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SOME RESULTS ON (p, q)-TH RELATIVE RITT ORDER AND

(p, q)-TH RELATIVE RITT TYPE OF ENTIRE FUNCTIONS

REPRESENTED BY VECTOR VALUED DIRICHLET SERIES

Tanmay Biswas

Abstract. In this paper we wish to establish some basic properties of entire func-
tions represented by a vector valued Dirichlet series on the basis of (p, q)-th relative
Ritt order, (p, q)-th relative Ritt type and (p, q)-th relative Ritt weak type where p
and q are integers such that p ≥ 0 and q ≥ 0.

1. Introduction and Definitions

Suppose f (s) be an entire function of the complex variable s = σ+it (σ and t are

real variables) defined by everywhere absolutely convergent vector valued Dirichlet

series briefly known as VVDS

(1) f (s) =

∞∑
n=1

ane
sλn

where an’s belong to a Banach space (E, ∥.∥) and λn’s are non-negative real numbers

such that 0 < λn < λn+1 (n ≥ 1) , λn → +∞ as n → +∞ and satisfy the conditions

lim
n→+∞

logn
λn

= D < +∞ and lim
n→+∞

log∥an∥
λn

= −∞ . If σc and σa denote respectively the

abscissa of convergence and absolute convergence of (1), then in this case clearly σa =

σc = +∞. The function Mf (σ) known as maximum modulus function corresponding

to an entire function f (s) defined by (1), is written as follows

Mf (σ) = l.u.b.
−∞<t<+∞

∥f (σ + it)∥ .

In this connection the following definition is well known:
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Definition 1. A non-constant entire function f (s) defined by VVDS is said to have

Property (A), if for any δ > 1 and σ > σ0 (δ)

[Mf (σ)]
2 ≤ Mf (σδ) .

Property (A) has been closely studied by Bernal [1], [2].

Now we state the following two notations which are frequently used in our sub-

sequent study:

log[k] x = log
(
log[k−1] x

)
for k = 1, 2, 3, · · · ;

log[0] x = x, log[−1] x = expx

and

exp[k] x = exp
(
exp[k−1] x

)
for k = 1, 2, 3, · · · ;

exp[0] x = x, exp[−1] x = log x .

Further we assume that throughout the present paper p, q,m and l always denote

integers. However, Juneja, Nandan and Kapoor [8] first introduced the concept

of (p, q)-th order and (p, q)-th lower order of an entire Dirichlet series where p ≥
q + 1 ≥ 1. In the line of Juneja et al. [8], one can define the (p, q)-th Ritt order

(respectively (p, q)-th Ritt lower order) of an entire function f represented by VVDS

in the following way:

ρ(p,q) (f) = lim
σ→+∞

log[p]Mf (σ)

log[q] σ
, respectively λ(p,q) (f) = lim

σ→+∞

log[p]Mf (σ)

log[q] σ
,

where p ≥ q + 1 ≥ 1.

In this connection let us recall that if 0 < ρ(p,q) (f) < ∞, then the following

properties hold 
ρ(p−n,q) (f) = ∞ for n < p,

ρ(p,q−n) (f) = 0 for n < q,

ρ(p+n,q+n) (f) = 1 for n = 1, 2, · · · .

Similarly for 0 < λ(p,q) (f) < ∞, one can easily verify that
λ(p−n,q) (f) = ∞ for n < p,

λ(p,q−n) (f) = 0 for n < q,

λ(p+n,q+n) (f) = 1 for n = 1, 2, · · · .

An entire function f (represented by VVDS) of index-pair (p, q) is said to be of

regular (p, q) Ritt growth if its (p, q)-th Ritt order coincides with its (p, q)-th Ritt

lower order, otherwise f is said to be of irregular (p, q) Ritt growth.
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Now to compare the relative growth of two entire functions represented by VVDS

having same non zero finite (p, q)-th Ritt order, one may introduce the definition of

(p, q)-th Ritt type (respectively (p, q)-th Ritt lower type) in the following manner:

Definition 2. The (p, q)-th Ritt type (respectively (p, q)-th Ritt lower type) respec-

tively denoted by ∆f (p, q) (respectively ∆f (p, q)) of an entire function f represented

by VVDS when 0 < ρf (p, q) < +∞ is defined as follows:

∆(p,q) (f) = lim
σ→+∞

log[p−1]Mf (σ)[
log[q−1] σ

]ρf (p,q)
respectively ∆

(p,q)
(f) = lim

σ→+∞

log[p−1]Mf (σ)[
log[q−1] σ

]ρf (p,q)
 ,

where p ≥ q + 1 ≥ 1.

Analogously to determine the relative growth of two entire functions represented

by vector valued Dirichlet series having same non zero finite (p, q)-th Ritt lower

order, one may introduce the definition of (p, q)-th Ritt weak type in the following

way:

Definition 3. The (p, q)-th Ritt weak type denoted by τf (p, q) of an entire function

f represented by VVDS is defined as follows:

τ (p,q) (f) = lim
σ→+∞

log[p−1]Mf (σ)[
log[q−1] σ

]λf (p,q)
, 0 < λf (p, q) < +∞ .

Also one may define the growth indicator τ (p,q) (f) of an entire function f repre-

sented by VVDS in the following manner :

τ (p,q) (f) = lim
σ→+∞

log[p−1]Mf (σ)[
log[q−1] σ

]λf (p,q)
, 0 < λf (p, q) < +∞,

where p ≥ q + 1 ≥ 1.

The above definitions extend the generalized Ritt growth indicators of an entire

function f represented by VVDS for each integer p ≥ 2 and q = 0. Also for p = 2 and

q = 0, the above definitions reduce to the classical definitions of an entire function

f represented by VVDS.
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G. S. Srivastava [12] introduced the relative Ritt order between two entire func-

tions represented by VVDS to avoid comparing growth just with exp exp z In the

case of relative Ritt order, it therefore seems reasonable to define suitably the (p, q)-

th relative Ritt order of two entire functions represented by VVDS. Recently, Datta

and Biswas [7] introduced the concept of (p, q)-th relative Ritt order ρ
(p,q)
g (f) of an

entire function f represented by VVDS with respect to another entire function g

which is also represented by VVDS, in the light of index-pair which is as follows:

Definition 4 ([7]). Let f and g be any two entire functions represented by VVDS

with index-pair (m, q) and (m, p) , respectively, where p, q,m are positive integers

such that m ≥ q + 1 ≥ 1 and m ≥ p+ 1 ≥ 1. Then the (p, q)-th relative Ritt order (

respectively (p, q)-th relative Ritt lower order) of f with respect to g is defined as

ρ(p,q)g (f) = lim
σ→+∞

log[p]M−1
g (Mf (σ))

log[q] σ(
respectively λ(p,q)

g (f) = lim
σ→+∞

log[p]M−1
g (Mf (σ))

log[q] σ

)
.

In this connection, we intend to give a definition of relative index-pair of an entire

function with respect to another entire function (both of which are represented by

VVDS) which is relevant in the sequel :

Definition 5. Let f and g be any two entire functions both represented by VVDS

with index-pairs (m, q) and (m, p) respectively where m ≥ q + 1 ≥ 1 and m ≥
p + 1 ≥ 1. Then the entire function f is said to have relative index-pair (p, q) with

respect to another entire function g, if b < ρ
(p,q)
g (f) < ∞ and ρ

(p−1,q−1)
g (f) is not a

nonzero finite number, where b = 1 if p = q = m and b = 0 otherwise. Moreover if

0 < ρ
(p,q)
g (f) < ∞, then

ρ
(p−n,q)
g (f) = ∞ for n < p,

ρ
(p,q−n)
g (f) = 0 for n < q,

ρ
(p+n,q+n)
g (f) = 1 for n = 1, 2, · · · .

Similarly for 0 < λ
(p,q)
g (f) < ∞, one can easily verify that

λ
(p−n,q)
g (f) = ∞ for n < p,

λ
(p,q−n)
g (f) = 0 for n < q,

λ
(p+n,q+n)
g (f) = 1 for n = 1, 2, · · · .
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Further an entire function f (represented by VVDS) for which (p, q)-th relative

Ritt order and (p, q)-th relative Ritt lower order with respect to another entire

function g (represented by VVDS) are the same is called a function of regular relative

(p, q) Ritt growth with respect to g. Otherwise, f is said to be of irregular relative

(p, q) Ritt growth.with respect to g.

Now in order to compare the relative growth of two entire functions represented

by VVDS having same non zero finite (p, q)-th relative Ritt order with respect to

another entire function represented by VVDS, one may introduce the concepts of

(p, q)-th relative Ritt-type (respectively (p, q)-th relative Ritt lower type) which are

as follows:

Definition 6 ([3]). Let f and g be any two entire functions represented by VVDS

with index-pair (m, q) and (m, p) , respectively, where p, q,m are positive integers

such that m ≥ q + 1 ≥ 1 and m ≥ p + 1 ≥ 1 and 0 < ρ
(p,q)
g (f) < +∞. Then the

(p, q)-th relative Ritt type (respectively (p, q)-th relative Ritt lower type) of f with

respect to g are defined as

∆(p,q)
g (f) = lim

σ→+∞

log[p−1]M−1
g (Mf (σ))[

log[q−1] σ
]ρ(p,q)g (f)

respectively ∆
(p,q)
g (f) = lim

σ→+∞

log[p−1]M−1
g (Mf (σ))[

log[q−1] σ
]ρ(p,q)g (f)

 .

Analogously to determine the relative growth of two entire functions represented

by VVDS having same non zero finite (p, q)-th relative Ritt lower order with respect

to another entire function represented by VVDS, one may introduce the definition

of (p, q)-th relative Ritt weak type in the following way:

Definition 7 ([3]). Let f and g be any two entire functions represented by VVDS

with index-pair (m, q) and (m, p) , respectively, where p, q,m are positive integers

such that m ≥ q + 1 ≥ 1 and m ≥ p + 1 ≥ 1. Then (p, q)-th relative Ritt weak type

denoted by τ
(p,q)
g (f) of an entire function f with respect to another entire function

g is defined as follows:

τ (p,q)g (f) = lim
σ→+∞

log[p−1]M−1
g (Mf (σ))[

log[q−1] σ
]λ(p,q)

g (f)
, 0 < λ(p,q)

g (f) < +∞ .
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Similarly the growth indicator τ
(p,q)
g (f) of an entire function f with respect to

another entire function g both represented by VVDS is defined in the following

manner :

τ (p,q)g (f) = lim
σ→+∞

log[p−1]M−1
g (Mf (σ))[

log[q−1] σ
]λ(p,q)

g (f)
, 0 < λ(p,q)

g (f) < +∞ .

If f and g have got index-pair (m, 0) and (m, l) , respectively, then Definition 4,

Definition 6 and Definition 7 reduces to the definition of generalized relative Ritt

growth indicators such as generalized relative Ritt order ρ
[l]
g (f), generalized relative

Ritt type ∆
[l]
g (f) etc. If the entire functions f and g have the same index-pair

(p, 0) where p is any positive integer, we get the definitions of relative Ritt growth

indicators such as relative Ritt order ρg (f), relative Ritt type ∆g (f) etc introduced

by Srivastava [12] and Datta et al. [5]. Further if g = exp[m] z, then Definition 4,

Definition 6 and Definition 7 reduces to the (m, q)-th Ritt growth indicators of an

entire function f represented by VVDS. Also for g = exp[m] z, relative Ritt growth

indicators reduces to the definition of generalized Ritt growth indicators.such as

generalized Ritt order ρ
[m]
g (f), generalized Ritt type ∆

[m]
g (f) etc. Moreover, if f is

an entire function with index-pair (2, 0) and g = exp[2] z, then Definition 4, Definition

6 and Definition 7 becomes the definitions of Ritt order, Ritt type, Ritt weak type

etc. f represented by VVDS. For details about Ritt type, Ritt weak type etc., one

may see [6].

In this connection we state the following definition which will be needed in the

sequel:

Definition 8. A pair of entire functions f and g represented by VVDS are mutually

said to have Property (X) if for all sufficiently large values of σ, both

Mf ·g (σ) > Mf (σ)

and

Mf ·g (σ) > Mg (σ)

hold simultaneously.

However, during the past decades, several authors (cf. [5, 6, 9, 10, 11, 13, 14, 15])

made closed investigations on the properties of entire Dirichlet series in different

directions using the growth indicator such as Ritt order. In the present paper we

wish to establish some basic properties of entire functions represented by a VVDS
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on the basis of (p, q)-th relative Ritt order, (p, q)-th relative Ritt type and (p, q)-th

relative Ritt weak type where p ≥ 0 and q ≥ 0.

2. Lemmas

In this section we present some lemmas which will be needed in the sequel.

Lemma 1 ([12]). Suppose that f be an entire function represented by VVDS given

in (1), α > 1, 0 < β < α, b > 1 and 0 < µ < λ. Then

(a) Mf (ασ) > eβσMf (σ) for all large σ and

(b) lim
σ→∞

Mf (bσ)
Mf (σ)

= ∞ = lim
σ→∞

Mf (λσ)
Mf (µσ)

.

Lemma 2 ([12]). Let f be an entire function represented by VVDS given in (1)

satisfy the Property (A), then for any positive integer n and for all sufficiently large

σ,

(Mf (σ))
n ≤ Mf (δσ)

holds where δ > 1.

3. Main Results

In this section we present our main results.

Theorem 9. Let us consider f1, f2 and g1 be any three entire functions VVDS

defined by (1). Also let at least f1 or f2 is of regular relative (p, q) Ritt growth with

respect to g1 where p ≥ 0 and q ≥ 0. Then

λ(p,q)
g1 (f1 ± f2) ≤ max

{
λ(p,q)
g1 (f1) , λ

(p,q)
g1 (f2)

}
.

The equality holds when λ
(p,q)
g1 (fi) > λ

(p,q)
g1 (fj) with at least fj is of regular relative

(p, q) Ritt growth with respect to g1 where i, j = 1, 2 and i ̸= j.

Proof. If λ
(p,q)
g1 (f1 ± f2) = 0, then the result is obvious. So we suppose that

λ(p,q)
g1 (f1 ± f2) > 0.

We can clearly assume that λ
(p,q)
g1 (fk) is finite for k = 1, 2. Further let

max
{
λ(p,q)
g1 (f1) , λ

(p,q)
g1 (f2)

}
= ∆
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and f2 is of regular relative (p, q) Ritt growth with respect to g1. Now for any

arbitrary ε > 0 from the definition of λ
(p,q)
g1 (f1), we have for a sequence values of σ

tending to infinity that

Mf1 (σ) ≤ Mg1

(
exp[p]

((
λ(p,q)
g1 (f1) + ε

)
log[q] σ

))
(2) i.e., Mf1 (σ) ≤ Mg1

[
exp[p]

[
(∆ + ε) log[q] σ

]]
.

Also for any arbitrary ε > 0 from the definition of ρ
(p,q)
g1 (f2)

(
= λ

(p,q)
g1 (f2)

)
, we

obtain for all sufficiently large values of σ that

(3) Mf2 (σ) ≤ Mg1

(
exp[p]

((
λ(p,q)
g1 (f2) + ε

)
log[q] σ

))
(4) i.e., Mf2 (σ) ≤ Mg1

[
exp[p]

[
(∆ + ε) log[q] σ

]]
.

Since for all large σ, Mf1±f2 (σ) ≤ Mf1 (σ) +Mf2 (σ), we obtain from (2) and (4)

for a sequence values of σ tending to infinity that

(5) Mf1±f2 (σ) < 2Mg1

(
exp[p]

(
(∆ + ε) log[q] σ

))
.

Therefore in view of Lemma 1 (a), and for any β > 2, we obtain from (5) for a

sequence values of σ tending to infinity that

Mf1±f2

(
σ

β

)
< Mg1

(
exp[p]

(
(∆ + ε) log[q] σ

))

i.e.,
log[p]M−1

g1

(
Mf1±f2

(
σ
β

))
log[q] σ

< (∆ + ε) .

Since β > 2 and ε > 0 are arbitrary, we get from above that

λ(p,q)
g1 (f1 ± f2) ≤ ∆ = max

{
λ(p,q)
g1 (f1) , λ

(p,q)
g1 (f2)

}
.

Similarly, if we consider that f1 is of regular relative (p, q) Ritt growth with

respect to g1 or both f1 and f2 are of regular relative (p, q) Ritt growth with respect

to g1, then one can easily verify that

(6) λ(p,q)
g1 (f1 ± f2) ≤ ∆ = max

{
λ(p,q)
g1 (f1) , λ

(p,q)
g1 (f2)

}
.

Now let λ
(p,q)
g1 (f1) > λ

(p,q)
g1 (f2) and at least f2 is of regular relative (p, q) Ritt

growth with respect to g1. As ε (> 0) is arbitrary, from the definition of λ
(p,q)
g1 (f1) ,

it follows that for all sufficiently large values of σ

(7) Mf1 (σ) ≥ Mg1

[
exp[p]

[(
λ(p,q)
g1 (f1)− ε

)
log[q] σ

]]
.
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Therefore in view of λ
(p,q)
g1 (f1) > λ

(p,q)
g1 (f2), we obtain for all sufficiently large

values of σ that

(8) Mf1 (σ) ≥ Mg1

[
exp[p]

[
(∆− ε) log[q] σ

]]
.

Now we consider the expression

(9)
Mg1

(
exp[p]

((
λ
(p,q)
g1 (f1)− ε

)
log[q] σ

))
Mg1

(
exp[p]

((
λ
(p,q)
g1 (f2) + ε

)
log[q] σ

)) .
Therefore in view of λ

(p,q)
g1 (f1) > λ

(p,q)
g1 (f2) and Lemma 1 (b), we obtain from (9)

that

(10) lim
σ→∞

Mg1

(
exp[p]

((
λ
(p,q)
g1 (f1)− ε

)
log[q] σ

))
Mg1

(
exp[p]

((
λ
(p,q)
g1 (f2) + ε

)
log[q] σ

)) = ∞ .

Now (10) can also be written as

(11) lim
σ→∞

Mg1

(
exp[p]

(
(∆− ε) log[q] σ

))
Mg1

(
exp[p]

((
λ
(p,q)
g1 (f2) + ε

)
log[q] σ

)) = ∞,

So from (11) , we obtain for all sufficiently large values of σ that

(12) Mg1

(
exp[p]

(
(∆− ε) log[q] σ

))
> 2Mg1

(
exp[p]

((
λ(p,q)
g1 (f2) + ε

)
log[q] σ

))
.

Thus from (3) , (8) and (12) we get for all sufficiently large values of σ that

Mf1 (σ) > 2Mg1

(
exp[p]

((
λ(p,q)
g1 (f2) + ε

)
log[q] σ

))
i.e., Mf1 (σ) > 2Mf2 (σ) .(13)

Since for all large σ, Mf1±f2 (σ) ≥ Mf1 (σ) − Mf2 (σ), we obtain from (8), (13)

and in view of Lemma 1 (a) for all sufficiently large values of σ and β > 2 that

Mf1±f2 (σ) ≥
1

2
Mf1 (σ)

i.e., Mf1±f2 (σ) ≥
1

2
Mg1

(
exp[p]

(
(∆− ε) log[q] σ

))
i.e., Mf1±f2 (βσ) ≥ Mg1

(
exp[p]

(
(∆− ε) log[q] σ

))
i.e.,

log[p]M−1
g1 (Mf1±f2 (βσ))

log[q] σ
≥ (∆ + ε) .
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As β > 2 and ε > 0 are arbitrary, we get from above that

λ(p,q)
g1 (f1 ± f2) ≥ ∆ = max

{
λ(p,q)
g1 (f1) , λ

(p,q)
g1 (f2)

}
.

If we consider λ
(p,q)
g1 (f1) < λ

(p,q)
g1 (f2) and at least f1 is of regular relative (p, q)

Ritt growth with respect to g1, then one can also verify that

(14) λ(p,q)
g1 (f1 ± f2) ≥ ∆ = max

{
λ(p,q)
g1 (f1) , λ

(p,q)
g1 (f2)

}
.

So the conclusion of the second part of the theorem follows from (6) and (14). �

Now we state the following theorem without its proof as it can easily be carried

out by a similar method in Theorem 9.

Theorem 10. Let us consider f1, f2 and g1 be any three entire functions VVDS

defined by (1). Also let f1 and f2 be entire functions with relative index-pair (p, q)

with respect to entire g1 where p ≥ 0 and q ≥ 0. Then

ρ(p,q)g1 (f1 ± f2) ≤ max
{
ρ(p,q)g1 (f1) , ρ

(p,q)
g1 (f2)

}
.

The equality holds when ρ
(p,q)
g1 (f1) ̸=, ρ

(p,q)
g1 (f2).

Theorem 11. Let us consider f1, g1 and g2 be any three entire functions VVDS

defined by (1). Also let λ
(p,q)
g1 (f1) and λ

(p,q)
g2 (f1) exists where p ≥ 0 and q ≥ 0. Then

λ
(p,q)
g1±g2 (f1) ≥ min

{
λ(p,q)
g1 (f1) , λ

(p,q)
g2 (f1)

}
.

The equality holds when λ
(p,q)
g1 (f1) ̸= λ

(p,q)
g2 (f1).

Proof. If λ
(p,q)
g1±g2 (f1) = ∞, then the result is obvious. So we suppose that λ

(p,q)
g1±g2 (f1) <

∞. We can clearly assume that λ
(p,q)
gk (f1) is finite for k = 1, 2. Further let Ψ =

min
{
λ
(p,q)
g1 (f1) , λ

(p,q)
g2 (f1)

}
. Now for any arbitrary ε > 0 from the definition of

λ
(p,q)
gk (f1), we have for all sufficiently large values of σ that

(15) Mgk

(
exp[p]

((
λ(p,q)
gk

(f1)− ε
)
log[q] σ

))
≤ Mf1 (σ) where k = 1, 2

i.e, Mgk

(
exp[p]

(
(Ψ− ε) log[q] σ

))
≤ Mf1 (σ) where k = 1, 2

Since for all large σ, Mg1±g2 (σ) ≤ Mg1 (σ) +Mg2 (σ), we obtain from above

and first part of Lemma 1(a) for all sufficiently large values of σ and β > 2 that

Mg1±g2

(
exp[p]

(
(Ψ− ε) log[q] σ

))
< Mg1

(
exp[p]

(
(Ψ− ε) log[q] σ

))
+Mg2

(
exp[p]

(
(Ψ− ε) log[q] σ

))
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i.e., Mg1±g2

(
exp[p]

(
(Ψ− ε) log[q] σ

))
< 2Mf1 (σ)

i.e., Mg1±g2

(
exp[p]

(
(Ψ− ε) log[q] σ

))
< Mf1 (βσ)

i.e.,
log[p]M−1

g1±g2 (Mf1 (βσ))

log[q] σ
> Ψ− ε .

Since β > 2 and ε > 0 are arbitrary, we get from above that

(16) λ
(p,q)
g1±g2 (f1) ≥ Ψ = min

{
λ(p,q)
g1 (f1) , λ

(p,q)
g2 (f1)

}
.

Now let λ
(p,q)
g1 (f1) < λ

(p,q)
g2 (f1) holds. As ε (> 0) is arbitrary, from the definition

of λ
(p,q)
gk (f1) , it follows that for a sequence of values of σ tending to infinity

Mf1 (σ) ≤ Mgk

(
exp[p]

((
λ(p,q)
gk

(f1) + ε
)
log[q] σ

))
for k = 1, 2

(17) i.e., Mf1

exp[q]

 log[p] σ(
λ
(p,q)
gk (f1) + ε

)
 ≤ Mgk (σ) for k = 1, 2 .

Therefore in view of λ
(p,q)
g1 (f1) < λ

(p,q)
g2 (f1), we obtain from above for a sequence

of values of σ tending to infinity that

(18) Mf1

(
exp[q]

(
log[p] σ

(Ψ + ε)

))
≤ Mg1 (σ) .

Now we consider the expression

(19)

Mf1

(
exp[q]

(
log[p] σ(

λ
(p,q)
g1

(f1)+ε
)
))

Mf1

(
exp[q]

(
log[p] σ(

λ
(p,q)
g2

(f1)−ε
)
)) .

Therefore in view of λ
(p,q)
g1 (f1) < λ

(p,q)
g2 (f1) and Lemma 1 (b), we obtain from

(19) that

(20) lim
σ→∞

Mf1

(
exp[q]

(
log[p] σ(

λ
(p,q)
g1

(f1)+ε
)
))

Mf1

(
exp[q]

(
log[p] σ(

λ
(p,q)
g2

(f1)−ε
)
)) = ∞ .



308 Tanmay Biswas

Now (20) can also be written as

(21) lim
σ→∞

Mf1

(
exp[q]

(
log[p] σ
(Ψ+ε)

))
Mf1

(
exp[q]

(
log[p] σ(

λ
(p,q)
g2

(f1)−ε
)
)) = ∞ .

So from (21) , we obtain for all sufficiently large values of σ that

(22) Mf1

(
exp[q]

(
log[p] σ

(Ψ + ε)

))
> 2Mf1

exp[q]

 log[p] σ(
λ
(p,q)
g2 (f1)− ε

)
 .

Now from (15), it follows for all sufficiently large values of σ that

(23) Mg2 (σ) ≤ Mf1

exp[q]

 log[p] σ(
λ
(p,q)
g2 (f1)− ε

)
 .

Thus from (18) , (22) and (23) we get for a sequence of values of σ tending to

infinity that

Mg1 (σ) > 2Mf1

exp[q]

 log[p] σ(
λ
(p,q)
g2 (f1)− ε

)


i.e., Mg1 (σ) > 2Mg2 (σ) .(24)

Since for all large σ, Mg1±g2 (σ) ≥ Mg1 (σ)−Mg2 (σ) , we obtain from (18), (24)

and in view of Lemma 1 (a) for a sequence of values of σ tending to infinity and

β > 2 that

Mg1±g2 (σ) ≥
1

2
Mg1 (σ)

i.e., Mg1±g2 (σ) ≥
1

2
Mf1

(
exp[q]

(
log[p] σ

(Ψ + ε)

))

i.e., Mg1±g2 (σ) ≥ Mf1

exp[q]
(
log[p] σ
(Ψ+ε)

)
β


i.e., exp[p]

(
(Ψ + ε)

(
log[q] (βσ)

))
≥ M−1

g1±g2Mf1 (σ)

log[p]M−1
g1±g2 (Mf1 (σ))

log[q] (βσ)
≤ (Ψ + ε) .

Since β > 2 and ε > 0 are arbitrary, we get from above that

λ
(p,q)
g1±g2 (f1) ≤ Ψ = min

{
λ(p,q)
g1 (f1) , λ

(p,q)
g2 (f1)

}
.
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Similarly, if we consider λ
(p,q)
g1 (f1) > λ

(p,q)
g2 (f1), then one can also derive that

(25) λ
(p,q)
g1±g2 (f1) ≤ min

{
λ(p,q)
g1 (f1) , λ

(p,q)
g2 (f1)

}
.

So the conclusion of the second part of the theorem follows from (16) and (25). �

Theorem 12. Let f1, g1 and g2 be any three entire functions VVDS defined by (1).

Also let the relative index-pair of f1 with respect to g1 and g2 is (p, q) where p ≥ 0

and q ≥ 0. Also let f1 is of regular relative (p, q) Ritt growth with respect to at least

any one of g1 or g2. Then

ρ
(p,q)
g1±g2 (f1) ≥ min

{
ρ(p,q)g1 (f1) , ρ

(p,q)
g2 (f1)

}
.

The equality holds when ρ
(p,q)
gi (f1) < ρ

(p,q)
gj (f1) with at least f1 is of regular relative

(p, q) growth with respect to gj where i, j = 1, 2 and i ̸= j.

We omit the proof of Theorem 12 as it can easily be carried out in the line of

Theorem 11.

Theorem 13. Let f1, f2, g1 and g2 be any four entire functions VVDS defined by

(1). Then for p ≥ 0 and q ≥ 0

ρ
(p,q)
g1±g2 (f1 ± f2) ≤ max

[
min

{
ρ(p,q)g1 (f1) , ρ

(p,q)
g2 (f1)

}
,min

{
ρ(p,q)g1 (f2) , ρ

(p,q)
g2 (f2)

}]
when the following two conditions holds:

(i) ρ
(p,q)
gi (f1) < ρ

(p,q)
gj (f1) with at least f1 is of regular relative (p, q) Ritt growth with

respect to gj for i = 1, 2, j = 1, 2 and i ̸= j; and

(ii) ρ
(p,q)
gi (f2) < ρ

(p,q)
gj (f2) with at least f2 is of regular relative (p, q) Ritt growth

with respect to gj for i = 1, 2, j = 1, 2 and i ̸= j.

The equality holds when ρ
(p,q)
g1 (fi) < ρ

(p,q)
g1 (fj) and ρ

(p,q)
g2 (fi) < ρ

(p,q)
g2 (fj) holds si-

multaneously for i = 1, 2; j = 1, 2 and i ̸= j.

Theorem 14. Let f1, f2, g1 and g2 be any four entire functions VVDS defined by

(1). Then for p ≥ 0 and q ≥ 0,

λ
(p,q)
g1±g2 (f1 ± f2) ≥ min

[
max

{
λ(p,q)
g1 (f1) , λ

(p,q)
g1 (f2)

}
,max

{
λ(p,q)
g2 (f1) , λ

(p,q)
g2 (f2)

}]
when the following two conditions holds:

(i) λ
(p,q)
g1 (fi) > λ

(p,q)
g1 (fj) with at least fj is of regular relative (p, q) Ritt growth with

respect to g1 for i = 1, 2, j = 1, 2 and i ̸= j; and

(ii) λ
(p,q)
g2 (fi) > λ

(p,q)
g2 (fj) with at least fj is of regular relative (p, q) Ritt growth with

respect to g2 for i = 1, 2, j = 1, 2 and i ̸= j.
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The equality holds when λ
(p,q)
gi (f1) < λ

(p,q)
gj (f1) and λ

(p,q)
gi (f2) < λ

(p,q)
gj (f2) hold

simultaneously for i = 1, 2; j = 1, 2 and i ̸= j.

Theorem 13 and Theorem 14 can be prove using the similar arguments adopted

in the proofs of Theorem 5 and Theorem 6 of [4] respectively. We omit the details.

Theorem 15. Let f1, f2 and g1 be any three entire functions VVDS defined by (1).

Also let at least f1 or f2 is of regular relative (p, q) Ritt growth with respect to g1

where p ≥ 0 and q ≥ 0. Then

λ(p,q)
g1 (f1 · f2) ≤ max

{
λ(p,q)
g1 (f1) , λ

(p,q)
g1 (f2)

}
.

provided g1 satisfy the Property (A). The equality holds when f1 and f2 satisfy Prop-

erty (X).

Proof. Suppose that λ
(p,q)
g1 (f1 · f2) > 0. Otherwise if λ

(p,q)
g1 (f1 · f2) = 0 then the

result is obvious. Let us consider that f2 is of regular relative (p, q) Ritt growth

with respect to g1.Also suppose that max
{
λ
(p,q)
g1 (f1) , λ

(p,q)
g1 (f2)

}
= ∆ . We can

clearly assume that λ
(p,q)
g1 (fk) is finite for k = 1, 2. Now for any arbitrary ε

2 > 0, it

follows from the definition of ρ
(p,q)
g1 (f1), for a sequence values of σ tending to infinity

that

Mf1 (σ) ≤ Mg1

(
exp[p]

((
λ(p,q)
g1 (f1) +

ε

2

)
log[q] σ

))
(26) i.e., Mf1 (σ) ≤ Mg1

(
exp[p]

((
∆+

ε

2

)
log[q] σ

))
.

Also for any arbitrary ε
2 > 0, we obtain from the definition of ρ

(p,q)
g1 (f2)

(
= λ

(p,q)
g1 (f2)

)
,

for all sufficiently large values of σ that

Mf2 (σ) ≤ Mg1

(
exp[p]

((
λ(p,q)
g1 (f2) +

ε

2

)
log[q] σ

))
(27) i.e., Mf2 (σ) ≤ Mg1

(
exp[p]

((
∆+

ε

2

)
log[q] σ

))
.

Observe that
∆ + ε

∆+ ε
2

> 1 .

Therefore we consider the expression
exp[p]((∆+ε) log[q] σ)
exp[p]((∆+ ε

2) log
[q] σ)

for all sufficiently large

values of σ. Thus for any δ > 1, it follows from the above expression for all sufficiently
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large values of σ, say σ ≥ σ1 ≥ σ0 that

(28)
exp[p]

(
(∆ + ε) log[q] σ0

)
exp[p]

((
∆+ ε

2

)
log[q] σ0

) = δ .

Since for all large σ, Mf1·f2 (σ) < Mf1 (σ) ·Mf2 (σ) , we have from (26) , (27) for

a sequence values of σ tending to infinity that

Mf1·f2 (σ) <
(
Mg1

(
exp[p]

((
∆+

ε

2

)
log[q] σ

)))2
.

Also in view of Lemma 2, we obtain from above for a sequence values of σ tending

to infinity that

Mf1·f2 (σ) < Mg1

(
δ
(
exp[p]

((
∆+

ε

2

)
log[q] σ

)))
,

since g1 has the Property (A) and δ > 1. Therefore in view of (28), it follows from

above for a sequence values of σ tending to infinity that

(29) Mf1·f2 (σ) < Mg1

[(
exp[p]

(
(∆ + ε) log[q] σ

))]
.

So from above we get for a sequence values of σ tending to infinity that

log[p]M−1
g1 (Mf1·f2 (σ))

log[q] σ
≤ (∆ + ε) .

Since ε > 0 is arbitrary, we obtain from above that

λ(p,q)
g1 (f1 · f2) ≤ ∆ = max

{
λ(p,q)
g1 (f1) , λ

(p,q)
g1 (f2)

}
.

Similarly, if we consider that f1 is of regular relative (p, q) Ritt growth with

respect to g1 or both f1 and f2 are of regular relative (p, q) Ritt growth with respect

to g1, then also one can easily verify that

(30) λ(p,q)
g1 (f1 · f2) ≤ ∆ = max

{
λ(p,q)
g1 (f1) , λ

(p,q)
g1 (f2)

}
.

Now let f1 and f2 are satisfy Property (X), then of course we have Mf1·f2 (σ) >

Mf1 (σ) and Mf1·f2 (σ) > Mf2 (σ) for all sufficiently large values of σ. Therefore for

all sufficiently large values of σ we get that

log[p]M−1
g1 (Mf1·f2 (σ))

log[q] σ
≥

log[p]M−1
g1 (Mf1 (σ))

log[q] σ
.

So λ
(p,q)
g1 (f1 · f2) ≥ λ

(p,q)
g1 (f1) and similarly, λ

(p,q)
g1 (f1 · f2) ≥ λ

(p,q)
g1 (f2) .

Hence the theorem follows. �

Now we state the following theorem without its proof as it can easily be carried

out in the line of Theorem 15.
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Theorem 16. Let f1, f2 and g1 be any three entire functions VVDS defined by (1) .

Also let f1 and f2 have relative index-pair (p, q) with respect to g1 where p ≥ 0 and

q ≥ 0. Then

ρ(p,q)g1 (f1 · f2) ≤ max
{
ρ(p,q)g1 (f1) , ρ

(p,q)
g1 (f2)

}
,

provided g1 satisfy the Property (A). The equality holds when f1 and f2 satisfy Prop-

erty (X).

Theorem 17. Let f1, g1 and g2 be any three entire functions VVDS defined by (1) .

Also let λ
(p,q)
g1 (f1) and λ

(p,q)
g2 (f1) exists where p ≥ 0 and q ≥ 0. Then

λ
(p,q)
g1·g2 (f1) ≥ min

{
λ(p,q)
g1 (f1) , λ

(p,q)
g2 (f1)

}
,

provided f1 satisfy the Property (A). The equality holds when g1 and g2 satisfy Prop-

erty (X).

Proof. Suppose that λ
(p,q)
g1·g2 (f1) < ∞. Otherwise if λ

(p,q)
g1·g2 (f1) = ∞ then the result is

obvious. Also suppose that min
{
λ
(p,q)
g1 (f1) , λ

(p,q)
g2 (f1)

}
= Ψ. We can clearly assume

that λ
(p,q)
gk (f1) is finite for k = 1, 2. Now for any arbitrary ε > 0, with ε < Ψ, we

obtain for all sufficiently large values of σ that

Mgk

(
exp[p]

((
λ(p,q)
gk

(f1)−
ε

2

)
log[q] σ

))
≤ Mf1 (σ) where k = 1, 2

i.e., Mgk

(
exp[p]

((
Ψ− ε

2

)
log[q] σ

))
≤ Mf1 (σ) where k = 1, 2

(31) i.e., Mgk (σ) ≤ Mf1

(
exp[q]

(
log[p] σ(
Ψ− ε

2

))) where k = 1, 2 .

Observe that
Ψ− ε

2

Ψ− ε
> 1 .

Now we consider the expression
exp[q]

(
log[p] σ
(Ψ−ε)

)
exp[q]

(
log[p] σ

(Ψ− ε
2 )

) for all sufficiently large values of σ.

Thus for any δ > 1, it follows from the above expression for all sufficiently large

values of σ, say σ ≥ σ1 ≥ σ0 that

(32)
exp[q]

(
log[p] σ0

(Ψ−ε)

)
exp[q]

(
log[p] σ0

(Ψ− ε
2)

) = δ .
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Since for all large σ, Mg1·g2 (σ) < Mg1 (σ) · Mg2 (σ) , we get from (31) for all

sufficiently large values of σ that

(33) Mg1·g2 (σ) <

(
Mf1

(
exp[q]

(
log[p] σ(
Ψ− ε

2

))))2

.

Also in view of Lemma 2, we obtain from above for all sufficiently large values of

σ that

Mg1·g2 (σ) < Mf1

(
δ

(
exp[q]

(
log[p] σ(
Ψ− ε

2

)))) ,

since f1 has the Property (A) and δ > 1. Therefore in view of (32), it follows from

above for all sufficiently large values of σ that

Mg1·g2 (σ) < Mf1

(
exp[q]

(
log[p] σ

(Ψ− ε)

))

i.e,
log[p]M−1

g1·g2 (Mf1 (σ))

log[q] σ
> (Ψ− ε) .

Since ε > 0 is arbitrary, we get from above that

(34) λ
(p,q)
g1·g2 (f1) ≥ Ψ = min

{
λ(p,q)
g1 (f1) , λ

(p,q)
g2 (f1)

}
.

Now let g1 and g2 are satisfy Property (X), then of course we have Mg1·g2 (σ) >

Mg1 (σ) and Mg1·g2 (σ) > Mg2 (σ) for all sufficiently large values of σ. Therefore

for all sufficiently large values of σ, we obtain that M−1
g1·g2 (σ) ≤ M−1

g1 (σ) and

M−1
g1·g2 (σ) ≤ M−1

g2 (σ). Hence it follows that for all sufficiently large values of σ

log[p]M−1
g1·g2 (Mf1 (σ))

log[q] σ
≤

log[p]M−1
g1 (Mf1 (σ))

log[q] σ
.

So λ
(p,q)
g1·g2 (f1) ≤ λ

(p,q)
g1 (f1) and similarly, λ

(p,q)
g1·g2 (f1) ≤ λ

(p,q)
g2 (f1) .

Thus the theorem follows. �

Theorem 18. Let f1, g1 and g2 be any three entire functions VVDS defined by (1).

Also let the relative index-pair of f1 with respect to g1 and g2 is (p, q) where p ≥ 0

and q ≥ 0. Then

ρ
(p,q)
g1·g2 (f1) ≥ min

{
ρ(p,q)g1 (f1) , ρ

(p,q)
g2 (f1)

}
,

provided f1 is of regular relative (p, q) Ritt growth with respect to at least any one of

g1 or g2 and f1 satisfy the Property (A). The equality holds when g1 and g2 satisfy

Property (X).
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We omit the proof of Theorem 18 as it can easily be carried out in the line of

Theorem 17.

Now we state the following two theorems without their proofs as those can easily

be carried out with the help of Theorem 15, Theorem 16, Theorem 17 and Theorem

18 and in the line of Theorem 13 and Theorem 14 respectively.

Theorem 19. Let f1, f2, g1 and g2 be any four entire functions VVDS defined by

(1). Also let g1 ·g2, f1 and f2 be satisfy the Property (A). Then for p ≥ 0 and q ≥ 0,

ρ
(p,q)
g1·g2 (f1 · f2)

= max
[
min

{
ρ(p,q)g1 (f1) , ρ

(p,q)
g2 (f1)

}
,min

{
ρ(p,q)g1 (f2) , ρ

(p,q)
g2 (f2)

}]
,

when the following two conditions holds:

(i) f1 is of regular relative (p, q) growth with respect to at least any one of g1 or g2;

(ii) f2 is of regular relative (p, q) growth with respect to at least any one of g1 or g2;

(iii) f1 and f2 satisfy Property (X); and

(iv) g1 and g2 satisfy Property (X).

Theorem 20. Let f1, f2, g1 and g2 be any four entire functions VVDS defined by

(1). Also let g1 ·g2, f1 and f2 be satisfy the Property (A). Then for p ≥ 0 and q ≥ 0,

λ
(p,q)
g1·g2 (f1 · f2)

= min
[
max

{
λ(p,q)
g1 (f1) , λ

(p,q)
g1 (f2)

}
,max

{
λ(p,q)
g2 (f1) , λ

(p,q)
g2 (f2)

}]
when the following two conditions holds:

(i) At least f1 or f2 is of regular relative (p, q) growth with respect to g1;

(ii) At least f1 or f2 is of regular relative (p, q) growth with respect to g2;

(iii) f1 and f2 satisfy Property (X); and

(iv) g1 and g2 satisfy Property (X).

Theorem 21. Let f1, f2, g1 and g2 be any four entire functions VVDS defined by

(1). Also let ρ
(p,q)
g1 (f1), ρ

(p,q)
g1 (f2), ρ

(p,q)
g2 (f1) and ρ

(p,q)
g2 (f2) are all non zero and finite

where p ≥ 0 and q ≥ 0.

(A) If ρ
(p,q)
g1 (fi) > ρ

(p,q)
g1 (fj) for i, j = 1, 2 and i ̸= j, then

∆(p,q)
g1 (f1 ± f2) = ∆(p,q)

g1 (fi) and ∆
(p,q)
g1 (f1 ± f2) = ∆

(p,q)
g1 (fi) | i = 1, 2 .

(B) If ρ
(p,q)
gi (f1) < ρ

(p,q)
gj (f1) with at least f1 is of regular relative (p, q) Ritt growth

with respect to gj for i, j = 1, 2 and i ̸= j, then

∆
(p,q)
g1±g2 (f1) = ∆(p,q)

gi (f1) and ∆
(p,q)
g1±g2 (f1) = ∆

(p,q)
gi (f1) | i = 1, 2 .
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(C) Assume the functions f1, f2, g1 and g2 satisfy the following conditions:

(i) ρ
(p,q)
gi (f1) < ρ

(p,q)
gj (f1) with at least f1 is of regular relative (p, q) Ritt growth with

respect to gj for i = 1, 2, j = 1, 2 and i ̸= j;

(ii) ρ
(p,q)
gi (f2) < ρ

(p,q)
gj (f2) with at least f2 is of regular relative (p, q) Ritt growth

with respect to gj for i = 1, 2, j = 1, 2 and i ̸= j;

(iii) ρ
(p,q)
g1 (fi) > ρ

(p,q)
g1 (fj) and ρ

(p,q)
g2 (fi) > ρ

(p,q)
g2 (fj) holds simultaneously for i =

1, 2; j = 1, 2 and i ̸= j;

(iv) ρ
(p,q)
gm (fl) = max

[
min

{
ρ
(p,q)
g1 (f1) , ρ

(p,q)
g2 (f1)

}
,min

{
ρ
(p,q)
g1 (f2) , ρ

(p,q)
g2 (f2)

}]
| l =

m = 1, 2;

then we have

∆
(p,q)
g1±g2 (f1 ± f2) = ∆(p,q)

gm (fl) | l = m = 1, 2

and

∆
(p,q)
g1±g2 (f1 ± f2) = ∆

(p,q)
gm (fl) | l = m = 1, 2 .

Proof. From the definition of relative (p, q)-th Ritt type and relative (p, q)-th lower

Ritt type of entire function VVDS defined by (1), we have for all sufficiently large

values of σ that

(35) Mfk (σ) ≤ Mgl

(
exp[p−1]

((
∆(p,q)

gl
(fk) + ε

) [
log[q−1] σ

]ρ(p,q)gl
(fk)
))

,

(36) Mfk (σ) ≥ Mgl

(
exp[p−1]

((
∆

(p,q)
gl

(fk)− ε
) [

log[q−1] σ
]ρ(p,q)gl

(fk)
))

(37) i.e., Mgl (σ) ≤ Mfk

exp[q−1]


 log[p−1] σ(

∆
(p,q)
gl

(fk)− ε
)
 1

ρ
(p,q)
gl

(fk)


 ,

and for a sequence of values of σ tending to infinity, we obtain that

(38) Mfk (σ) ≥ Mgl

(
exp[p−1]

((
∆(p,q)

gl
(fk)− ε

) [
log[q−1] σ

]ρ(p,q)gl
(fk)
))

(39) i.e., Mgl (σ) ≤ Mfk

exp[q−1]


 log[p−1] σ(

∆
(p,q)
gl (fk)− ε

)
 1

ρ
(p,q)
gl

(fk)


 ,

and

(40) Mfk (σ) ≤ Mgl

(
exp[p−1]

((
∆

(p,q)
gl

(fk) + ε
) [

log[q−1] σ
]ρ(p,q)gl

(fk)
))

,
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where ε > 0 is any arbitrary positive number k = 1, 2 and l = 1, 2.

Case I. Suppose that ρ
(p,q)
g1 (f1) > ρ

(p,q)
g1 (f2) hold. Also let ε (> 0) be arbitrary.

Since for all large σ, Mf1±f2 (σ) ≤ Mf1 (σ)+Mf2 (σ) , we get in view of (35) and for

all sufficiently large values of σ that

(41) Mf1±f2 (σ) ≤

Mg1

(
exp[p−1]

((
∆(p,q)

g1 (f1) + ε
) [

log[q−1] σ
]ρ(p,q)g1

(f1)
))

(1 +A)

where A =
Mg1

(
exp[p−1]

((
∆

(p,q)
g1

(f2)+ε
)
[log[q−1] σ]

ρ
(p,q)
g1

(f2)

))

Mg1

(
exp[p−1]

((
∆

(p,q)
g1

(f1)+ε
)
[log[q−1] σ]

ρ
(p,q)
g1

(f1)

)) and in view of ρ
(p,q)
g1 (f1)

> ρ
(p,q)
g1 (f2), and for all sufficiently large values of σ, we can make the term A

sufficiently small. Hence for any α > 1 + ε1 where ε1 = A, it follows from Lemma 1

(a) and (41) for all sufficiently large values of σ that

Mf1±f2 (σ) ≤ Mg1

(
exp[p−1]

((
∆(p,q)

g1 (f1) + ε
) [

log[q−1] σ
]ρ(p,q)g1

(f1)
))

(1 + ε1)

i.e., Mf1±f2 (σ) ≤ Mg1

(
exp[p−1]

(
α
(
∆(p,q)

g1 (f1) + ε
) [

log[q−1] σ
]ρ(p,q)g1

(f1)
))

.

Therefore in view of Theorem 10 and ρ
(p,q)
g1 (f1) > ρ

(p,q)
g1 (f2), we get from above

for all sufficiently large values of σ that

log[p−1]M−1
g1 (Mf1±f2 (σ))[

log[q−1] σ
]ρ(p,q)g1

(f1±f2)
≤ α

(
∆(p,q)

g1 (f1) + ε
)

.

Hence making α → 1+, we obtain from above for all sufficiently large values of

σ that

lim
σ→+∞

log[p−1]M−1
g1 (Mf1±f2 (σ))[

log[q−1] σ
]ρ(p,q)g1

(f1±f2)
≤ ∆(p,q)

g1 (f1)

(42) i.e., ∆(p,q)
g1 (f1 ± f2) ≤ ∆(p,q)

g1 (f1) .

Now we may consider that f = f1 ± f2. Since ρ
(p,q)
g1 (f1) > ρ

(p,q)
g1 (f2) hold. Then

∆
(p,q)
g1 (f) = ∆

(p,q)
g1 (f1 ± f2) ≤ ∆

(p,q)
g1 (f1) . Further, let f1 = (f ± f2). Therefore in

view of Theorem 10 and ρ
(p,q)
g1 (f1) > ρ

(p,q)
g1 (f2), we obtain that ρ

(p,q)
g1 (f) > ρ

(p,q)
g1 (f2)

holds. Hence in view of (42) ∆
(p,q)
g1 (f1) ≤ ∆

(p,q)
g1 (f) = ∆

(p,q)
g1 (f1 ± f2) . Therefore

∆
(p,q)
g1 (f) = ∆

(p,q)
g1 (f1) ⇒ ∆

(p,q)
g1 (f1 ± f2) = ∆

(p,q)
g1 (f1).
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Similarly, if we consider ρ
(p,q)
g1 (f1) < ρ

(p,q)
g1 (f2) , then one can easily verify that

∆
(p,q)
g1 (f1 ± f2) = ∆

(p,q)
g1 (f2).

Case II. Let us consider that ρ
(p,q)
g1 (f1) > ρ

(p,q)
g1 (f2) hold. Also let ε (> 0) are

arbitrary. Since for all large σ, Mf1±f2 (σ) ≤ Mf1 (σ) + Mf2 (σ) , we get from (35)

and (40) for a sequence of values of σ tending to infinity that

(43) Mf1±f2 (σn) ≤

Mg1

(
exp[p−1]

((
∆

(p,q)
g1 (f1) + ε

) [
log[q−1] σn

]ρ(p,q)g1
(f1)
))

(1 +B)

where B =
Mg1

(
exp[p−1]

((
∆

(p,q)
g1

(f2)+ε
)
[log[q−1] σn]

ρ
(p,q)
g1

(f2)

))

Mg1

(
exp[p−1]

((
∆

(p,q)
g1

(f1)+ε
)
[log[q−1] σn]

ρ
(p,q)
g1

(f1)

)) and in view of ρ
(p,q)
g1 (f1) >

ρ
(p,q)
g1 (f2), we can make the term B sufficiently small by taking n sufficiently large

and therefore using the similar technique for as executed in the proof of Case I we

get from (43) that ∆
(p,q)
g1 (f1 ± f2) = ∆

(p,q)
g1 (f1) when ρ

(p,q)
g1 (f1) > ρ

(p,q)
g1 (f2) hold.

Likewise, if we consider ρ
(p,q)
g1 (f1) < ρ

(p,q)
g1 (f2) , then one can easily verify that

∆
(p,q)
g1 (f1 ± f2) = ∆

(p,q)
g1 (f2).

Thus combining Case I and Case II, we obtain the first part of the theorem

Case III. Let us consider that ρ
(p,q)
g1 (f1) < ρ

(p,q)
g2 (f1) with at least f1 is of reg-

ular relative (p, q) Ritt growth with respect to g2. As for all large σ, Mg1±g2 (σ) ≤
Mg1 (σ) +Mg2 (σ) , we get from (37) and (39) for a sequence of values of σ tending

to infinity that

(44) Mg1±g2 (σn) ≤

Mf1

exp[q−1]


 log[p−1] σn(

∆
(p,q)
g1 (f1)− ε

)
 1

ρ
(p,q)
g1

(f1)


 (1 + C) ,

where C =

Mf1

exp[q−1]


 log[p−1] σn(

∆
(p,q)
g2

(f1)−ε

)
 1

ρ
(p,q)
g2

(f1)




Mf1

exp[q−1]


 log[p−1] σn(

∆
(p,q)
g1

(f1)−ε

)
 1

ρ
(p,q)
g1

(f1)



. Since ρ

(p,q)
g1 (f1) < ρ

(p,q)
g2 (f1),

we can make the term C sufficiently small by taking n sufficiently large. Hence in

view of Lemma 1 (a) and Theorem 12, we get from (44) for a sequence of values of
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σ tending to infinity that

Mg1±g2 (σn) < Mf1

exp[q−1]


 log[p−1] σn(

∆
(p,q)
g1 (f1)− ε

)
 1

ρ
(p,q)
g1

(f1)


 (1 + ε1)

Mg1±g2

(σn
α

)
< Mf1

exp[q−1]


 log[p−1] σn(

∆
(p,q)
g1 (f1)− ε

)
 1

ρ
(p,q)
g1±g2

(f1)


 ,

where ε1 = C and α > (1 + ε1) . Hence, making α → 1+, we obtain from above for

a sequence of values of σ tending to infinity that

(
∆(p,q)

g1 (f1)− ε
) [

log[q−1] σn

]ρ(p,q)g1±g2
(f1)

< log[p−1]M−1
g1±g2 (Mf1 (σn)) .

Since ε > 0 is arbitrary, we find that

(45) ∆
(p,q)
g1±g2 (f1) ≥ ∆(p,q)

g1 (f1) .

Now we may consider that g = g1 ± g2. Also ρ
(p,q)
g1 (f1) < ρ

(p,q)
g2 (f1) and at least

f1 is of regular relative (p, q) Ritt growth with respect to g2. Then ∆
(p,q)
g (f1) =

∆
(p,q)
g1±g2 (f1) ≥ ∆

(p,q)
g1 (f1) . Further let g1 = (g ± g2). Therefore in view of Theorem

12 and ρ
(p,q)
g1 (f1) < ρ

(p,q)
g2 (f1), we obtain that ρ

(p.q)
g (f1) < ρ

(p,q)
g2 (f1) as at least

f1 is of regular relative (p, q) Ritt growth with respect to g2. Hence in view of

(45), ∆
(p,q)
g1 (f1) ≥ ∆

(p,q)
g (f1) = ∆

(p,q)
g1±g2 (f1) . Therefore ∆

(p,q)
g (f1) = ∆

(p,q)
g1 (f1) ⇒

∆
(p,q)
g1±g2 (f1) = ∆

(p,q)
g1 (f1).

Similarly if we consider ρ
(p,q)
g1 (f1) > ρ

(p,q)
g2 (f1) with at least f1 is of regular relative

(p, q) Ritt growth with respect to g1, then ∆
(p,q)
g1±g2 (f1) = ∆

(p,q)
g2 (f1) .

Case IV. In this case suppose that ρ
(p,q)
g1 (f1) < ρ

(p,q)
g2 (f1) with at least f1 is of

regular relative (p, q) Ritt growth with respect to g2. Therefore from (37) , we get

for all sufficiently large values of σ that

(46) Mg1±g2 (σ) ≤

Mf1

exp[q−1]


 log[p−1] σ(

∆
(p,q)
g1 (f1)− ε

)
 1

ρ
(p,q)
g1

(f1)


 (1 +D) ,
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where D =

Mf1

exp[q−1]


 log[p−1] σ(

∆
(p,q)
g2

(f1)−ε

)
 1

ρ
(p,q)
g2

(f1)




Mf1

exp[q−1]


 log[p−1] σ(

∆
(p,q)
g1

(f1)−ε

)
 1

ρ
(p,q)
g1

(f1)




and in view of ρ
(p,q)
g1 (f1) <

ρ
(p,q)
g2 (f1), we can make the term D sufficiently small by taking σ sufficiently large

and therefore using the similar technique for as executed in the proof of Case III we

get from (46) that ∆
(p,q)
g1±g2 (f1) = ∆

(p,q)
g1 (f1) where ρ

(p,q)
g1 (f1) < ρ

(p,q)
g2 (f1) and at least

f1 is of regular relative (p, q) Ritt growth with respect to g2. Likewise if we consider

ρ
(p,q)
g1 (f1) > ρ

(p,q)
g2 (f1) with at least f1 is of regular relative (p, q) Ritt growth with

respect to g1, then ∆
(p,q)
g1±g2 (f1) = ∆

(p,q)
g2 (f1) .

Thus combining Case III and Case IV, we obtain the second part of the theorem.

The third part of the theorem is a natural consequence of Theorem 13 and the

first part and second part of the theorem. Hence its proof is omitted. �

Theorem 22. Let f1, f2, g1 and g2 be any four entire functions VVDS defined by

(1). Also let λ
(p,q)
g1 (f1), λ

(p,q)
g1 (f2), λ

(p,q)
g2 (f1) and λ

(p,q)
g2 (f2) are all non zero and

finite where p ≥ 0 and q ≥ 0.

(A) If λ
(p,q)
g1 (fi) > λ

(p,q)
g1 (fj) with at least fj is of regular relative (p, q) Ritt growth

with respect to g1 for i, j = 1, 2 and i ̸= j, then

τ (p,q)g1 (f1 ± f2) = τ (p,q)g1 (fi) and τ (p,q)g1 (f1 ± f2) = τ (p,q)g1 (fi) | i = 1, 2 .

(B) If λ
(p,q)
gi (f1) < λ

(p,q)
gj (f1) for i, j = 1, 2 and i ̸= j, then

τ
(p,q)
g1±g2 (f1) = τ (p,q)gi (f1) and τ

(p,q)
g1±g2 (f1) = τ (p,q)gi (f1) | i = 1, 2 .

(C) Assume the functions f1, f2, g1 and g2 satisfy the following conditions:

(i) ρ
(p,q)
g1 (fi) > ρ

(p,q)
g1 (fj) with at least fj is of regular relative (p, q) Ritt growth with

respect to g1 for i, j = 1, 2 and i ̸= j;

(ii) ρ
(p,q)
g2 (fi) > ρ

(p,q)
g2 (fj) with at least fj is of regular relative (p, q) Ritt growth with

respect to g2 for i, j = 1, 2 and i ̸= j;

(iii) ρ
(p,q)
gi (f1) < ρ

(p,q)
gj (f1) and ρ

(p,q)
gi (f2) < ρ

(p,q)
gj (f2) holds simultaneously for i,

j = 1, 2 and i ̸= j;

(iv) λ
(p,q)
gm (fl) = min

[
max

{
λ
(p,q)
g1 (f1) , λ

(p,q)
g1 (f2)

}
,max

{
λ
(p,q)
g2 (f1) , λ

(p,q)
g2 (f2)

}]
|

l = m = 1, 2;

then we have

τ
(p,q)
g1±g2 (f1 ± f2) = τ (p,q)gm (fl) | l = m = 1, 2



320 Tanmay Biswas

and

τ
(p,q)
g1±g2 (f1 ± f2) = τ (p,q)gm (fl) | l = m = 1, 2 .

Proof. For any arbitrary positive number ε(> 0), we have for all sufficiently large

values of σ that

(47) Mfk (σ) ≤ Mgl

(
exp[p−1]

((
τ (p,q)gl

(fk) + ε
) [

log[q−1] σ
]λ(p,q)

gl
(fk)
))

,

(48) Mfk (σ) ≥ Mgl

(
exp[p−1]

((
τ (p,q)gl

(fk)− ε
) [

log[q−1] σ
]λ(p,q)

gl
(fk)
))

(49) i.e., Mgl (σ) ≤ Mfk

exp[q−1]


 log[p−1] σ(

τ
(p,q)
gl (fk)− ε

)
 1

λ
(p,q)
gl

(fk)


 ,

and for a sequence of values of σ tending to infinity we obtain that

(50) Mfk (σ) ≥ Mgl

(
exp[p−1]

((
τ (p,q)gl

(fk)− ε
) [

log[q−1] σ
]λ(p,q)

gl
(fk)
))

(51) i.e., Mgl (σ) ≤ Mfk

exp[q−1]


 log[p−1] σ(

τ
(p,q)
gl (fk)− ε

)
 1

λ
(p,q)
gl

(fk)


 ,

and

(52) Mfk (σ) ≤ Mgl

(
exp[p−1]

((
τ (p,q)gl

(fk) + ε
) [

log[q−1] σ
]λ(p,q)

gl
(fk)
))

,

where k = 1, 2 and l = 1, 2.

Case I. Let λ
(p,q)
g1 (f1) > λ

(p,q)
g1 (f2) with at least f2 is of regular relative (p, q)

Ritt growth with respect to g1. Also let ε (> 0) be arbitrary.

Since for all large σ, Mf1±f2 (σ) ≤ Mf1 (σ) +Mf2 (σ) , we get in view of (47) and

(52) for a sequence {rn} of values of σ tending to infinity that

(53) Mf1±f2 (σn) ≤

Mg1

(
exp[p−1]

((
τ (p,q)g1 (f1) + ε

) [
log[q−1] σn

]λ(p,q)
g1

(f1)
))

(1 + E) ,
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where E =
Mg1

(
exp[p−1]

((
τ
(p,q)
g1

(f2)+ε
)
[log[q−1] σn]

λ
(p,q)
g1

(f2)

))

Mg1

(
exp[p−1]

((
τ
(p,q)
g1

(f1)+ε
)
[log[q−1] σn]

λ
(p,q)
g1

(f1)

)) and in view of λ
(p,q)
g1 (f1) >

λ
(p,q)
g1 (f2), we can make the term E sufficiently small by taking n sufficiently large.

Therefore with the help of Lemma 1 (a), Theorem 9 and using the similar technique

of Case I of Theorem 21, we get from (53) that

(54) τ (p,q)g1 (f1 ± f2) ≤ τ (p,q)g1 (f1) .

Further, we may consider that f = f1 ± f2. Also suppose that λ
(p,q)
g1 (f1) >

λ
(p,q)
g1 (f2) and at least f2 is of regular relative (p, q) Ritt growth with respect to

g1. Then τ
(p,q)
g1 (f) = τ

(p,q)
g1 (f1 ± f2) ≤ τ

(p,q)
g1 (f1) . Now let f1 = (f ± f2). Therefore

in view of Theorem 9, λ
(p,q)
g1 (f1) > λ

(p,q)
g1 (f2) and at least f2 is of regular relative

(p, q) Ritt growth with respect to g1, we obtain that λ
(p,q)
g1 (f) > λ

(p,q)
g1 (f2) holds.

Hence in view of (54), τ
(p,q)
g1 (f1) ≤ τ

(p,q)
g1 (f) = τ

(p,q)
g1 (f1 ± f2) . Therefore τ

(p,q)
g1 (f) =

τ
(p,q)
g1 (f1) ⇒ τ

(p,q)
g1 (f1 ± f2) = τ

(p,q)
g1 (f1).

Similarly, if we consider λ
(p,q)
g1 (f1) < λ

(p,q)
g1 (f2) with at least f1 is of regu-

lar relative (p, q) Ritt growth with respect to g1 then one can easily verify that

τ
(p,q)
g1 (f1 ± f2) = τ

(p,q)
g1 (f2).

Case II. Let us consider that λ
(p,q)
g1 (f1) > λ

(p,q)
g1 (f2) with at least f2 is of regular

relative (p, q) Ritt growth with respect to g1. Also let ε (> 0) be arbitrary. Since for

all large σ, Mf1±f2 (σ) ≤ Mf1 (σ)+Mf2 (σ) , we get in view of (47) for all sufficiently

large values of σ that

(55) Mf1±f2 (σ) ≤

Mg1

(
exp[p−1]

((
τ (p,q)g1 (f1) + ε

) [
log[q−1] σ

]λ(p,q)
g1

(f1)
))

(1 + F ) ,

where F =
Mg1

(
exp[p−1]

((
τ
(p,q)
g1

(f2)+ε
)
[log[q−1] σ]

λ
(p,q)
gi

(f2)

))

Mg1

(
exp[p−1]

((
τ
(p,q)
g1

(f1)+ε
)
[log[q−1] σ]

λ
(p,q)
g1

(f1)

)) and in view of λ
(p,q)
g1 (f1) >

λ
(p,q)
g1 (f2), one can make the term F sufficiently small by taking σ sufficiently large

and therefore for similar reasoning of Case I we get from (55) that τ
(pi,q)
g1 (f1 ± f2) =

τ
(p,q)
g1 (f1) when λ

(p,q)
g1 (f1) > λ

(p,q)
g1 (f2) and at least f2 is of regular relative (p, q) Ritt

growth with respect to g1.
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Likewise, if we consider λ
(p,q)
g1 (f1) < λ

(p,q)
g1 (f2) with at least f1 is of regular relative

(p, q) Ritt growth with respect to g1 then one can easily verify that τ
(p,q)
g1 (f1 ± f2) =

τ
(p,q)
g1 (f2)

Thus combining Case I and Case II, we obtain the first part of the theorem.

Case III. Let us consider that λ
(p,q)
g1 (f1) < λ

(p,q)
g2 (f1). As for all large σ,

Mg1±g2 (σ) ≤ Mg1 (σ) +Mg2 (σ) , we get from (49) for all sufficiently large values of

σ that

(56) Mg1±g2 (σ) ≤

Mf1

exp[q−1]


 log[p−1] σ(

τ
(p,q)
g1 (f1)− ε

)
 1

τ
(p,q)
g1

(f1)


 (1 +G) ,

where G =

Mf1

exp[q−1]


 log[p−1] σ(

τ
(p,q)
g2

(f1)−ε

)
 1

ρ
(p,q)
g2

(f1)




Mf1

exp[q−1]


 log[p−1] σ(

τ
(p,q)
g1

(f1)−ε

)
 1

τ
(p,q)
g1

(f1)



, and as λ

(p,q)
g1 (f1) < λ

(p,q)
g2 (f1),

we can make the term G sufficiently small by taking σ sufficiently large. Now with

the help of Lemma 1 (a) and Theorem 11 and using the similar technique of Case

III of Theorem 21, we get from (56) that

(57) τ
(p,q)
g1±g2 (f1) ≥ τ (p,q)g1 (f1) .

Further, we may consider that g = g1±g2.As λ
(p,q)
g1 (f1) < λ

(p,q)
g2 (f1), so τ

(p,q)
g (f1) =

τ
(p,q)
g1±g2 (f1) ≥ τ

(p,q)
g1 (f1). Also let g1 = (g ± g2). Therefore in view of Theorem 11

and λ
(p,q)
g1 (f1) < λ

(p,q)
g2 (f1) we obtain that λ

(p.q)
g (f1) < λ

(p,q)
g2 (f1) holds. Hence in

view of (57) τ
(p,q)
g1 (f1) ≥ τ

(p,q)
g (f1) = τ

(p,q)
g1±g2 (f1) . Therefore τ

(p,q)
g (f1) = τ

(p,q)
g1 (f1) ⇒

τ
(p,q)
g1±g2 (f1) = τ

(p,q)
g1 (f1).

Likewise, if we consider that λ
(p,q)
g1 (f1) > λ

(p,q)
g2 (f1) , then one can easily verify

that τ
(p,q)
g1±g2 (f1) = τ

(p,q)
g2 (f1) .

Case IV. In this case further we consider λ
(p,q)
g1 (f1) < λ

(p,q)
g2 (f1).

As for all large σ, Mg1±g2 (σ) ≤ Mg1 (σ)+Mg2 (σ) , we obtain from (49) and (51)

for a sequence {rn} of values of r tending to infinity that

(58) Mg1±g2 (σn) ≤
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Mf1

exp[q−1]


 log[p−1] σn(

τ
(p,q)
g1 (f1)− ε

)
 1

λ
(p,q)
g1

(f1)


 (1 +H) ,

where H =

Mf1

exp[q−1]


 log[p−1] σn(

τ
(p,q)
g2

(f1)−ε

)
 1

λ
(p,q)
g2

(f1)




Mf1

exp[q−1]


 log[p−1] σn(

τ
(p,q)
g1

(f1)−ε

)
 1

λ
(p,q)
g1

(f1)



, and in view of λ

(p,q)
g1 (f1) <

λ
(p,q)
g2 (f1), we can make the term H sufficiently small by taking n sufficiently large

and therefore using the similar technique as executed in the proof of Case IV of The-

orem 21, we get from (58) that τ
(p,q)
g1±g2 (f1) = τ

(p,q)
g1 (f1) when λ

(p,q)
g1 (f1) < λ

(p,q)
g2 (f1).

Similarly, if we consider that λ
(p,q)
g1 (f1) > λ

(p,q)
g2 (f1) , then one can easily verify

that τ
(p,q)
g1±g2 (f1) = τ

(p,q)
g2 (f1) .

Thus combining Case III and Case IV, we obtain the second part of the theorem.

The proof of the third part of the Theorem is omitted as it can be carried out in

view of Theorem 14 and the above cases. �

In the next two theorems we reconsider the equalities in Theorem 9 to Theorem

12 under somewhat different conditions.

Theorem 23. Let f1, f2, g1 and g2 be any four entire functions VVDS defined by

(1). Also let p ≥ 0 and q ≥ 0.

(A) The following condition is assumed to be satisfied:

(i) Either ∆
(p,q)
g1 (f1) ̸= ∆

(p,q)
g1 (f2) or ∆

(p,q)
g1 (f1) ̸= ∆

(p,q)
g1 (f2) holds, then

ρ(p,q)g1 (f1 ± f2) = ρ(p,q)g1 (f1) = ρ(p,q)g1 (f2) .

(B) The following conditions are assumed to be satisfied:

(i) Either ∆
(p,q)
g1 (f1) ̸= ∆

(p,q)
g2 (f1) or ∆

(p,q)
g1 (f1) ̸= ∆

(p,q)
g2 (f1) holds;

(ii) f1 is of regular relative (p, q) Ritt growth with respect to at least any one of g1

or g2, then

ρ
(p,q)
g1±g2 (f1) = ρ(p,q)g1 (f1) = ρ(p,q)g2 (f1) .

Proof. Let f1, f2, g1 and g2 be any four entire functions VVDS defined by (1) satisfy

the conditions of the theorem.

Case I. Suppose that ρ
(p,q)
g1 (f1) = ρ

(p,q)
g1 (f2) (0 < ρ

(p,q)
g1 (f1) , ρ

(p,q)
g1 (f2) < ∞).

Now in view of Theorem 10 it is easy to see that ρ
(p,q)
g1 (f1 ± f2) ≤ ρ

(p,q)
g1 (f1) =
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ρ
(p,q)
g1 (f2) . If possible let

(59) ρ(p,q)g1 (f1 ± f2) < ρ(p,q)g1 (f1) = ρ(p,q)g1 (f2) .

Let ∆
(p,q)
g1 (f1) ̸= ∆

(p,q)
g1 (f2) . Then in view of the first part of Theorem 21 and (59)

we obtain that ∆
(p,q)
g1 (f1) = ∆

(p,q)
g1 (f1 ± f2 ∓ f2) = ∆

(p,q)
g1 (f2) which is a contradic-

tion. Hence ρ
(p,q)
g1 (f1 ± f2) = ρ

(p,q)
g1 (f1) = ρ

(p,q)
g1 (f2) . Similarly with the help of the

first part of Theorem 21, one can obtain the same conclusion under the hypothesis

∆
(p,q)
g1 (f1) ̸= ∆

(p,q)
g1 (f2) . This proves the first part of the theorem.

Case II. Let us consider that ρ
(p,q)
g1 (f1) = ρ

(p,q)
g2 (f1) (0 < ρ

(p,q)
g1 (f1) , ρ

(p,q)
g2 (f1)

< ∞) and f1 is of regular relative (p, q) Ritt growth with respect to at least any

one of g1 or g2 and (g1 ± g2). Therefore in view of Theorem 12, it follows that

ρ
(p,q)
g1±g2 (f1) ≥ ρ

(p,q)
g1 (f1) = ρ

(p,q)
g2 (f1) and if possible let

(60) ρ
(p,q)
g1±g2 (f1) > ρ(p,q)g1 (f1) = ρ(p,q)g2 (f1) .

Let us consider that ∆
(p,q)
g1 (f1) ̸= ∆

(p,q)
g2 (f1) . Then. in view of the proof of the

second part of Theorem 21 and (60) we obtain that ∆
(p,q)
g1 (f1) = ∆

(p,q)
g1±g2∓g2 (f1) =

∆
(p,q)
g2 (f1) which is a contradiction. Hence ρ

(p,q)
g1±g2 (f1) = ρ

(p,q)
g1 (f1) = ρ

(p,q)
g2 (f1) .

Also in view of the proof of second part of Theorem 21 one can derive the same

conclusion for the condition ∆
(p,q)
g1 (f1) ≠ ∆

(p,q)
g2 (f1) and therefore the second part

of the theorem is established. �

Theorem 24. Let f1, f2, g1 and g2 be any four entire functions VVDS defined by

(1). Also let p ≥ 0 and q ≥ 0.

(A) The following conditions are assumed to be satisfied:

(i) (f1 ± f2) is of regular relative (p, q) Ritt growth with respect to at least any one

of g1 or g2;

(ii) Either ∆
(p,q)
g1 (f1 ± f2) ̸= ∆

(p,q)
g2 (f1 ± f2) or ∆

(p,q)
g1 (f1 ± f2) ̸= ∆

(p,q)
g2 (f1 ± f2);

(iii) Either ∆
(p,q)
g1 (f1) ̸= ∆

(p,q)
g1 (f2) or ∆

(p,q)
g1 (f1) ̸= ∆

(p,q)
g1 (f2);

(iv) Either ∆
(p,q)
g2 (f1) ̸= ∆

(p,q)
g2 (f2) or ∆

(p,q)
g2 (f1) ̸= ∆

(p,q)
g2 (f2); then

ρ
(p,q)
g1±g2 (f1 ± f2) = ρ(p,q)g1 (f1) = ρ(p,q)g1 (f2) = ρ(p,q)g2 (f1) = ρ(p,q)g2 (f2) .

(B) The following conditions are assumed to be satisfied:

(i) f1 and f2 are of regular relative (p, q) Ritt growth with respect to at least any one

of g1 or g2;

(ii) Either ∆
(p,q)
g1±g2 (f1) ̸= ∆

(p,q)
g1±g2 (f2) or ∆

(p,q)
g1±g2 (f1) ̸= ∆

(p,q)
g1±g2 (f2);
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(iii) Either ∆
(p,q)
g1 (f1) ̸= ∆

(p,q)
g2 (f1) or ∆

(p,q)
g1 (f1) ̸= ∆

(p,q)
g2 (f1);

(iv) Either ∆
(p,q)
g1 (f2) ̸= ∆

(p,q)
g2 (f2) or ∆

(p,q)
g1 (f2) ̸= ∆

(p,q)
g2 (f2); then

ρ
(p,q)
g1±g2 (f1 ± f2) = ρ(p,q)g1 (f1) = ρ(p,q)g1 (f2) = ρ(p,q)g2 (f1) = ρ(p,q)g2 (f2) .

We omit the proof of Theorem 24 as it is a natural consequence of Theorem 23.

Theorem 25. Let f1, f2, g1 and g2 be any four entire functions VVDS defined by

(1).

(A) The following conditions are assumed to be satisfied:

(i) At least any one of f1 or f2 is of regular relative (p, q) Ritt growth with respect

to g1 where p ≥ 0 and q ≥ 0;

(ii) Either τ
(p,q)
g1 (f1) ̸= τ

(p,q)
g1 (f2) or τ

(p,q)
g1 (f1) ̸= τ

(p,q)
g1 (f2) holds, then

λ(p,q)
g1 (f1 ± f2) = λ(p,q)

g1 (f1) = λ(p,q)
g1 (f2) .

(B) The following conditions are assumed to be satisfied:

(i) f1, g1 and g2 be any three entire functions such that λ
(p,q)
g1 (f1) and λ

(p,q)
g2 (f1)

exists where p ≥ 0 and q ≥ 0;

(ii) Either τ
(p,q)
g1 (f1) ̸= τ

(p,q)
g2 (f1) or τ

(p,q)
g1 (f1) ̸= τ

(p,q)
g2 (f1) holds, then

λ
(p,q)
g1±g2 (f1) = λ(p,q)

g1 (f1) = λ(p,q)
g2 (f1) .

Proof. Let f1, f2, g1 and g2 be any four entire functions functions VVDS defined by

(1) satisfy the conditions of the theorem.

Case I. Let λ
(p,q)
g1 (f1) = λ

(p,q)
g1 (f2) (0 < λ

(p,q)
g1 (f1) , λ

(p,q)
g1 (f2) < ∞) and at least f1

or f2 and (f1 ± f2) are of regular relative (p, q) Ritt growth with respect to g1. Now,

in view of Theorem 9, it is easy to see that λ
(p,q)
g1 (f1 ± f2) ≤ λ

(p,q)
g1 (f1) = λ

(p,q)
g1 (f2) .

If possible let

(61) λ(p,q)
g1 (f1 ± f2) < λ(p,q)

g1 (f1) = λ(p,q)
g1 (f2) .

Let τ
(p,q)
g1 (f1) ̸= τ

(p,q)
g1 (f2) . Then in view of the proof of the first part of Theorem

22 and (61) we obtain that τ
(p,q)
g1 (f1) = τ

(p,q)
g1 (f1 ± f2 ∓ f2) = τ

(p,q)
g1 (f2) which is a

contradiction. Hence λ
(p,q)
g1 (f1 ± f2) = λ

(p,q)
g1 (f1) = λ

(p,q)
g1 (f2) . Similarly in view of

the proof of the first part of Theorem 22 , one can establish the same conclusion under

the hypothesis τ
(p,q)
g1 (f1) ̸= τ

(p,q)
g1 (f2) . This proves the first part of the theorem.

Case II. Let us consider that λ
(p,q)
g1 (f1) = λ

(p,q)
g2 (f1) (0 < λ

(p,q)
g1 (f1) , λ

(p,q)
g2 (f1) <

∞. Therefore in view of Theorem 11, it follows that λ
(p,q)
g1±g2 (f1) ≥ λ

(p,q)
g1 (f1) =
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λ
(p,q)
g2 (f1) and if possible let

(62) λ
(p,q)
g1±g2 (f1) > λ(p,q)

g1 (f1) = λ(p,q)
g2 (f1) .

Suppose τ
(p,q)
g1 (f1) ̸= τ

(p,q)
g2 (f1) . Then in view of the second part of Theorem 22

and (62), we obtain that τ
(p,q)
g1 (f1) = τ

(p,q)
g1±g2∓g2 (f1) = τ

(p,q)
g2 (f1) which is a contra-

diction. Hence λ
(p,q)
g1±g2 (f1) = λ

(p,q)
g1 (f1) = λ

(p,q)
g2 (f1) . Analogously with the help

of the second part of Theorem 22, the same conclusion can also be derived under

the condition τ
(p,q)
g1 (f1) ̸= τ

(p,q)
g2 (f1) and therefore the second part of the theorem is

established. �

Theorem 26. Let f1, f2, g1 and g2 be any four entire functions VVDS defined by

(1).

(A) The following conditions are assumed to be satisfied:

(i) At least any one of f1 or f2 is of regular relative (p, q) Ritt growth with respect

to g1 and g2 where p ≥ 0 and q ≥ 0

(iii) Either τ
(p,q)
g1 (f1) ̸= τ

(p,q)
g1 (f2) or τ

(p,q)
g1 (f1) ̸= τ

(p,q)
g1 (f2);

(iv) Either τ
(p,q)
g2 (f1) ̸= τ

(p,q)
g2 (f2) or τ

(p,q)
g2 (f1) ̸= τ

(p,q)
g2 (f2); then

λ
(p,q)
g1±g2 (f1 ± f2) = λ(p,q)

g1 (f1) = λ(p,q)
g1 (f2) = λ(p,q)

g2 (f1) = λ(p,q)
g2 (f2) .

(B) The following conditions are assumed to be satisfied:

(i) At least any one of f1 or f2 are of regular relative (p, q) Ritt growth with respect

to g1 ± g2 where p ≥ 0 and q ≥ 0;

(ii) Either τ
(p,q)
g1±g2 (f1) ̸= τ

(p,q)
g1±g2 (f2) or τ

(p,q)
g1±g2 (f1) ̸= τ

(p,q)
g1±g2 (f2) holds;

(iii) Either τ
(p,q)
g1 (f1) ̸= τ

(p,q)
g2 (f1) or τ

(p,q)
g1 (f1) ̸= τ

(p,q)
g2 (f1) holds;

(iv) Either τ
(p,q)
g1 (f2) ̸= τ

(p,q)
g2 (f2) or τ

(p,q)
g1 (f2) ̸= τ

(p,q)
g2 (f2) holds, then

λ
(p,q)
g1±g2 (f1 ± f2) = λ(p,q)

g1 (f1) = λ(p,q)
g1 (f2) = λ(p,q)

g2 (f1) = λ(p,q)
g2 (f2) .

We omit the proof of Theorem 26 as it is a natural consequence of Theorem 25.

Theorem 27. Let f1, f2, g1 and g2 be any four entire functions VVDS defined by

(1). Also let ρ
(p,q)
g1 (f1), ρ

(p,q)
g1 (f2), ρ

(p,q)
g2 (f1) and ρ

(p,q)
g2 (f2) are all non zero where

p ≥ 0 and q ≥ 0.

(A) Assume the functions f1, f2 and g1 satisfy the following conditions:

(i) g1 satisfies the Property (A) and

(ii) f1 and f2 satisfy Property (X); then

∆(p,q)
g1 (f1 · f2) = ∆(p,q)

g1 (fi) and ∆
(p,q)
g1 (f1 · f2) = ∆

(p,q)
g1 (fi) .
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(B) Assume the functions g1, g2 and f1 satisfy the following conditions:

(i) f1 is of regular relative (p, q) Ritt growth with respect to at least any one of g1

or g2 and f1 satisfy the Property (A) and

(ii) g1 and g2 satisfy Property (X); then

∆
(p,q)
g1·g2 (f1) = ∆(p,q)

gi (f1) and ∆
(p,q)
g1·g2 (f1) = ∆

(p,q)
gi (f1) .

(C) Assume the functions f1, f2, g1 and g2 satisfy the following conditions:

(i) g1 · g2, f1 and f2 satisfy the Property (A);

(ii) f1 and f2 satisfy Property (X);

(iii) g1 and g2 satisfy Property (X);

(iv) f1 is of regular relative (p, q) Ritt growth with respect to at least any one of g1

or g2;

(v) f2 is of regular relative (p, q) Ritt growth with respect to at least any one of g1

or g2;

(vii) ρ
(p,q)
gm (fl) = max

[
min

{
ρ
(p,q)
g1 (f1) , ρ

(p,q)
g2 (f1)

}
,min

{
ρ
(p,q)
g1 (f2) , ρ

(p,q)
g2 (f2)

}]
|

l,m = 1, 2; then

∆
(p,q)
g1·g2 (f1 · f2) = ∆(p,q)

gm (fl) and ∆
(p,q)
g1·g2 (f1 · f2) = ∆

(p,q)
gm (fl) .

Proof. Case I. Suppose that ρ
(p,q)
g1 (f1) > ρ

(p,q)
g1 (f2). Also let g1 satisfy the Property

(A). Now for any arbitrary ε > 0, we have from (35) for all sufficiently large values

of r that

(63) Mf1·f2 (σ) ≤ Mg1

(
exp[p−1]

((
∆(p,q)

g1 (f1) +
ε

2

) [
log[q−1] σ

]ρ(p,q)g1
(f1)
))

×Mg1

(
exp[p−1]

((
∆(p,q)

g1 (f2) +
ε

2

) [
log[q−1] σ

]ρ(p,q)g1
(f2)
))

.

Since ρ
(p,q)
g1 (f1) > ρ

(p,q)
g1 (f2), we get that

lim
r→+∞

(
∆

(p,q)
g1 (f1) +

ε
2

) [
log[q−1] σ

]ρ(p,q)g1
(f1)

(
∆

(p,q)
g1 (f2) +

ε
2

) [
log[q−1] σ

]ρ(p,q)g1
(f2)

= ∞ .

As Mg1 (σ) is an increasing function of σ, therefore we get from (63) for all

sufficiently large values of σ that

(64) Mf1·f2 (σ) <

(
Mg1

(
exp[p−1]

((
∆(p,q)

g1 (f1) +
ε

2

) [
log[q−1] σ

]ρ(p,q)g1
(f1)
)))2

.
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Let us observe that

δ1 :=
∆

(p,q)
g1 (f1) + ε

∆
(p,q)
g1 (f1) +

ε
2

> 1

(65) ⇒
exp[p−2]

(
∆

(p,q)
g1 (f1) + ε

) [
log[q−1] σ

]ρ(p,q)g1
(f1)

exp[p−2]
(
∆

(p,q)
g1 (f1) +

ε
2

) [
log[q−1] σ

]ρ(p,q)g1
(f1)

= δ (say) > 1 .

Since g1 satisfy the Property (A), so we obtain from (64) and (65) for all suffi-

ciently large values of σ that

Mf1·f2 (σ) < Mg1

(exp[p−1]

((
∆(p,q)

g1 (f1) +
ε

2

) [
log[q−1] σ

]ρ(p,q)g1
(f1)
))δ


i.e., Mf1·f2 (σ) < Mg1

(
exp[p−1]

((
∆(p,q)

g1 (f1) + ε
) [

log[q−1] σ
]ρ(p,q)g1

(f1)
))

.

Now in view of Theorem 16, we get from above for all sufficiently large values of

σ that

Mf1·f2 (σ) < Mg1

(
exp[p−1]

((
∆(p,q)

g1 (f1) + ε
) [

log[q−1] σ
]ρ(p,q)g1

(f1·f2)
))

.

i.e.,
log[p−1]M−1

g1 (Mf1·f2 (σ))[
log[q−1] σ

]ρ(p,q)g1
(f1·f2)

<
(
∆(p,q)

g1 (f1) + ε
)

(66) i.e., ∆(p,q)
g1 (f1 · f2) ≤ ∆(p,q)

g1 (f1) .

Now we establish the equality of (66) . Since f1 and f2 satisfy Property (X), then

of course we have (Mf1·f2 (σ)) > Mf1 (σ) for all sufficiently large values of σ and

therefore

log[p−1]M−1
g1 (Mf1·f2 (σ))[

log[q−1] σ
]ρ(p,q)g1

(f1·f2)
≥

log[p−1]M−1
g1 (Mf1 (σ))[

log[q−1] σ
]ρ(p,q)g1

(f1)

as |M−1
g1 (σ) is an increasing function of r. So ∆

(p,q)
g1 (f1 · f2) ≥ ∆

(p,q)
g1 (f1) . Hence

∆
(p,q)
g1 (f1 · f2) ≤ ∆

(p,q)
g1 (f1). Similarly, if we consider ρ

(p,q)
g1 (f1) < ρ

(p,q)
g1 (f2) , then

one can verify that ∆
(p,q)
g1 (f1 · f2) = ∆

(p,q)
g1 (f2) .

Case II. Let ρ
(p,q)
g1 (f1) > ρ

(p,q)
g1 (f2) and g1 satisfy the Property (A). Now for any
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arbitrary ε > 0, we have from (35) and (40) for a sequence of values of σ tending to

infinity that

(67) Mf1·f2 (σ) < Mg1

(
exp[p−1]

((
∆

(p,q)
g1 (f1) +

ε

2

) [
log[q−1] σ

]ρ(p,q)g1
(f1)
))

×Mg1

(
exp[p−1]

((
∆(p,q)

g1 (f2) +
ε

2

) [
log[q−1] σ

]ρ(p,q)g1
(f2)
))

.

Now in view of ρ
(p,q)
g1 (f1) > ρ

(p,q)
g1 (f2), we get that

lim
r→+∞

(
∆

(p,q)
g1 (f1) +

ε
2

) [
log[q−1] σ

]ρ(p,q)g1
(f1)

(
∆

(p,q)
g1 (f2) +

ε
2

) [
log[q−1] σ

]ρ(p,q)g1
(f2)

= ∞ .

As Mg1 (σ) is an increasing function of σ, therefore it follows from (67) for a

sequence of values of σ tending to infinity that

Mf1·f2 (σ) <

(
Mg1

(
exp[p−1]

((
∆

(p,q)
g1 (f1) +

ε

2

) [
log[q−1] σ

]ρ(p,q)g1
(f1)
)))2

.

Now using the similar technique for a sequence of values of σ tending to infinity as

explored in the proof of Case I, one can easily verify that ∆
(p,q)
g1 (f1 · f2) = ∆

(p,q)
g1 (f1)

under the conditions specified in the theorem.

Similarly, if we consider ρ
(p,q)
g1 (f1) < ρ

(p,q)
g1 (f2) , then one can verify that ∆

(p,q)
g1 (f1 · f2)

= ∆
(p,q)
g1 (f2) .

Therefore the first part of theorem follows from Case I and Case II.

Case III. Let f1 satisfy the Property (A) and ρ
(p,q)
g1 (f1) < ρ

(p,q)
g2 (f1) with f1 is

of regular relative (p, q) Ritt growth with respect to at least any one of g1 or g2.

Therefore in view of (37) and (39), we obtain for a sequence of values of σ tending

to infinity that

(68) Mg1·g2 (σ) ≤ Mf1

exp[q−1]


 log[p−1] σ(

∆
(p,q)
g1 (f1)− ε

2

)
 1

ρ
(p,q)
g1

(f1)




×Mf1

exp[q−1]


 log[p−1] σ(

∆
(p,q)
g2 (f1)− ε

2

)
 1

ρ
(p,q)
g2

(f1)


 .
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Now in view of ρ
(p,q)
g1 (f1) < ρ

(p,q)
g2 (f1), we obtain that

lim
r→+∞

(
log[p−1] σ(

∆
(p,q)
g1

(f1)− ε
2

)
) 1

ρ
(p,q)
g1

(f1)

(
log[p−1] σ(

∆
(p,q)
g2

(f1)− ε
2

)
) 1

ρ
(p,q)
g2

(f1)

= ∞ .

As Mf1 (σ) is an increasing function of σ, therefore it follows from (68) for a

sequence of values of σ tending to infinity that

(69) Mg1·g2 (σ) ≤

Mf1

exp[q−1]


 log[p−1] σ(

∆
(p,q)
g1 (f1)− ε

2

)
 1

ρ
(p,q)
g1

(f1)





2

.

Now we observe that

δ1 :=
∆

(p,q)
g1 (f1)− ε

2

∆
(p,q)
g1 (f1)− ε

> 1

(70) ⇒

exp[q−2]

( log[p−1] σ(
∆

(p,q)
g1

(f1)−ε
)
) 1

ρ
(p,q)
g1

(f1)


exp[q−2]

( log[p−1] σ(
∆

(p,q)
g1

(f1)− ε
2

)
) 1

ρ
(p,q)
g1

(f1)

 = δ (say) > 1 .

Since f1 satisfy the Property (A), therefore we obtain from (69) and (70) for a

sequence of values of σ tending to infinity that

Mg1·g2 (σ) < Mf1

exp[q−1]


 log[p−1] σ(

∆
(p,q)
g1 (f1)− ε

2

)
 1

ρ
(p,q)
g1

(f1)




δ

i.e., Mg1·g2 (σ) < Mf1

exp[q−1]


 log[p−1] σ(

∆
(p,q)
g1 (f1)− ε

)
 1

ρ
(p,q)
g1

(f1)


 .

Now we get in view of Theorem 18 and from above for a sequence of values of σ

tending to infinity that

Mg1·g2 (σ) < Mf1

exp[q−1]


 log[p−1] σ(

∆
(p,q)
g1 (f1)− ε

)
 1

ρ
(p,q)
g1·g2 (f1)






SOME RESULTS ON (p, q)-TH RELATIVE RITT ORDER 331

Since ε > 0 is arbitrary, it follows from above that

(71) ∆
(p,q)
g1·g2 (f1) ≥ ∆(p,q)

g1 (f1) .

Now we establish the equality of (71) . Since g1 and g2 satisfy Property (X), then

of course we have Mg1·g2 (σ) > Mg1 (σ) for all sufficiently large values of σ and

therefore M−1
g1·g2 (σ) < M−1

g1 (σ) . Hence

log[p−1]M−1
g1·g2 (Mf1 (σ))[

log[q−1] r
]ρ(p,q)g1·g2 (f1)

≤
log[p−1]M−1

g1 (Mf1 (σ))[
log[q−1] r

]ρ(p,q)g1
(f1)

asMf1 (σ) is an increasing function of σ. So ∆
(p,q)
g1·g2 (f1) ≤ ∆

(p,q)
g1 (f1) . So ∆

(p,q)
g1·g2 (f1) =

∆
(p,q)
g1 (f1).

Case IV. Suppose f1 satisfy the Property (A). Also let ρ
(p,q)
g1 (f1) < ρ

(p,q)
g2 (f1)

with f1 is of regular relative (p, q) Ritt growth with respect to at least any one of g1

or g2. Therefore in view of (37), we obtain for all sufficiently large values of σ that

(72) Mg1·g2 (σ) < Mf1

exp[q−1]


 log[p−1] σ(

∆
(p,q)
g1 (f1)− ε

2

)
 1

ρ
(p,q)
g1

(f1)




×Mf1

exp[q−1]


 log[p−1] σ(

∆
(p,q)
g2 (f1)− ε

2

)
 1

ρ
(p,q)
g2

(f1)


 .

Now in view of ρ
(p,q)
g1 (f1) < ρ

(p,q)
g2 (f1), we get that

lim
r→+∞

(
log[p−1] σ(

∆
(p,q)
g1

(f1)− ε
2

)
) 1

ρ
(p,q)
g1

(f1)

(
log[p−1] σ(

∆
(p,q)
g2

(f1)− ε
2

)
) 1

ρ
(p,q)
g2

(f1)

= ∞ .

As Mf1 (σ) is an increasing function of σ, therefore it follows from (72) for all

sufficiently large values of σ that

Mg1·g2 (σ) <

Mf1

exp[q−1]


 log[p−1] σ(

∆
(p,q)
g1 (f1)− ε

2

)
 1

ρ
(p,q)
g1

(f1)





2

.

Now using the similar technique for all sufficiently large values of σ as explored

in the proof of Case III, one can easily verify that ∆
(p,q)
g1·g2 (f1) = ∆

(p,q)
g1 (f1) under the

conditions specified in the theorem.
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Likewise, if we consider ρ
(p,q)
g1 (f1) > ρ

(p,q)
g2 (f1) with at least f1 is of regular relative

(p, q) Ritt growth with respect to g1, then one can verify that ∆
(p,q)
g1·g2 (f1) = ∆

(p,q)
g2 (f1).

Therefore the second part of theorem follows from Case III and Case IV.

Proof of the third part of the Theorem is omitted as it can be carried out in view

of Theorem 19 and the above cases. �

Theorem 28. Let f1, f2, g1 and g2 be any four entire functions VVDS defined by

(1). Also let λ
(p,q)
g1 (f1i), λ

(p,q)
g1 (f2), λ

(p,q)
g2 (f1) and λ

(p,q)
g2 (f2) are all non zero and

finite where p ≥ 0 and q ≥ 0.

(A) Assume the functions f1, f2 and g1 satisfy the following conditions:

(i) At least f1 or f2 is of regular relative (p, q) Ritt growth with respect to g1 and g1

satisfy the Property (A) and

(ii) f1 and f2 satisfy Property (X); then

τ (p,q)g1 (f1 · f2) = τ (p,q)g1 (fi) and τ (p,q)g1 (f1 · f2) = τ (p,q)g1 (fi) .

(B) Assume the functions g1, g2 and f1 satisfy the following conditions:

(i) f1 satisfy the Property (A) and

(ii) g1 and g2 satisfy Property (X); then

τ
(p,q)
g1·g2 (f1) = τ (p,q)gi (f1) and τ

(p,q)
g1·g2 (f1) = τ (p,q)gi (f1) .

(C) Assume the functions f1, f2, g1 and g2 satisfy the following conditions:

(i) g1 · g2, f1 and f2 are satisfy the Property (A);

(ii) f1 and f2 satisfy Property (X);

(iii) g1 and g2 satisfy Property (X);

(iv) At least f1 or f2 is of regular relative (p, q) Ritt growth with respect to g1 for i

= 1, 2, j = 1, 2 and i ̸= j;

(v) At least f1 or f2 is of regular relative (p, q) Ritt growth with respect to g2 for i

= 1, 2, j = 1, 2 and i ̸= j;

(vi) λ
(p,q)
gm (fl) = min

[
max

{
λ
(p,q)
g1 (f1) , λ

(p,q)
g1 (f2)

}
,max

{
λ
(p,q)
g2 (f1) , λ

(p,q)
g2 (f2)

}]
|

l,m = 1, 2; then

τ
(p,q)
g1·g2 (f1 · f2) = τ (p,q)gm (fl) and τ

(p,q)
g1·g2 (f1 · f2) = τ (p,q)gm (fl) .

Proof. Case I. Suppose λ
(p,q)
g1 (f1) > λ

(p,q)
g1 (f2) with at least f1 or f2 is of regular

relative (p, q) Ritt growth with respect to g1 and g1 satisfy the Property (A). Now

for any arbitrary ε > 0, we obtain from (47) and (52) for a sequence values of σ
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tending to infinity that

(73) Mf1·f2 (σ) ≤ Mg1

(
exp[p−1]

((
τ (p,q)g1 (f1) +

ε

2

) [
log[q−1] σ

]λ(p,q)
g1

(f1)
))

×Mg1

(
exp[p−1]

((
τ (p,q)g1 (f2) +

ε

2

) [
log[q−1] σ

]λ(p,q)
g1

(f2)
))

.

Now in view of λ
(p,q)
g1 (f1) > λ

(p,q)
g1 (f2), we get that

lim
r→+∞

(
τ
(p,q)
g1 (f1) +

ε
2

) [
log[q−1] σ

]λ(p,q)
g1

(f1)

(
τ
(p,q)
g1 (f2) +

ε
2

) [
log[q−1] σ

]λ(p,q)
g1

(f2)
= ∞ .

AsMg1 (σ) is an increasing function of σ, therefore we get from (73) for a sequence

of values of σ tending to infinity that

(74) Mf1·f2 (σ) <

(
Mg1

(
exp[p−1]

((
τ (p,q)g1 (f1) +

ε

2

) [
log[q−1] σ

]λ(p,q)
g1

(f1)
)))2

.

Now using the similar technique as explored in the proof of Case I of Theorem

27 we obtain from (74) that

τ (p,q)g1 (f1 · f2) = τ (p,q)g1 (f1) .

Similarly, if we consider λ
(p,q)
g1 (f1) < λ

(p,q)
g1 (f2) with at least f1 or f2 is of regu-

lar relative (p, q) Ritt growth with respect to g1, then one can easily verify that

τ
(p,q)
g1 (f1 · f2) = τ

(p,q)
g1 (f2) .

Case II. Let λ
(p,q)
g1 (f1) > λ

(p,q)
g1 (f2) with at least f1 or f2 is of regular relative

(p, q) Ritt growth with respect to g1 and g1 satisfy the Property (A). Now for any

arbitrary ε > 0, we get from (47) for all sufficiently large values of σ that

(75) Mf1·f2 (σ) ≤ Mg1

(
exp[p−1]

((
τ (p,q)g1 (f1) +

ε

2

) [
log[q−1] σ

]λ(p,q)
g1

(f1)
))

×Mg1

(
exp[p−1]

((
τ (p,q)g1 (f2) +

ε

2

) [
log[q−1] σ

]λ(p,q)
g1

(f2)
))

.

Now in view of λ
(p,q)
g1 (f1) > λ

(p,q)
g1 (f2), we get that

lim
r→+∞

(
τ
(p,q)
g1 (f1) +

ε
2

) [
log[q−1] σ

]λ(p,q)
g1

(f1)

(
τ
(p,q)
g1 (f2) +

ε
2

) [
log[q−1] σ

]λ(p,q)
g1

(f2)
= ∞ .
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As Mg1 (σ) is an increasing function of σ, therefore we get from (75) for all

sufficiently large values of σ that

(76) Mf1·f2 (σ) <

(
Mg1

(
exp[p−1]

((
τ (p,q)g1 (f1) +

ε

2

) [
log[q−1] σ

]λ(p,q)
g1

(f1)
)))2

.

Now using the similar technique as explored in the proof of Case I of Theorem 28

we obtain from (76) that τ
(p,q)
g1 (f1 · f2) = τ

(p,q)
g1 (f1) under the conditions specified

in the theorem.

Likewise, if we consider λ
(p,q)
g1 (f1) < λ

(p,q)
g1 (f2) with at least f1 or f2 is of reg-

ular relative (p, q) Ritt growth with respect to g1, then one can easily verify that

τ
(p,q)
g1 (f1 · f2) = τ

(p,q)
g1 (f2) .

Therefore the first part of theorem follows Case I and Case II.

Case III. Let λ
(p,q)
g1 (f1) < λ

(p,q)
g2 (f1) and f1 satisfy the Property (A). Therefore

in view of (49) we obtain for all sufficiently large values of σ that

(77) Mg1·g2 (σ) < Mf1

exp[q−1]


 log[p−1] σ(

τ
(p,q)
g1 (f1)− ε

2

)
 1

λ
(p,q)
g1

(f1)




×Mf1

exp[q−1]


 log[p−1] σ(

τ
(p,q)
g2 (f1)− ε

2

)
 1

λ
(p,q)
g2

(f1)


 .

Now in view of λ
(p,q)
g1 (f1) < λ

(p,q)
g2 (f1), we get that

lim
r→+∞

(
log[p−1] σ(

τ
(p,q)
g1

(f1)− ε
2

)
) 1

λ
(p,q)
g1

(f1)

(
log[p−1] σ(

τ
(p,q)
g2

(f1)− ε
2

)
) 1

λ
(p,q)
g2

(f1)

= ∞ .

As Mf1 (σ) is an increasing function of σ, therefore it follows from (77) for all

sufficiently large values of σ that

(78) Mg1·g2 (σ) <

Mf1

exp[q−1]


 log[p−1] σ(

τ
(p,q)
g1 (f1)− ε

2

)
 1

λ
(p,q)
g1

(f1)





2

.

Now using the similar technique as explored in the proof of Case III of Theorem

27 we obtain from (78) that τ
(p,q)
g1·g2 (f1) = τ

(p,q)
g1 (f1) . If λ

(p,q)
g1 (f1) > λ

(p,q)
g2 (f1) , then

one can easily verify that τ
(p,q)
g1·g2 (f1) = τ

(p,q)
g2 (f1).
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Case IV. Suppose λ
(p,q)
g1 (f1) < λ

(p,q)
g2 (f1) and f1 satisfy the Property (A). There-

fore in view of (49) and (51) we obtain for a sequence of values of σ tending to infinity

that

(79) Mg1·g2 (σ) ≤ Mf1

exp[q−1]


 log[p−1] σ(

τ
(p,q)
g1 (f1)− ε

2

)
 1

λ
(p,q)
g1

(f1)




×Mf1

exp[q−1]


 log[p−1] σ(

τ
(p,q)
g2 (f1)− ε

2

)
 1

λ
(p,q)
g2

(f1)


 .

Now in view of λ
(p,q)
g1 (f1) < λ

(p,q)
g2 (f1), we get that

lim
r→+∞

(
log[p−1] σ(

τ
(p,q)
g1

(f1)− ε
2

)
) 1

λ
(p,q)
g1

(f1)

(
log[p−1] σ(

τ
(p,q)
g2

(f1)− ε
2

)
) 1

λ
(p,q)
g2

(f1)

= ∞ .

As Mf1 (σ) is an increasing function of σ, therefore it follows from (79) for a

sequence of values of σ tending to infinity that

(80) Mg1·g2 (σ) <

Mf1

exp[q−1]


 log[p−1] σ(

τ
(p,q)
g1 (f1)− ε

2

)
 1

λ
(p,q)
g1

(f1)





2

.

Now using the similar technique as explored in the proof of Case III of Theo-

rem 28, we obtain from (80) that τ
(p,q)
g1·g2 (f1) = τ

(p,q)
g1 (f1) . Similarly if we consider

that λ
(p,q)
g1 (f1) > λ

(p,q)
g2 (f1) , then one can easily verify that τ

(p,q)
g1·g2 (f1) = τ

(p,q)
g2 (f1).

Therefore the second part of the theorem follows from Case III and Case IV.

Proof of the third part of the Theorem is omitted as it can be carried out in view

of Theorem 20 and the above cases. �
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