DOI QR코드

DOI QR Code

Study on Indoor Wireless Environment of mmWave WLAN Communication

초고주파 근거리 통신의 실내 무선 환경 연구

  • 신동일 (가천대학교 컴퓨터공학과) ;
  • 김우성 (가천대학교 컴퓨터공학과) ;
  • 박양재 (가천대학교 컴퓨터공학과)
  • Received : 2017.11.16
  • Accepted : 2018.01.20
  • Published : 2018.01.28

Abstract

Recently, as the demand for transmission of ultra-high quality media data such as UHD, AR, and VR increases, various technologies for this have been actively developed and IEEE 802.11ad standard have been commercialized. In this paper, a test bed is constructed to analyze the indoor wireless environment using the IEEE 802.11ad standard based on mmWave, and the experimental results of various indoor wireless environments are introduced and analyzed. We compared the data from the module by data transmission, such as signal to noise ratio(SNR) and throughput. And we measured the beam pattern and width of the module and compared the effects on the indoor environment of the corridor and the office. This shows that the signal reflection of the wall shows higher SNR values and is more suitable to use for indoor than outdoor. It is confirmed that the loss when not in line of sight(LoS) is not enough to compensate the wall reflected signal. As a result, it is judged to be suitable for the indoor use of the mmWave LAN and can be usefully used for further experiments.

최근 UHD, AR, VR 등 초고화질 미디어 데이터 전송에 대한 요구가 증가함에 따라 이를 위한 다양한 기술들이 활발하게 개발되고 있고, 그 중 IEEE 802.11ad 표준의 상용화가 진행 중에 있다. 본 논문에서는 초고주파(mmWave)를 기반으로 근거리 통신을 지원하는 IEEE 802.11ad 표준 기반 모듈을 이용하여 실내 무선 환경을 분석하기 위해 테스트 베드를 구축하고 다양한 실내 무선 환경에 대한 측정 실험 결과를 소개하고 분석한다. 모듈로 데이터 전송을 통해 SNR(Signal to Noise Ratio), Throughput 등의 데이터를 수집하는 방법으로 비교하며, 모듈의 빔 패턴과 폭을 측정하여 복도 및 사무실의 실내 환경에서 미치는 영향을 비교하였다. 이를 통해 벽의 신호 반사로 더 높은 SNR 값을 보여 실외보다 실내에 더 적합하다는 것을 확인하였고, LoS(Line of Sight)가 아닐 때의 손실을 벽면의 반사된 신호가 보완할 만큼 충분하지 않다는 것을 확인하였다. 결론적으로 초고주파 무선랜의 실내 사용에 적합하다고 판단되며 차후 추가적인 실험 구성에 유용하게 활용될 수 있다.

Keywords

References

  1. Eldad Perahia, Carlos Cordeiro, Minyoung Park, L. Lily Yang, "IEEE 802.11 ad: Defining the Next Generation Multi-Gbps Wi-Fi", 2010 7th IEEE Consumer Communications and Networking Conference, pp. 1-5, 2010.
  2. Thomas Nitsche, Carlos Cordeiro, Adriana B. Flores, Edward W. Knightly, Eldad Perahia, Joerg C. Widmer, "IEEE 802.11ad: Directional 60 GHz Communication for Multi-Gigabit-per-Second Wi-Fi", IEEE Communications Magazine, Vol. 52, No. 12, pp. 132-141, 2014. https://doi.org/10.1109/MCOM.2014.6979964
  3. Alexander Maltsev, Roman Maslennikov, Alexey Sevastyanov, Alexey Khoryaev, Artyom Lomayev, "Experimental Investigations of 60 GHz WLAN Systems in Office Environment", IEEE Journal On Selected Areas In Communications, Vol. 27, No. 8, pp. 1488-1499, 2009. https://doi.org/10.1109/JSAC.2009.091018
  4. Der-Jiunn Deng, Kwang-Cheng Chen, Rung-Shiang Cheng, "IEEE 802.11ax: Next Generation Wireless Local Area Networks", 10th International Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness, pp. 77-82, 2014.
  5. Martin Jacob, Christian Mbianke, Thomas Kurner, "A Dynamic 60 GHz Radio Channel Model for System Level Simulations with MAC Protocols for IEEE 802.11ad", IEEE International Symposium on Consumer Electronics (ISCE 2010), pp. 1-5, 2010.
  6. Angelos A. Goulianos, Alberto L. Freire, Tom Barratt, Evangelos Mellios, Peter Cain, Moray Rumney, Andrew Nix, Mark Beach, "Measurements and Characterisation of Surface Scattering at 60 GHz", arXiv, arXiv:1710.05631, 2017.
  7. Yong Niu, Yong Li, Depeng Jin, Li Su, Athanasios V. Vasilakos, "A Survey of Millimeter Wave (mmWave) Communications for 5G: Opportunities and Challenges", Wireless Networks, Vol. 21, No. 8, pp. 2657-2676, 2015. https://doi.org/10.1007/s11276-015-0942-z
  8. Sai Shankar N., Debashis Dash, Hassan El Madi, Guru Gopalakrishnan, "WiGig and IEEE 802.11ad For Multi-Gigabyte-Per-Second WPAN and WLAN", arXiv, arXiv:1211.7356, 2012.
  9. Dian Wang, Chi Hou Chan, "Multiband Antenna for WiFi and WiGig Communications", IEEE Antennas and Wireless Propagation Letters, Vol. 15, pp. 309-312, 2015.
  10. Krystof Zeman, Martin Stusek, Jiri Pokorny, Pavel Masek, Jiri Hosek, Sergey Andreev, Pavel Dvorak, Radovan Josth, 'Emerging 5G applications over mmWave: Hands-on assessment of WiGig radios', 2017 40th International Conference on Telecommunications and Signal Processing(TSP), pp. 86-90, 2017.
  11. Avishek Patra, Ljiljana Simic and Petri Mahonen, "Smart mm-Wave Beam Steering Algorithm for Fast Link Re-Establishment under Node Mobility in 60 GHz Indoor WLANs", Proceedings of the 13th ACM International Symposium on Mobility Management and Wireless Access, pp. 53-62, 2015.
  12. Hongyun Chu, Pingping Xu, "Relay Selection with Feedback Beamforming Information for NLoS 60GHz MmWave WLANs/WPANs", 2014 IEEE International Conference on Communications (ICC), pp. 5514-5519, 2014.
  13. L. Lily Yang, "60GHz: Opportunity for Gigabit WPAN and WLAN Convergence", ACM SIGCOMM Computer Communication Review, Vol. 39, No. 1, pp. 56-61, 2009.
  14. Theodore S. Rappaport, George R. MacCartney, Mathew K. Samimi, Shu Sun, "Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design", IEEE Transactions on Communications, Vol. 63, No. 9, pp. 3029-3056, 2015. https://doi.org/10.1109/TCOMM.2015.2434384
  15. Munhwan Choi, Gyujin Lee, Sunggeun Jin, Jonghoe Koo, Byoungjin Kim, Sunghyun Choi, 'Link Adaptation for High-Quality Uncompressed Video Streaming in 60-GHz Wireless Networks', IEEE Transactions on Multimedia, Vol. 18, No. 4, pp. 627-642, 2016. https://doi.org/10.1109/TMM.2016.2525012