DOI QR코드

DOI QR Code

Anonymity Personal Information Secure Method in Big Data environment

빅데이터 환경에서 개인정보 익명화를 통한 보호 방안

  • Hong, Sunghyuck (Division of Information & Communication, Baekseok University) ;
  • Park, Sang-Hee (Division of Information & Communication, Baekseok University)
  • 홍성혁 (백석대학교 정보통신학부) ;
  • 박상희 (백석대학교 정보통신학부)
  • Received : 2018.01.31
  • Accepted : 2018.02.20
  • Published : 2018.02.28

Abstract

Big Data is strictly positioning one of method to deal with problems faced with mankind, not an icon of revolution in future anymore. Application of Big Data and protection of personal information have contradictoriness. When we weight more to usage of Big Data, someone's privacy is necessarily invaded. otherwise, we care more about keeping safe of individual information, only low-level of research using Big Data can be used to accomplish public purpose. In this study, we propose a method to anonymize Big Data collected in order to investigate the problems of personal information infringement and utilize Big Data and protect personal. This will solve the problem of personal information infringement as well as utilizing Big Data.

빅데이터는 이제 더 이상 미래 혁신의 아이콘이 아니라 인류가 당면한 과제를 해결하기 위한 하나의 수단으로써 공고히 자리매김해 가고 있다. 빅데이터의 활용과 개인정보 보호는 분명 양면성을 갖고 있다. 데이터의 활용을 강조할 경우 개인이 공개를 원하지 않는 사생활은 필연적으로 침해 될 것이고, 개인정보 보호를 강조할 경우 어설픈 수준의 빅데이터 연구만 가능해 공공의 목적을 달성 하는데 어려움을 겪을 수 있다. 본 연구에서는 개인정보 침해의 문제점을 알아보고 빅데이터의 활용과 개인정보의 보호를 하기 위해서 취합하는 빅데이터를 익명화하는 방안을 제시하였다. 이를통해 빅데이터 활용 뿐만 아니라 개인정보 침해의 문제점을 해결할 수 있을 것으로 보인다.

Keywords

References

  1. M. Dave & J. Kamal. (2017). Identifying big data dimensions and structure. 2017 4th International Conference on Signal Processing, Computing and Control. (pp. 163-168). Solan : IEEE. DOI : 10.1109/ispcc.2017.8269669
  2. D. Sik, K. Csorba & P. Ekler. (2017). Implementation of a geographic information system with big data environment on common data model. 2017 8th IEEE International Conference on Cognitive Infocommunications. (pp. 181-184). Debrecen : IEEE. DOI : 10.1109/coginfocom.2017.8268238
  3. L. Mertz. (2018). Machine Learning Takes on Health Care: Leonard DAvolios Cyft Employs Big Data to Benefit Patients and Providers. IEEE Pulse, 9(1), 10-11. DOI : 10.1109/mpul.2017.2772686
  4. K. Dounya, K. Okba, S. Hamza, S. Safa, H. Iman, & B. Omar. (2017). A new approach based mobile agent system for ensuring secure big data transmission and storage. 2017 International Conference on Mathematics and Information Technology. (pp. 196-200). Adrar : IEEE. DOI : 10.1109/mathit.2017.8259716
  5. A. Bagheri, M. H. Bollen, & I. Y. Gu. (2017). Big data from smart grids. 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe. (pp. 1-5). Torino : IEEE. DOI : 10.1109/isgteurope.2017.8260155
  6. J. Ahmad, K. Muhammad, J. Lloret & S. W. Baik. (2018). Efficient Conversion of Deep Features to Compact Binary Codes using Fourier Decomposition for Multimedia Big Data. IEEE Transactions on Industrial Informatics, PP(99), 1-1. DOI : 10.1109/tii.2018.2800163
  7. J. Wu, M. Dong, K. Ota, J. Li & Z. Guan. (2018). Big Data Analysis-based Secure Cluster Management for Optimized Control Plane in Software-Defined Networks. IEEE Transactions on Network and Service Management, PP(99), 1-1. DOI : 10.1109/tnsm.2018.2799000
  8. N. Kumar, S. Antwal, G. Samarthyam, & S. Jain. (2017). Genetic optimized data deduplication for distributed big data storage systems. 2017 4th International Conference on Signal Processing, Computing and Control. (pp. 7-15). Solan : IEEE. DOI : 10.1109/ispcc.2017.8269581
  9. A. Prysyazhnyuk, R. Baevsky, A. Berseneva, A. Chernikova, E. Luchitskaya, V. Rusanov & C. Mcgregor. (2017). Big data analytics for enhanced clinical decision support systems during spaceflight. 2017 IEEE Life Sciences Conference. (pp. 296-299). Sydney : IEEE. DOI : 10.1109/lsc.2017.8268201
  10. S. Long. (2017). Information Service Research and Development of Digital Library in the Era of Big Data. 2017 13th International Conference on Semantics, Knowledge and Grids. (pp. 150-153). Beijing : IEEE. DOI : 10.1109/skg.2017.00032
  11. Z. Zhou, H. Yu, C. Xu, Y. Zhang, S. Mumtaz & J. Rodriguez. (2018). Dependable Content Distribution in D2D-Based Cooperative Vehicular Networks: A Big Data-Integrated Coalition Game Approach. IEEE Transactions on Intelligent Transportation Systems, PP(99), 1-12. DOI : 10.1109/tits.2017.2771519
  12. I. Notarnicola, Y. Sun, G. Scutari & G. Notarstefano. (2017). Distributed big-data optimization via block-iterative convexification and averaging. 2017 IEEE 56th Annual Conference on Decision and Control. (pp. 2281-2288). Melbourne : IEEE. DOI : 10.1109/cdc.2017.8263982
  13. J. J. Harwood. (2016). Spectral ageing in the era of big data: integrated versus resolved models. Monthly Notices of the Royal Astronomical Society, 466(3), 2888-2894. DOI : 10.1093/mnras/stw3318
  14. K. B. Sindoori, L. Karthikeyan, S. Sivakumar, G. Abirami & R. B. Durai. (2017). Multiservice product comparison system with improved reliability in big data broadcasting. 2017 Third International Conference on Science Technology Engineering & Management. (pp. 48-53). Chennai : IEEE. DOI : 10.1109/iconstem.2017.8261256
  15. P. Ezatpoor, J. Zhan, J. M. Wu & C. Chiu. (2018). Finding Top-k Dominance on Incomplete Big Data Using MapReduce Framework. IEEE Access, PP(99), 1-1. DOI : 10.1109/access.2018.2797048