DOI QR코드

DOI QR Code

고분자전해질 연료전지에서 고분자막의 이온전도도에 미치는 전류밀도의 영향

Effect of Current Density on Ion Conductivity of Membrane in Proton Exchange Membrane

  • 투고 : 2017.07.19
  • 심사 : 2017.09.19
  • 발행 : 2018.02.01

초록

본 연구에서는 고분자전해질 연료전지(PEMFC)가 실제 구동되는 고전류밀도 범위까지 임피던스를 분석해 이온전도도에 대해 연구하였다. 가스확산층(GDL)유무가 임피던스에 미치는 영향을 수소투과도 측정에 의해 간접적으로 검토하였다. 저전류 범위(<$80mA/cm^2$)에서 상대습도(RH)가 60% 이상 높을 때는 고분자 막의 수분 함량이 충분해 막의 이온전도도가 전류 변화의 영향을 받지 않았다. 그러나 RH가 낮을 때는 전류밀도가 증가하면서 수분 생성에 의해 이온전도도가 증가했다. 고전류 영역($100{\sim}800mA/cm^2$)에서 HFR (High Frequency Resistance)로 구한 막의 이온전도도 실험값과 수치해석에 의해 구한 값을 비교하였다. RH 100%에서는 실험값과 모사한 값 모두 전류 변화에 영향을 받지 않고 일정한 이온전도도를 유지함을 보였다. RH 30~70%에서는 전류밀도 증가에 따라 이온전도도가 증가하다 일정해 지는 경향을 나타냈다.

In this work, we study the ion conductivity by analyzing the impedance to the high current density range that the PEMFC (Proton Exchange Membrane Fuel Cell) is actually operated. The effect of GDL (Gas Diffusion Layer)presence on impedance was investigated indirectly by measuring hydrogen permeability. When the RH (Relative Humidity)was higher than 60% in the low current range (< $80mA/cm^2$), the moisture content of the polymer membrane was sufficient and the ion conductivity of the membrane was not influenced by the current change. However, when RH was low, ion conductivity increased due to water production as current density increased. The ion conductivity of the membrane obtained by HFR (High Frequency Resistance) in the high current region ($100{\sim}800mA/cm^2$)was compared with the measured value and simulated value. At RH 100%, both experimental and simulated values showed constant ion conductivity without being influenced by current change. At 30~70% of RH, the ionic conductivity increased with increasing current density and tended to be constant.

키워드

참고문헌

  1. Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger. A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England (2003).
  2. Karpenko-Jereb, L., Innerwinkler, P., Kelterer, A. M., Sternig, C., Fink, C., Prenninger, P. and Tatschl, R., "A Novel Membrane Transport Model for Polymer Electrolyte Fuel Cell Simulations," Inter. J. Hydrogen Energy., 39, 7077-7088(2014). https://doi.org/10.1016/j.ijhydene.2014.02.083
  3. Hsu, W. Y. and Gierke, T. D., "Ion Transport and Clustering in Nafion Perfluorinated Membranes," J. Membr. Sci., 13, 307-326(1983). https://doi.org/10.1016/S0376-7388(00)81563-X
  4. Fimrite, J., Struchtrup, H. and Djilali, N., "Transport Phenomena in Polymer Electrolyte Membranes I. Modeling Framework," J. Electrochem Soc., 152, A, 1804-1814(2005).
  5. Cwirko, E. H. and Carbonell, R. G., "A Theoretical Analysis of Donnan Dialysis Across Charged Porous Membranes," J. Membr. Sci., 48, 155-179(1990). https://doi.org/10.1016/0376-7388(90)85003-4
  6. Zabolotsky, V. I. and Nikonenko, V. V., "Effect of Structural Membrane Inhomogeneity on Transport Properties," J. Membr. Sci., 79, 181-198(1993). https://doi.org/10.1016/0376-7388(93)85115-D
  7. Berezina, N. P. and Karpenko, L.V., "Percolation Effects in Ion Exchange Materials," Colloid J., 62, 676-684(2000). https://doi.org/10.1023/A:1026670423208
  8. Carnes, B. and Djilali, N., "Analysis of Coupled Proton and Water Transport in a PEM Fuel Cell Using the Binary Friction Membrane Model," Electrochim Acta, 52, 1038-1052(2006). https://doi.org/10.1016/j.electacta.2006.07.006
  9. Berg, P., Promislow, K., Pierre, J., Stumper, J. and Wetton, B., "Water Management in PEM Fuel Cells," J. Electrochem. Soc., 151, A 341-353(2004). https://doi.org/10.1149/1.1641033
  10. Kulikovsky, A. A., "The Effect of Cathodic Water on Performance of a Polymer Electrolyte Fuel Cell," Electrochim Acta, 49, 5187-5196(2004). https://doi.org/10.1016/j.electacta.2004.06.034
  11. Hwang, B. C., Chung, H. B., Lee, M. S., Lee, D. H. and Park, K. P., "Ion Conductivity of Membrane in Proton Exchange Membrane Fuel Cell," Korean Chem. Eng. Res., 54(5), 593-597(2016). https://doi.org/10.9713/kcer.2016.54.5.593
  12. Kim, T. H., Lee, H., Sim, W. J., Lee, J. H., Kim, S. H., Lim, T. W. and Park, K. P., "Degradation of Proton Exchange Membrane by Pt Dissolved/deposited in Fuel Cells," Korean J. Chem. Eng., 26, 1265-1271(2009). https://doi.org/10.1007/s11814-009-0212-9
  13. Buchi, F. N. and Scherer, G. G., "Investigation of the Transveral Water Profile in Nafion Membranes in Polymer Membrane Fuel Cells," J. Electrochem. Soc., 148(3), A181-A188(2000).
  14. Ye, X. and Wang, C. Y., "Measurement of Water Transport Properties Through Membrane-electrode Assemblies, I. Membrane," J. Electrochem. Soc., 154(7), B676-B682(2007). https://doi.org/10.1149/1.2737379
  15. Ju, H. and Wang, C. Y., "Simon Cleghorn, Uwe Beusher, "Nonisothermal Modeling of Polymer Electrolyte Fuel Cells I. Experimental Validation," J. Electrochem. Soc., 152(8), A1645-A1653(2005). https://doi.org/10.1149/1.1943591

피인용 문헌

  1. 국내 연료전지 분야 연구동향 분석: 전극, 전해질, 분리판, 스택, 시스템, BOP, 진단분석 분야 vol.31, pp.6, 2020, https://doi.org/10.7316/khnes.2020.31.6.530