DOI QR코드

DOI QR Code

산화물 분산 강화 강 분말이 첨가된 자동차 부품용 철계 복합 소재의 미세조직 및 마모 특성

Microstructure and Wear Properties of Oxide Dispersion Strengthened Steel Powder Added Steel-Based Composite Material for Automotive Part

  • Kim, Young-Kyun (Department of Materials Science and Engineering, Inha University) ;
  • Park, Jong-Kwan (R&D Center, Korea Sintered Metal Co., Ltd.) ;
  • Lee, Kee-Ahn (Department of Materials Science and Engineering, Inha University)
  • 투고 : 2018.02.13
  • 심사 : 2018.02.21
  • 발행 : 2018.02.28

초록

In order to expand the application of oxide dispersion-strengthened (ODS) steel, a composite material is manufactured by adding mechanically alloyed ODS steel powder to conventional steel and investigated in terms of microstructure and wear properties. For comparison, a commercial automobile part material is also tested. Initial microstructural observations confirm that the composite material with added ODS steel contains i) a pearlitic Fe matrix area and ii) an area with Cr-based carbides and ODS steel particles in the form of a $Fe-Fe_3C$ structure. In the commercial material, various hard Co-, Fe-Mo-, and Cr-based particles are present in a pearlitic Fe matrix. Wear testing using the VSR engine simulation wear test confirms that the seatface widths of the composite material with added ODS steel and the commercial material are increased by 24% and 47%, respectively, with wear depths of 0.05 mm and 0.1 mm, respectively. The ODS steel-added composite material shows better wear resistance. Post-wear-testing surface and cross-sectional observations show that particles in the commercial material easily fall off, while the ODS steel-added material has an even, smooth wear surface.

키워드

참고문헌

  1. M. K. Miller, E. A. Kenik, K. F. Russell, L. Heatherly, D. T. Hoelzer and P. J. Maziasz: Mater. Sci. Eng. A, 353 (2003) 140. https://doi.org/10.1016/S0921-5093(02)00680-9
  2. M. J. Alinger, G. R. Odette and D. T. Hoelzer: Acta Mater., 57 (2009) 392.
  3. A. Hirata, T. Fujita, Y. R. Wen, J. H. Schneibel, C. T. Liu and M. W. Chen: Nat. Mater., 23 (2011) 922.
  4. J. H. Kim, T. S. Byun, D. T. Hoelzer, C. H. Park, J. T. Yeom and J. K. Hong: Mater. Sci. Eng. A, 559 (2013) 111.
  5. J. H. Gwon, J. H. Kim and K. A. Lee: J. Nucl. Mater., 459 (2015) 205. https://doi.org/10.1016/j.jnucmat.2015.01.032
  6. C. Tiwary, A. Verma, S. Kashyp, K. Biswas and K. Chattopadhyay: Metall. Mater. Trans. A, 44 (2013) 1917. https://doi.org/10.1007/s11661-012-1508-7
  7. Y. K. Kim, J. K, Park, H. J. Kim, M. S. Kong and K. A. Lee: J. Korean Powder Metall. Inst., 24 (2017) 133. https://doi.org/10.4150/KPMI.2017.24.2.133
  8. C. K. Kim, J. I. Park, S. Lee, Y. C. Kim, N. J. Kim and J. S. Yang: Metall. Mater. Trans. A, 36 (2005) 87.
  9. C. Song, S. Wang, Y. Gui, Z. Cheng and G. Ni: Materials, 9 (2016) 986. https://doi.org/10.3390/ma9120986