DOI QR코드

DOI QR Code

Development of Hybrid Sol-Gel Coating to Prevent Corrosion of Magnesium Alloys

마그네슘 합금의 방청을 위한 하이브리드 졸-겔 코팅제의 개발

  • Lee, Dong Uk (Department of Industrial Chemistry, Pukyong National University) ;
  • Kim, Young Hoon (Department of Industrial Chemistry, Pukyong National University) ;
  • Moon, Myung Jun (Department of Industrial Chemistry, Pukyong National University)
  • Received : 2018.01.13
  • Accepted : 2018.02.14
  • Published : 2018.02.28

Abstract

The high rate of corrosion of magnesium alloys makes it limited for industrial applications. Therefore, surface treatment is required to enhance their corrosion resistance. In our study, a chemical conversion coating for protecting the corrosion of the magnesium alloy, AZ31B, was prepared by using a phosphate-permanganate solution. The chemical conversion coating had a limited protection ability due to defects arising from cracks and pores in the coating layer. The sol-gel coating was prepared by using trimethoxymethylsilane (MTMS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) as precursors, and aluminum acetyl acetonate as a ring opening agent. The corrosion protection properties of sol-gel and conversion coatings in 0.35wt% NaCl solution were measured by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization test. The EIS results indicated that the resistance of the chemical conversion coating with the sol-gel coating was significantly improved through the sol-gel sealed phosphate-permanganate conversion coating. The results of the potentiodynamic polarization test revealed that the sol-gel coating decreased the corrosion current density ($I_{corr}$). The SEM image showed that the sol-gel coating sealed conversion coating and improved corrosion protection.

Keywords

E1COB2_2018_v17n1_30_f0001.png 이미지

Fig. 1 Diagram of procedure for preparation of conversioncoating and sol-gel coating specimens.

E1COB2_2018_v17n1_30_f0002.png 이미지

Fig. 2 Thickness of multi-layer measured by optical microscopy(magnification x600).

E1COB2_2018_v17n1_30_f0003.png 이미지

Fig. 3 Synthesis of aluminum acetyl acetonate and sol-gelcoating.

E1COB2_2018_v17n1_30_f0004.png 이미지

Fig. 4 FT-IR spectra of sol-gel coating.(a-coating solution, b-cured film).

E1COB2_2018_v17n1_30_f0005.png 이미지

Fig. 5 Electrical equivalent circuit of specimens. (a-chemicalconversion coating (MC specimen), b-sol-gel coated on chemicalconversion coating layer(MCS specimen)).

E1COB2_2018_v17n1_30_f0006.png 이미지

Fig. 6 EIS spectra, during immersion in NaCl soluiton, of chemical conversion coating on AZ31B (a-bode plot, b-nyquist plot).

E1COB2_2018_v17n1_30_f0007.png 이미지

Fig. 7 EIS spectra, during immersion in NaCl soluiton, of chemical conversion coating after sealed with sol-gel coating on AZ31B(a-bode plot, b-nyquist plot).

E1COB2_2018_v17n1_30_f0008.png 이미지

Fig. 8 potentiodynamic polarization curve with specimenimmersed in NaCl solution.

E1COB2_2018_v17n1_30_f0009.png 이미지

Fig. 9 SEM image of surface morphologies of chemical conversion coating and sol-gel coating (magnification of 3000x).

E1COB2_2018_v17n1_30_f0010.png 이미지

Fig. 10 Sol-gel coating sealed with chemical conversion coatinggmeasured by SEM(magnification x3000).

Table 1 Composition of AZ31B magnesium alloy measured by EDS

E1COB2_2018_v17n1_30_t0001.png 이미지

Table 2 Calculated values of the electrical equivalent circuit components of conversion coating & sol-gel coating double layer

E1COB2_2018_v17n1_30_t0002.png 이미지

Table 3 Potentiodynamic polarization parameters with various specimen

E1COB2_2018_v17n1_30_t0003.png 이미지

References

  1. Myer Kutz, Mechanical Engineers' Handbook: Materials and Mechanical Design, John Wiley & Sons (2006).
  2. D. H. Jang, Transactions of Materials Processing, 20,160, (2011). https://doi.org/10.5228/KSTP.2011.20.2.160
  3. R. C. Weast, CRC handbook of Chemistry and Physics. 61st ed, CRC Press Inc, (1981).
  4. U. C. Nwaogu, C. Blawert, N. Scharnagl, W. Dietzel, and K. U. Kainer, Corros. Sci., 51, 2544 (2009). https://doi.org/10.1016/j.corsci.2009.06.045
  5. W. Zhou, D. Shan, E. H. Han, and W. Ke, Corros. Sci., 50, 329 (2008). https://doi.org/10.1016/j.corsci.2007.08.007
  6. X. Liu, Z. Liu, P. Liu, Y. Xiang, W. Hu, and W. Ding, T. Nonferr. Metal. Soc., 20, 2185 (2010). https://doi.org/10.1016/S1003-6326(09)60440-4
  7. M. Turhan, R. Lynch, M. Killian, S. Virtanen, Electrochim. Acta, 55, 250, (2009). https://doi.org/10.1016/j.electacta.2009.08.046
  8. A. Zomorodian, F. Brusciotti, A. Fernandes, M. J. Carmezim, T. Moura e Silva, J. C. S. Fernandes, and M. F. Montemor, Surf. Coat. Technol., 206, 4368 (2012). https://doi.org/10.1016/j.surfcoat.2012.04.061
  9. A. Nemcova, O. Galal, P. Skeldon, I. Kubena, M. Smid, E. Briand, I. Vickridge, J. -J. Ganem, and H. Habazaki, Electrochim. Acta, 219, 28 (2016). https://doi.org/10.1016/j.electacta.2016.09.089
  10. J. Liu and J. C. Berg, J. Mater. Chem., 17, 4430. (2007). https://doi.org/10.1039/b709078a
  11. T.L. Metroke, O. Kachurina, E.T. Knobbe, Prog. Org. Coat., 44, 295, (2002). https://doi.org/10.1016/S0300-9440(02)00063-2
  12. H. Shi, F. Liu, and E. Han, Prog. Org. Coat., 66, 183 (2009). https://doi.org/10.1016/j.porgcoat.2009.07.004
  13. M. H. Kim, S. T. Kwak, and M. J. Moon, J. Kor. Inst. Surf. Ene., 43, 73 (2010). https://doi.org/10.5695/JKISE.2010.43.2.073
  14. D. U. Yi, D. W. Kim, J. H. Baek, S. T. Kwak, and M. J. Moon, J. Kor. Soc. Imag. Sci. Technol., 19, 10 (2013). https://doi.org/10.14226/KSIST.2013.19.3.02
  15. C. J. Brinker and G. W. Scherer, Sol-gel science; The physics and chemistry of sol-gel processing, Academic Press, Inc. (1990).
  16. G. Socrates, Infrared and Raman Characteristic Group Frequencies : Tables and Charts 3rd ed., John Wiley & Sons (2001).
  17. E. Principles and P. Polarization Application notes CORR-1 : Basics of Corrosion Measurements, princeton applied research (1980).
  18. I. G. A. Arwati, Fina, World Chem. Eng. J., 1, 65 (2017).