DOI QR코드

DOI QR Code

Authentication Method using Multiple Biometric Information in FIDO Environment

FIDO 환경에서 다중 생체정보를 이용한 인증 방법

  • Chae, Cheol-Joo (Dept. of General Education, Korea National College of Agriculture and Fisheries) ;
  • Cho, Han-Jin (Dept. of Smart & PhotoVoltaic Convergence, Far East University) ;
  • Jung, Hyun Mi (Dept. of Supercomputer System Development, Korea Institute of Science and Technology Information)
  • 채철주 (한국농수산대학 교양공통과) ;
  • 조한진 (극동대학교 에너지IT공학과) ;
  • 정현미 (한국과학기술정보연구원 슈퍼컴퓨터시스템개발실)
  • Received : 2017.12.06
  • Accepted : 2018.01.20
  • Published : 2018.01.28

Abstract

Biometric information does not need to be stored separately, and there is no risk of loss and no theft. For this reason, it has been attracting attention as an alternative authentication means for existing authentication means such as passwords and authorized certificates. However, there may be a privacy problem due to leakage of personal information stored in the server. To overcome these weaknesses, FIDO solved the problem of leakage of personal information on the server by using biometric information stored on the user device and authenticating. In this paper, we propose a multiple biometric authentication method that can be used in FIDO environment. In order to utilize multiple biometric information, fingerprints and EEG signals can be generated and used in FIDO system. The proposed method can solve the problem due to limitations of existing 2-factor authentication system by authentication using multiple biometric information.

생체정보는 저장, 암기, 손실 우려가 없고 도용이 불가능하다는 점에서 패스워드, PKI 등 기존 인증 방법의 대체수단으로 주목받고 있지만, 개인정보 유출로 인한 프라이버시 침해가 발생한다. 이러한 취약점을 극복하고자 FIDO에서는 생체정보를 사용자 디바이스에 보존하여 인증하는 방식을 사용하여 서버에서의 개인정보 유출 문제를 해결하였다. 본 논문에서는 국내 외에서 활발히 연구되고 있는 FIDO 환경에서 사용할 수 있는 다중 생체정보 인증 방법을 제안한다. 다중생체정보를 이용하기 위해 지문과 뇌전도 신호를 뇌지문 정보를 생성하여 이를 FIDO 시스템에서 사용할 수 있는 방법을 제안한다. 제안 방법은 현재 기존 2-Factor 인증 체계의 한계로 인한 문제점을 다중 생체정보를 이용한 인증으로 해결할 수 있다.

Keywords

References

  1. Costigan et al., "Behavioural Biometrics-A New Era of Security" The FinTech Book: The Financial Technology Handbook for Investors, Entrepreneurs and Visionaries, 2016.
  2. Jason Kim et al., "Standardization trend of non-face authentication technology based on telebio recognition", Review of Korea Institute Of Information Security And Cryptology, 2015.
  3. B. C Cho et al., "Technology Review on Multimodal Biometric Authentication", The Journal of The Korean Institute of Communication Sciences, 2015.
  4. https://fidoalliance.org/
  5. H. G. Cho et al., "A Methodology for the Improvement of Accredited Digital Certificate Integrating FIDO Biometric Technology and TrustZone", Journal of Digital Convergence, Vol. 15, No. 8, pp.183-193, 2017. https://doi.org/10.14400/JDC.2017.15.2.183
  6. H. W. Lee, "Current Status and Future Prospects of FIDO Authentication Technology", KFTC Payments Trends, Vol. 261, 2016.
  7. J. J. Kim and S. P. Hong, "Design of a Secure Biometric Authentication Framework Using PKI and FIDO in Fintech Environments", International Journal of Security and Its Applications, Vol. 10, No. 12, pp. 69-80, 2016.
  8. W. H. Choi, "A Study on Pament Method Utilizing Biometric Technology", Graduate School of Soongsil University, 2015.
  9. D. S. Han, "The Proposal for a Fingerprint Recognition Method for the Improvements of Security and the Use of each Application in FIDO Authentication", Graduate School of Soonchunhyang University, 2016.
  10. H. Y. Lee, J. G. Kim , "Quality Evaluation Model about Efficiency for Fingerprint Recognition System", Journal of Digital Convergence, Vol. 12, No. 6, pp. 215-221, 2014. https://doi.org/10.14400/JDC.2014.12.6.215
  11. G. H. Choi, H. M. Moon, S. B. Pan, "Biometrics System Technology Trends Based on Biosignal", Journal of Digital Convergence, Vol. 15, No. 1, pp. 381-391, 2017. https://doi.org/10.14400/JDC.2017.15.1.381
  12. H. J. Moon, M. H. Lee, K. H. Jeong, "Authentication Performance Optimization for Smart-phone based Multimodal Biometrics", Journal of Digital Convergence, Vol. 13, No. 6, pp. 151-156, 2015. https://doi.org/10.14400/JDC.2015.13.6.151
  13. G. J. Kim, J. S. Han, "Unsupervised Machine Learning based on Neighborhood Interaction Function for BCI", Journal of Digital Convergence, Vol. 13, No. 8, pp. 289-294, 2015. https://doi.org/10.14400/JDC.2015.13.8.289
  14. B.Gainmann et al., "Brain-Computer Interface, Revolutionizing Human-Computer Interaction", Springer, 2010.
  15. A.Nijholt et al., "Brain-Computer Interfacing for Intelligent System", IEEE Intelligent System, Vol. 23, No. 3, pp. 72-79, 2008 https://doi.org/10.1109/MIS.2008.41
  16. J. W. Lee et al., "A Survey on Potential User's Needs and Demands for Brain Machine Interface(BMI) Technology Developments", Journal of Vocational Rehabilitation, Vol. 24, No. 3, pp. 5-25, 2014.