 and

1 < km,
kl—b b kl—b
(3.11) W1<1_b2<(l?11+1> T
b < (B o) el < it
where
(3.12)
~ _ 1 lVs Wy o
Ho= Qd{(mw*—i-v*)Q At

2
(o~ g ) =40+ o, - )

Then there exist a positive constant B3(N, 0, T, d) such that the poly-
nomial By(\) = 0 has one simple positive root for 2 < k < ko, provided

-~

that ds > Ds.
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Proof. If k = 1, the similarly as in Lemma 3.4, we have k > Inax{le, %}
and a — % + %m > 0 and thus By () > 0 for all A > 0.

If £ > 2, then
Bi(A) = (A +1) (N + p(u) A + a(ux)) + O(dls),
where
2dpug + auy — (mﬁ‘#*)g
pur) = T+ don
and
(dpy + auy) (duk - (WZ’%) + (1 + a)usv,

q(pw) = 0+ dur )2 :
Note that au, — (mﬁ‘% < 0 and (1 + a)usve — % < 0 since
aby < (B —a) el and 1 - by < (B + 1) 520 in (3.11),

Now we investigate roots of 75(\) = A2 + p(ur) A + q(ug) = 0. First,
if p(ux)? — 4q(ug) > 0, then rp(\) = 0 has two real roots. In fact,
() — da(s) = (b l(G o+ H)? —4(G - H + (1 + a)u,e,)], where

G = dpg+au, and H = dpy — 2%« We know that (G—H)?—4(1+

(Mmws+vx)

2 2
a)Usvy = (au* - (17“’) —4(1 4 a)usv, = <au* - (lviw)z) _

Mws+v4)? Mws+vs

4 [(1 + a)usvy — M’W*Q] > 0, and hence r;(A) = 0 has two real roots.

(mwx+vx)

Next,we investigate the sign of g(ug) = 7(1+d1/1k)2 q(pr), where q(ug) =
d*ui + <CLU* - M)@% + (1 + a)usve — M It is easy to

(mws—vs)? Mmws+v4)?

check that the equation g(ux) = 0 has two real roots. Moreover, these
two roots has a different sign. Since pi > 0 for £k > 2, we just han-
dle the only positive one fi, defined in (3.12).By the given assumption
B € (fhg» Hiko+1), 1t 1s concluded that g(py) < 0 for 2 < k < ky. Conse-
quently, we see that ri(\) = 0 has two roots which have a different sign
for 2 < k < ky.

If k> ko + 1, then q(pr) > 0 and p(pr) > 0 since @ € (fkgs frg+1)-
Thus r(A) = 0 has two negative real roots.

Therefore the coefficients of By (\) converge to the coefficients of (A+

D(A2+p(ur) A +q(ur)) as dg — oo. If d3 > D3 for some positive constant

<

D3, then we have the desired result. ]

REMARK 3.6. The condition (3.11) guarantees the existence of pos-

itive constant u,. Moreover, this violates the inequality %% <
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min {a(bz + %), 1—0by — kl*bl} in Theorem 2.2. Hence we may

km
expect the non-constant positive solutions.

Finally, we show the existence of non-constant positive solutions of
(1.2) by using Theorem 3.1-3.3 and Lemma 3.4, 3.5.

THEOREM 3.7. Assume that (3.2), (3.11) and i € (pgy, ftky+1) for
some ko > 2. If Zioz2 dim E(uy) is odd, then there exist a positive con-
stant Dy = Ds(T', N, 0, d) such that (1.2) has at least one non-constant
positive solution when ds > 133.

Proof. For 6 € [0,1], define

(I = 0dA — (1= 0) DAY [u( fi(u,v) + 1)]
Fo(u) = (I —0dA — (1 —60)DA)u(fo(u,v,w) + 1)) ,
(I = 0dsA — (1= 0)(E2l + 1)A) " w(f3(v, w) + 1)]

where D is a constant defined in Lemma 3.4 with D > D. Here D is a
constant defined in Theorem 3.3. By Theorem 3.1 and 3.2, there exist
positive constants Cy(I', D, D3, N, 1) and C*(I") such that the positive
solutions of problem Fyp(u) = 0 is contained in A = {u € X|C; <
u,v,w < C*} for all @ € [0,1]. Then for all u € A, Fyp(u) # 0. Thus the
degree deg(I — Fy(u), A, 0) is well-defined since Fyp(u) : A x [0,1] — X is
compact. Moreover, by applying the homotopy invariance of the Leray-
Schauder degree theory, we have

deg(l - ]:O(u)aA’O) = deg(l - ]:1(11)7Aa 0)
If & = 0, then Fy(u) = 0 has no non-constant positive solutions by
Theorem 3.3 since D > D. Hence deg(I — Fo(u),A,0) = index(I —
Fo, u). Furthermore, Lemma 3.4 gives

index (I — Fo,uy) = 1.

On the other hand, we have

deg(I — Fi(u), A, 0) = index(I — Fi,u,) = (—1)Zile dimEGu) — 1

by Leray-Schauder Theorem. This contradiction implies the existence
of non-constant positive solutions of (1.2), the desired result. d
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