DOI QR코드

DOI QR Code

혼합영양 배양조건에서의 Anabena 배양을 위한 유기탄소(acetate 종류 및 농도) 선정 연구

Selection of Organic Carbon (Different Form of Acetate Compounds and Concentration) for Cultivation of Anabena under Mixotrophic Cultivation Mode

  • Hong, Kai (Department of Environmental Engineering, Pukyong National University) ;
  • Gao, Siyuan (Department of Environmental Engineering, Pukyong National University) ;
  • Lee, Taeyoon (Department of Environmental Engineering, Pukyong National University)
  • 투고 : 2017.06.16
  • 심사 : 2017.08.18
  • 발행 : 2018.02.01

초록

본 연구는 혼합영양 배양 조건에서 acetate의 주입이 Anabena azollae의 성장에 미치는 영향을 파악하기 위해 수행되었다. 4가지 종류의 acetate 중 ethyle acetate가 Anabena azollae의 성장에 가장 효과적이라고 밝혀졌으며, 주입한 ethyle acetate의 농도가 증가할수록 성장속도는 증가하는 것을 확인하였다. 40 mM의 ethyl acetate의 경우 비성장속도는 $0.979day^{-1}$, 최대바이오매스 생산성은 $0.293g\;L^{-1}\;d^{-1}$로 본 연구에서 배양속도가 가장 빠른 것으로 판명되었다. Acetic acid와 butyl acetate의 경우 Anabena azollae 성장을 방해하는 것으로 나타났다. Aetration의 경우 0.54 vvm에서 성장속도가 가장 빨랐다. 반연속배양에서는 aeration 실험이 끝난 후 연속하여 ethyle acetate 주입을 하여 배양을 하였다. 회분식실험에 비해 반연속배양에서의 비성장속도와 최대바이오매스 생산성은 모두 감소하였지만 최대 농도는 5.91 g/L로 가장 큰 값을 나타내었다.

The main objective of this study was to evaluate the effects of acetate on the cultivation of anabena under mixotrophic condition. Four different types of acetates were used for the anebena cultivation. Among them, ethyl acetate was found to be the most effective and the growth rates linearly increased as the amount of ethyl acetate increased. When 40 mM of ethyl acetate was used, the highest values of specific growth rate of $0.979day^{-1}$ and maximum biomass productivity of $0.293g\;L^{-1}\;d^{-1}$ were obtained. On the contrary, input of acetic acid and butyl acetate inhibited the growth of anabena. For aeration tests, 0.54 vvm was optimum for anabena cultivation. For a semi-continuous cultivation test, ethyl acetate was used after 0.54 vvm test was finished. Then, test continued under 0.54 vvm and 40 mM of ethyl acetate. Lower specific growth rate and maximum biomass productivity were obtained compared to those from batch cultivation tests. However, the greatest maximum concentration of 5.91 g/L was obtained during the semi-continuous cultivation test.

키워드

참고문헌

  1. Markou, G., Vandamme, D. and Muylaert, K., "Microalgal and Cyanobacterial Cultivation: the Supply of Nutrients," Water Res., 65(15), 186-202(2014). https://doi.org/10.1016/j.watres.2014.07.025
  2. Markou, G. and Georgakakis, D., "Cultivation of Filamentous Cyanobacteria (blue-green algae) in Agro-industrial Wastes and Wastewaters: a Review, Appl. Energy, 88(10), 3389-401(2011). https://doi.org/10.1016/j.apenergy.2010.12.042
  3. Pete, R., Klise, G. and Wu, B., "Resource Demand Implications for US Algae Biofuels Production Scale-up," Appl. Energy, 88(10), 3377-3388(2011). https://doi.org/10.1016/j.apenergy.2011.04.023
  4. Canter, C. E., Blowers, P, Handler, R. M. and Shonnard, D. R., "Implications of Widespread Algal Biofuels Production on Macronutrient Ferilizer Supplies: Nutrient Demand and Evaluation of Potential Alternate Nutrient Sources," Appl. Energy, 143(1), 71-80(2015). https://doi.org/10.1016/j.apenergy.2014.12.065
  5. Pittman, J. K., Dean, A. P. and Osundeko, O., "The Potential of Sustainable Algal Biofuel Production Using Wastewater Resources," Bioresour. Technol., 102(1), 17-25(2011). https://doi.org/10.1016/j.biortech.2010.06.035
  6. Chen, H., Qiu, T., Rong, J., He, C. and Wang, Q., "Microalgal Biofuel Revisited: An Informatics-based Anlaysis of Developments to Date and Future Prospects, Appl. Energy, 155(1), 585-598(2015). https://doi.org/10.1016/j.apenergy.2015.06.055
  7. Endo, H., Sansawa, H. and Nakajima, K., "Studies on Chlorealla Regularis, Heterotrophic Fast-growing Strain II. Mixotrophic Growth in Relation to Light Intensity and Acetate Concentration," Plant Cell Physiol., 18(1), 199-205(1977).
  8. Zhan, J., Rong, J. and Wang, Q., "Mixotrophic Cultivation, a Preferable Microalgae Cultivation Mode for Biomass/bioenergy Production, and Bioremediation, Advances and Prospect," International Journal of Hydrogen Energy, 7(12), 1-13(2016).
  9. Andrade, M. R. and Costa, J. A. V., "Mixotrophic Cultivation of Microalga Spirulina Platensis Using Molasses as Organic Substrate," Aquaculture, 264(1-4), 130-134(2007). https://doi.org/10.1016/j.aquaculture.2006.11.021
  10. Giovanardi, M., Ferroni, L., Baldisserotto, C., Tedeschi, P., Maietti, A. and Pantaleoni, L., "Morphophysiological Analyses of Neochloris Oleoabundans (Chlorophyta) Grown Mixotrophically in a Carbon-rich Waste Product," Protoplasma, 250(1), 161-174(2013). https://doi.org/10.1007/s00709-012-0390-x
  11. Gim, G. H., Kim, J. K., Kim, H. S., Kathiravan, M. N., Yang, H. and Jeong, S. H., "Comparison of Biomass Production and Total Lipid Content of Freshwater Green Microalgae Cultivated Under Various Culture Conditions," Bioprocess Biosyst. Eng., 37(2), 99-106(2014). https://doi.org/10.1007/s00449-013-0920-8
  12. Jurado-Oller, J. L., Dubini, A., Galvan, A., Fernandez, E. and Gonzalez-Ballester, D., "Low Oxygen Levels Contribute to Improve Photohydrogen Production in Mixotrophic Non-stressed Chlam-Ydomonas Cultures," Biotechnology for Biofuels, 8(1), 149-163(2015). https://doi.org/10.1186/s13068-015-0341-9
  13. Lee, J. K., Koh, T. H., Kim, S. K. and Lee, T. Y., "A Study on the Adsorptive Removal of Heavy Metals Using Inflated Vermiculites," Journal of Korean Geo-Environmental Society, 10(6), 61-68(2009).