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SOME RESULTS ON (p,q)-TH RELATIVE RITT ORDER AND
(p,q)-TH RELATIVE RITT TYPE OF ENTIRE FUNCTIONS
REPRESENTED BY VECTOR VALUED DIRICHLET SERIES

TANMAY BISWAS

ABSTRACT. In this paper we wish to establish some basic properties of entire func-
tions represented by a vector valued Dirichlet series on the basis of (p, ¢)-th relative
Ritt order, (p,q)-th relative Ritt type and (p, ¢)-th relative Ritt weak type where p
and q are integers such that p > 0 and ¢ > 0.

1. INTRODUCTION AND DEFINITIONS

Suppose f (s) be an entire function of the complex variable s = o+ it (o and t are
real variables) defined by everywhere absolutely convergent vector valued Dirichlet

series briefly known as VVDS
(1) F8) =3 ane™
n=1

where a,,’s belong to a Banach space (E, ||.||) and A,,’s are non-negative real numbers
such that 0 < A\, < Apy1(n > 1), )\, — 400 as n — +oo and satisfy the conditions

@ k;\g" =D < +ooand @ log/‘\‘i‘l"” = —00 . If 0. and o, denote respectively the
n—+oo 7" n—-+oo n

abscissa of convergence and absolute convergence of (1), then in this case clearly o, =
0. = +00. The function My (o) known as mazimum modulus function corresponding

to an entire function f (s) defined by (1), is written as follows
l.
<

My (o) = u.b.oo||f(a+it)|| .

co<t<+
In this connection the following definition is well known:
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Definition 1. A non-constant entire function f (s) defined by VVDS is said to have
Property (A), if for any 6 > 1 and o > 0¢ (9)

(M (o))" < My (00) .
Property (A) has been closely studied by Bernal [1], [2].

Now we state the following two notations which are frequently used in our sub-

sequent study:

logm r = log (log[k_” x) for k=1,2,3,--;

log[o} r = log[_” Tr=expr

and
exp[k] r = exp (exp[k_” ;1:) for k=1,2,3,---;
exp[o] r = exp[_l] r=logzx .

Further we assume that throughout the present paper p, g, m and [ always denote
integers. However, Juneja, Nandan and Kapoor [8] first introduced the concept
of (p,q)-th order and (p, q)-th lower order of an entire Dirichlet series where p >
g+ 1 > 1. In the line of Juneja et al. [8], one can define the (p,q)-th Ritt order
(respectively (p, q)-th Ritt lower order) of an entire function f represented by VVDS
in the following way:

[p] [p]
PP (f) = oﬂloologlog?jﬁa)’ respectively AP (f) = UE—TOO loglogﬁj;(tf)
where p > g+ 1> 1.

In this connection let us recall that if 0 < p®9 (f) < oo, then the following

properties hold
PP () = 0o for n <p,

p(p,Q7n) (f) = O fOI“ n < q;
p(p+n7q+N) (f) =1 for n=1,2,---

Similarly for 0 < A?9 (f) < oo, one can easily verify that

AP=m:9) (£) = o0 for n <p,
A=) (£) =0 for n<gq,
APEnatn) (£y =1 for n=1,2, -
An entire function f (represented by VVDS) of index-pair (p,q) is said to be of
reqular (p,q) Ritt growth if its (p, q)-th Ritt order coincides with its (p,q)-th Ritt

lower order, otherwise f is said to be of irregular (p,q) Ritt growth.
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Now to compare the relative growth of two entire functions represented by VVDS
having same non zero finite (p, q)-th Ritt order, one may introduce the definition of

(p, q)-th Ritt type (respectively (p, q)-th Ritt lower type) in the following manner:

Definition 2. The (p, q)-th Ritt type (respectively (p, q)-th Ritt lower type) respec-
tively denoted by Ay (p, q) (respectively Ay (p, q)) of an entire function f represented
by VVDS when 0 < pf (p,q) < 400 is defined as follows:

— loglP—1! M; (o)

A(p’q) (f) - ogrfoo |:

log[qfl] o_i| Pf (p7Q)

loglP—1! My (o)

respectively AP (f) = lim prmq) |7

oo [log[q*” U:|

where p > qg+12> 1.

Analogously to determine the relative growth of two entire functions represented
by vector valued Dirichlet series having same non zero finite (p,q)-th Ritt lower
order, one may introduce the definition of (p, q)-th Ritt weak type in the following

way:
Definition 3. The (p, ¢)-th Ritt weak type denoted by 7¢ (p, ) of an entire function
f represented by VVDS is defined as follows:

loglP—1! My (o)
rf(p,q) ’

00 (f) = lim

lim 0< Ar(p,q) <H4o0.
0'4)+OO|:

loglt=Y o

Also one may define the growth indicator 779 (f) of an entire function f repre-
sented by VVDS in the following manner :

— loglP™!l M; (o)

=(p,q) T
T (f) = Ugl—fr—loo { ] a} A (p,q)

, 0< Ap(pyg) < oo,
logla—1

where p > g+ 1> 1.

The above definitions extend the generalized Ritt growth indicators of an entire
function f represented by VVDS for each integer p > 2 and ¢ = 0. Also for p = 2 and
q = 0, the above definitions reduce to the classical definitions of an entire function

f represented by VVDS.
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G. S. Srivastava [12] introduced the relative Ritt order between two entire func-
tions represented by VVDS to avoid comparing growth just with expexpz In the
case of relative Ritt order, it therefore seems reasonable to define suitably the (p, q)-
th relative Ritt order of two entire functions represented by VVDS. Recently, Datta
and Biswas [7] introduced the concept of (p, q)-th relative Ritt order pép’q) (f) of an
entire function f represented by VVDS with respect to another entire function g

which is also represented by VVDS, in the light of index-pair which is as follows:

Definition 4 ([7]). Let f and g be any two entire functions represented by VVDS
with index-pair (m,q) and (m,p), respectively, where p, g, m are positive integers
such that m > ¢+ 1> 1and m > p+ 1 > 1. Then the (p, q)-th relative Ritt order (
respectively (p, q)-th relative Ritt lower order) of f with respect to g is defined as

Pl pp—1
9 o—400 ]Og[fI] o

log® M1 (M
(respectively )\gp’Q) (f) = lim ) g ( f(g))>

o—+00 log[q] g

In this connection, we intend to give a definition of relative index-pair of an entire
function with respect to another entire function (both of which are represented by
VVDS) which is relevant in the sequel :

Definition 5. Let f and g be any two entire functions both represented by VVDS
with index-pairs (m,q) and (m,p) respectively where m > ¢+ 1 > 1 and m >
p+ 1> 1. Then the entire function f is said to have relative index-pair (p,q) with
respect to another entire function g, if b < pgp’Q) (f) < oo and pgp_l’q_l) (f) is not a
nonzero finite number, where b = 1 if p = ¢ = m and b = 0 otherwise. Moreover if
0< pép’q) (f) < oo, then

pd " (f)=00  for n<p,
P (f) =0 for n<q,
pép+n’q+n) (f/)=1 for n=1,2,---

Similarly for 0 < )\ép ) (f) < o0, one can easily verify that
Agpin’q) (f) =00 for n <p,
AP (1) — for n<gq,
(p

)\g +n,q+n) (f

~—

=1 for n=1,2,---
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Further an entire function f (represented by VVDS) for which (p, q)-th relative
Ritt order and (p,q)-th relative Ritt lower order with respect to another entire
function g (represented by VVDS) are the same is called a function of regular relative
(p,q) Ritt growth with respect to g. Otherwise, f is said to be of irregular relative
(p,q) Ritt growth.with respect to g.

Now in order to compare the relative growth of two entire functions represented
by VVDS having same non zero finite (p, q)-th relative Ritt order with respect to
another entire function represented by VVDS, one may introduce the concepts of
(p, q)-th relative Ritt-type (respectively (p,q)-th relative Ritt lower type) which are

as follows:

Definition 6 ([3]). Let f and g be any two entire functions represented by VVDS
with index-pair (m,q) and (m,p), respectively, where p, g, m are positive integers
such that m > ¢g+1>1land m >p+1>1and 0 < pép’q)(f) < +00. Then the
(p, q)-th relative Ritt type (respectively (p,q)-th relative Ritt lower type) of f with

respect to g are defined as

— log"" Y M (M (0))
AP (f) = Tim g (p’q]:
g—++o0 (f)

[log[q_” O'] P

_ logP=Y A= (M
respectively AP? (f) = lim —o g (M (o))
g o—+00 [ 1] }pép,q)(f)
logl"™ "o

Analogously to determine the relative growth of two entire functions represented
by VVDS having same non zero finite (p, ¢)-th relative Ritt lower order with respect
to another entire function represented by VVDS, one may introduce the definition

of (p, q)-th relative Ritt weak type in the following way:

Definition 7 ([3]). Let f and g be any two entire functions represented by VVDS
with index-pair (m,q) and (m,p), respectively, where p, ¢, m are positive integers
such that m > ¢+ 1>1and m > p+ 1> 1. Then (p, q)-th relative Ritt weak type
denoted by Tg(p ) (f) of an entire function f with respect to another entire function

g is defined as follows:

logP~1 Mt (M
e (1) = MO 0)

, 0 < AP0 < 400 .
o——+00 |:1 [(I71] i|>‘§]p7q> (f) g (f)
og o
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Similarly the growth indicator ?ép ) (f) of an entire function f with respect to
another entire function g both represented by VVDS is defined in the following
manner :

[p—1] -1
o=+ 00 APD ()

[log[q_l] a} !

If f and g have got index-pair (m,0) and (m,!), respectively, then Definition 4,

L0<APD (f) < foo.

Definition 6 and Definition 7 reduces to the definition of generalized relative Ritt
growth indicators such as generalized relative Ritt order pg] (f), generalized relative
Ritt type A[gl] (f) etc. If the entire functions f and g have the same index-pair
(p,0) where p is any positive integer, we get the definitions of relative Ritt growth
indicators such as relative Ritt order py (f), relative Ritt type A4 (f) etc introduced
by Srivastava [12] and Datta et al. [5]. Further if g = expl™ 2, then Definition 4,
Definition 6 and Definition 7 reduces to the (m,q)-th Ritt growth indicators of an
entire function f represented by VVDS. Also for g = exp™ z, relative Ritt growth
indicators reduces to the definition of generalized Ritt growth indicators.such as
generalized Ritt order pém] (f), generalized Ritt type Agm} (f) etc. Moreover, if f is
an entire function with index-pair (2,0) and g = exp!? z, then Definition 4, Definition
6 and Definition 7 becomes the definitions of Ritt order, Ritt type, Ritt weak type
etc. f represented by VVDS. For details about Ritt type, Ritt weak type etc., one
may see [6].

In this connection we state the following definition which will be needed in the

sequel:

Definition 8. A pair of entire functions f and g represented by VVDS are mutually
said to have Property (X) if for all sufficiently large values of o, both

My.g (o) > My (0)
and

My.q (o) > Mg (0)

hold simultaneously.

However, during the past decades, several authors (cf. [5, 6, 9, 10, 11, 13, 14, 15])
made closed investigations on the properties of entire Dirichlet series in different
directions using the growth indicator such as Ritt order. In the present paper we

wish to establish some basic properties of entire functions represented by a VVDS
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on the basis of (p, q)-th relative Ritt order, (p, g)-th relative Ritt type and (p, ¢)-th
relative Ritt weak type where p > 0 and ¢ > 0.

2. LEMMAS
In this section we present some lemmas which will be needed in the sequel.

Lemma 1 ([12]). Suppose that f be an entire function represented by VVDS given
in(l),a>1,0<fB<a,b>1and0<pu<A. Then

(a) My (ao) > eP7M; (o) for all large o and
. My(bo) _ 1. My(Xo)
(0) fim Sy = o0 = im 57Ge)-

g—r00

Lemma 2 ([12]). Let f be an entire function represented by VVDS given in (1)
satisfy the Property (A), then for any positive integer n and for all sufficiently large

0-7
(My (o))" < My (d0)
holds where 6 > 1.

3. MAIN RESULTS
In this section we present our main results.

Theorem 9. Let us consider fi, fo and g1 be any three entire functions VVDS
defined by (1). Also let at least f1 or fa is of reqular relative (p,q) Ritt growth with
respect to g1 where p > 0 and ¢ > 0. Then

)\ézl),q) (fi £ f2) < max {)\(p a) (f1),A (f2)}

The equality holds when )\ (fz) > )\ (fj) with at least f; is of reqular relative
(p,q) Ritt growth with respect to g1 where i,j=1,2 and i # j.

Proof. 1f )\ ( f1 £ f2) =0, then the result is obvious. So we suppose that

Q) (fit f2a) >0

We can clearly assume that )\ ( fr) is finite for £ = 1,2. Further let

max{ D(f1) AL (f2) ) = A
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and fo is of regular relative (p,q) Ritt growth with respect to g;. Now for any
arbitrary € > 0 from the definition of )\ ( f1), we have for a sequence values of o

tending to infinity that
My, (0) < My, <exp[p] ((Ag”) (fr) + e) log[Q] 0’))
2) ie., My, (0) < M, [exp[p] [(A + £) loglt UH .

Also for any arbitrary € > 0 from the definition of p ( f2) ( g’;’q) ( fg)), we

obtain for all sufficiently large values of o that

(3) My, (o) < My, <exp[p] ((Ag”) (f2) + e) logl®! 0’))
(4) i, My, (0) < M, [exp[f’] [(A + ) logld! UH .

Since for all large o, My, 44, (o) < My, (o) + My, (o), we obtain from (2) and (4)
for a sequence values of o tending to infinity that

(5) My, sy, (0) < 2M,, (exp[p] ((A +£) logld U)) .

Therefore in view of Lemma 1 (a), and for any 5 > 2, we obtain from (5) for a

sequence values of ¢ tending to infinity that

My 44, (;) < Mgy, (exp[p] ((A +¢) logld a))

log[p] Mg_11 (Mf1:tf2 <%))

log[‘ﬂ p
Since 8 > 2 and € > 0 are arbitrary, we get from above that

D (fi £ fo) < A = max {APD (1), \ED ()}
Similarly, if we consider that f; is of regular relative (p,q) Ritt growth with

i.e., <(A+e) .

respect to g; or both f; and fy are of regular relative (p, ¢) Ritt growth with respect
to g1, then one can easily verify that

(6) MNP (£ fo) < A = max { 08D (f1), ARD ()}

Now let )\éﬁj ) (f1) > )\ ( f2) and at least fy is of regular relative (p,q) Ritt
growth with respect to g;. As e (> 0) is arbitrary, from the definition of /\(gll)’Q) (f1),

it follows that for all sufficiently large values of o

(7) My, (o) > My, [exp[p] [()\(gzi’q) (fi) — 5) logl?! UH .
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Therefore in view of )\ ( fi) > g’q) (f2), we obtain for all sufficiently large
values of o that

(8) My, (0) > My, [exp[p] [(A — £)logld UH .

Now we consider the expression

(9) My, <exp[p] (()\gqu) (f1) — 5) logld U))

M, <exp[p] ((Ag,q) (f2) + g) logl®! 0)) .

Therefore in view of )\ ( fi) > )\ ( f2) and Lemma 1 (b), we obtain from (9)
that

A (T )

oo N (eXp[p ((/\(pq (f2) + ) log[‘ﬂ J)) =00 .
Now (10) can also be written as
(11) lim (e (4 9tz r)) — o0,

7T My, (eXpr] ((A(QZ?Q) (f2) + 6) IOg[q] 0>>

So from (11), we obtain for all sufficiently large values of o that
(12) My, (exp[p] ((A — ¢)logl a))
> 2My, (exp[p] ((Agf’q) (f2) + 5) logl?! a)) .
Thus from (3), (8) and (12) we get for all sufficiently large values of o that

My, (o) > 2My, (exp[p] ((AEJIZ’Q) (f2) + 5) logl?! a))
(13) i.e., My, (o) > 2My, (o) .

Since for all large o, My, 44, (0) > My, (o) — My, (o), we obtain from (8), (13)

and in view of Lemma 1 (a) for all sufficiently large values of ¢ and 5 > 2 that

1
My xp, (0) > Mg (o)

i.e., Myiys, (o) > %Mgl (exp[p] <(A — £)logld a))
e, My 1y, (Bo) > My, (exp[p] ((A — &) logl a))

log[p] Mg:1 (Mflifz (60))

i.€.,
1Og[Q] o

>(A+e) .
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As B > 2 and € > 0 are arbitrary, we get from above that
20 (f1r % f2> > A = max (AP (£1) AP (f2)]

If we consider )\ ( f1) < ) (f2) and at least fj is of regular relative (p,q)
Ritt growth with respect to g1, then one can also verify that

(14) NP (fu  £2) 2 A = max { 02D (1) AZD (f2) }
So the conclusion of the second part of the theorem follows from (6) and (14). O

Now we state the following theorem without its proof as it can easily be carried

out by a similar method in Theorem 9.

Theorem 10. Let us consider fi, fo and g1 be any three entire functions VVDS
defined by (1). Also let f1 and fy be entire functions with relative index-pair (p,q)
with respect to entire g1 where p > 0 and ¢ > 0. Then

P (flif2)<maX{ D(f1), oD (f2)}

The equality holds when p ( 1) #, p ( 2).

Theorem 11. Let us consider fi, g1 and g be any three entire functions VVDS
defined by (1). Also let )\gfq (f1) and )\(p 2 (f1) exists where p >0 and ¢ > 0. Then

Aéligz (/1) = min {Agpm (1), 289 ()}
The equality holds when )\ (f ) # )\ (f ).

Proof. 1f )‘gligz (f1) = o0, then the result is obvious. So we suppose that )\glng (fr) <
oo. We can clearly assume that )\ ( f1) is finite for £k = 1,2. Further let ¥ =
mln{ g1 (fl), o (fl)} Now for any arbitrary € > 0 from the definition of

)\gZ’Q) (f1), we have for all sufficiently large values of o that
(15) My, <exp[p] ((AE}Z"I) (fr) — e) logl?! 0’)) < My, (o) where k=1,2

i.e, Mg, <exp[p] ((\If — £)logl 0)) < My, (o) where k =1,2
Since for all large o, My, 44, (o) < My, (o) + Mg, (o), we obtain from above
and first part of Lemma 1(a) for all sufficiently large values of o and § > 2 that

Mgy, +g, (exp[p] ((\I/ — &) logl O’))
< Mg, (exp[p] ((\If — ¢) logl? a)) + My, (exp[p] ((\If — ¢) logl® a))
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i.e., Mg +g, (exp[”] ((\Il — ¢)logld O')) < 2My, (0)
i.€., Mg g, (exp[p} ((\I/ — £)logl? U)) < My, (Bo)

log”! M 4, (My, (Bo))
log[Q] o

i.e., >WU—c.

Since 5 > 2 and € > 0 are arbitrary, we get from above that
(16) ANPD, (F1) 2 @ = min A2 (1), AR (£1)}

Now let /\gf’Q) (f1) < Ag’g"” (f1) holds. As e (> 0) is arbitrary, from the definition

of /\_S,i’q) (f1), it follows that for a sequence of values of o tending to infinity

My, (0) < My, (exp[p] ((A(gi’” (fr)+ 6) logl?! 0')) for k=1,2

log[p] o

(17) i.e., My, expld!
(M2 () +¢)

< Mg, (o) for k=1,2.

Therefore in view of )\gf’q) (f1) < )\g,q) (f1), we obtain from above for a sequence

of values of ¢ tending to infinity that

oel? o
(18) My, (eXpM (g\pi ))) < My, (o) -

Now we consider the expression

M [q] logl”) o
fi <eXp ((Ag’q)(fl)+5)
(19) :
M a) | loallo
fi <exp ((A(QI;’Q)(fl)—t?)

Therefore in view of )\éllj’q) (fr) < )\g’q) (f1) and Lemma 1 (b), we obtain from
(19) that

M q) [ __logPlo
(20) A <eXp <<A§’i’”<ﬁ>+€>
1m
lq) [ —loe™a
(eXp ((Aé’;’”m)—e)))

=0 .
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Now (20) can also be written as

(21) i (el (%55))

h (A.S]g’q)(fl)%)

So from (21), we obtain for all sufficiently large values of o that

[v] loel?!
99 u [q [ log®o o] lal og® o '
oo (25)) o (exp ((Ag,ww

Now from (15), it follows for all sufficiently large values of o that

log[p} o
(M2 (h1) - <)

Thus from (18), (22) and (23) we get for a sequence of values of o tending to
infinity that

(23) Mg2 (U) < Mfl exp[‘ﬂ

log[p] o

M,, (0) > 2Mj, | expl?
()\gzj’q) (f1) = 6)

(24) i.e., Mg (o) >2Mg, (o) .

Since for all large o, Mg, 14, (0) > My, (0) — My, (), we obtain from (18), (24)
and in view of Lemma 1 (a) for a sequence of values of ¢ tending to infinity and
8 > 2 that

i.e., expl?! ((\I! +¢e) <10g[‘ﬂ (50))) > Mg_écgszl (0)

logl?! M, L ) (My, (o))
logl®l (Bo)
Since 5 > 2 and € > 0 are arbitrary, we get from above that

A, () < = min AR (7) AR (1)}

<(¥+e) .
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Similarly, if we consider )\(p ) (f1) > (p 7 (f1), then one can also derive that
(25) L, (F1) < min AP (£1) AZD ()] -

So the conclusion of the second part of the theorem follows from (16) and (25). O

Theorem 12. Let f1, g1 and go be any three entire functions VVDS defined by (1).
Also let the relative indez-pair of fi with respect to g1 and g2 is (p,q) where p > 0
and g > 0. Also let fy is of regular relative (p,q) Ritt growth with respect to at least
any one of g1 or go. Then

Pélng (fr) > mln{ (p,q) (f1), ng (fl)} ‘

The equality holds when p (fl) < pgj (fl) with at least f1 is of reqular relative
(p,q) growth with respect to g; where i,j = 1,2 and i # j.

We omit the proof of Theorem 12 as it can easily be carried out in the line of
Theorem 11.

Theorem 13. Let f1, fo,g1 and go be any four entire functions VVDS defined by
(1). Then forp >0 and q>0

Pyt (1 £ f2) < maxc [min {p%2 (1), o5 (£1) } s min {p 32 (£2) . %2 (f2)

when the following two conditions holds:

(1) pgl (fl) < pgj (fl) with at least f1 is of regular relative (p,q) Ritt growth with
respect to g; fori = 1 2,j=1,2 and i # j; and

(17) pgl (fg) < pg] (fg) with at least fay is of regular relative (p,q) Ritt growth
with respect to g; fori = 1 2 j=12 cmdi;éj

The equality holds when p (fl) < pg1 (fj) and p (fz) < pgg 2 (fj) holds si-
multaneously fori=1,2; j =1,2 and © # j.

Theorem 14. Let f1, fo,g1 and go be any four entire functions VVDS defined by
(1). Then for p>0 and g > 0,

Ny, (fu f2) = min [max {ARD (1), APD (fo) | max { 02D (£1) AED (f2) }]
when the following two conditions holds:

(1) /\(ng’q) (fi) > )\éﬂ)"n (fj) with at least f; is of reqular relative (p,q) Ritt growth with
respect t0g1 fori = 1 2,j=1,2andi+# j; and

(1) Ag (fl) > )\ (f]) with at least f; is of reqular relative (p, q) Ritt growth with
respect togs fori=1,2,7=1,2and i # j.
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The equality holds when APV (f1) < AP (f1) and AL? (fa) < AP (f2) hold
simultaneously for 1 =1,2; j = 1,2 and i # j.

Theorem 13 and Theorem 14 can be prove using the similar arguments adopted

in the proofs of Theorem 5 and Theorem 6 of [4] respectively. We omit the details.

Theorem 15. Let f1, fo and g1 be any three entire functions VVDS defined by (1).
Also let at least fi or fo is of regular relative (p,q) Ritt growth with respect to g1
where p > 0 and ¢ > 0. Then

D (f1- f2) < max 20D (1) 2D (£2) }

provided g1 satisfy the Property (A). The equality holds when fi and fo satisfy Prop-
erty (X).

Proof. Suppose that )\ (f1 f2) > 0. Otherwise if /\g]fq (f1- f2) = 0 then the
result is obvious. Let us consider that fo is of regular relative (p,q) Ritt growth
with respect to g;.Also suppose that max{)\gf’q) (f1), )\(p’q) (f2 )} = A . We can

clearly assume that )\ ( fx) is finite for k£ = 1,2. Now for any arbitrary § > 0, it
follows from the deﬁmtlon of p(p @) (f1), for a sequence values of o tending to infinity
that

My, (0) < My, (expl (A2 (f1) + 2 ) og o) )
(26) i.e., My (0) < Mgy, (exp[p] ((A + g) logl?! a)) .

Also for any arbitrary § > 0, we obtain from the definition of pgf”) (f2) (— Ag p 2 ( f2)>

for all sufficiently large values of ¢ that

My, (0) < My, (eXp[”} ((/\_E}f’q) (f2) + g) log!? 0))

(27) i.e., My, (0) < Mgy, (exp[p] ((A + )log[] )) .
Observe that
A+e
At >1.

. . [Pl ((A+e) logld)
Therefore we consider the expression expll((Ate) log't o)
ex [ ] ((A+ ) log[q )

values of 0. Thus for any § > 1, it follows from the above expression for all sufficiently

for all sufficiently large
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large values of o, say ¢ > 01 > o0¢ that

expl?! ((A +¢) logld! 00>
(28) =5
exp[P] ((A + %) log[‘ﬂ UO)

Since for all large o, My,.4, (0) < My, (o) - My, (o), we have from (26), (27) for

a sequence values of ¢ tending to infinity that

310 < (1 o ({355 i)

Also in view of Lemma 2, we obtain from above for a sequence values of ¢ tending
to infinity that

My, .5, (o) < My, ((5 (exp[p] ((A + g) logld a))) )

since g; has the Property (A) and 6 > 1. Therefore in view of (28), it follows from

above for a sequence values of ¢ tending to infinity that

(29) My, g, (0) < My, [ (exp? (A +e)10g% 0 ))] .
So from above we get for a sequence values of ¢ tending to infinity that

logl”! M.t (My,.4, (o))
10g[I1]

<(A+e¢) .
Since € > 0 is arbitrary, we obtain from above that

D(fr f2) < A =max {ALD (1) D (f5)}

Similarly, if we consider that f; is of regular relative (p,q) Ritt growth with
respect to g; or both f; and fy are of regular relative (p, ¢) Ritt growth with respect

to g1, then also one can easily verify that

(30) NPD (i f2) < A = max {ARD (1) AZD (£2) }

Now let f; and f, are satisfy Property (X), then of course we have Mjy, .y, (o) >
My, (o) and My,.4, (o) > My, (o) for all sufficiently large values of o. Therefore for

all sufficiently large values of o we get that

log?” Myt (My,p, (o) _ log? My (M, (0))

logld & logld &
So )\gf’Q) (f1-f2) > A_E,”q (f1) and similarly, A (fl f2) > Ay pq (f2).
Hence the theorem follows. O

Now we state the following theorem without its proof as it can easily be carried

out in the line of Theorem 15.



312 TANMAY Biswas

Theorem 16. Let fi, fo and g1 be any three entire functions VVDS defined by (1) .
Also let fi and fa have relative index-pair (p,q) with respect to g1 where p > 0 and
q > 0. Then

o2 (f1 - f2) < max { o2 (1), oD (f2) }
provided g1 satisfy the Property (A). The equality holds when fi and fo satisfy Prop-
erty (X).

Theorem 17. Let fi, g1 and g2 be any three entire functions VVDS defined by (1) .
Also let )\gl”q) (f1) and )\(p’q) (f1) exists where p >0 and g > 0. Then

NP () = min {AZD (£1) AED (1)}

provided f1 satisfy the Property (A). The equality holds when g1 and go satisfy Prop-
erty (X).

Proof. Suppose that )\91 g2 (f1) < o0. Otherw1se 1f )\él gl (f1) = oo then the result is
obvious. Also suppose that min {)\Eff ) (f1),A 92 ( fl)} = W. We can clearly assume
that )\gi’q) (f1) is finite for k = 1,2. Now for any arbitrary € > 0, with ¢ < ¥, we

obtain for all sufficiently large values of o that

My, (exp[p] (()\gi’q) (fr) — g) logl! 0)) < My, (o) where k= 1,2

i.e., Mg, (exp[p] ((‘I’ — %) log[q} a)) < My, (o) where k= 1,2

2

log!?!
(31) i.e., Mg, (0) < My (exp[‘ﬂ ((f%)) where k =1,2 .

Observe that

Now we consider the expression Wfor all sufficiently large values of o.
ex [‘1]( og d)

(¥-3)
Thus for any § > 1, it follows from the above expression for all sufficiently large

values of o, say o > 01 > o that

log!?! &
eXp[q] ( (\gpig)o

fg) ( Loz ffo)
b ((w—z)

=9.

(32)
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Since for all large o, My, ., (0) < My, (o) - My, (o), we get from (31) for all

sufficiently large values of o that

AT CEANY
(33) Myg,.g, (o) < (Mfl (eXpH (M))) .

Also in view of Lemma 2, we obtain from above for all sufficiently large values of

o that
log[p] o
My, g, (o) < My, <5 (eXP[Q] (M))) ;

since f; has the Property (A) and 6 > 1. Therefore in view of (32), it follows from

above for all sufficiently large values of o that

logl”! &
My, .4, (0) < My, (exp[q} ((\I/g_g)))

log” MYy, (M, (o))

logld &

i.e, > (U —¢) .

Since € > 0 is arbitrary, we get from above that

(34) NPD, (F1) = @ = min {APD (£1), 2D (£1)}

Now let g1 and go are satisfy Property (X), then of course we have My, .4, (o) >
My, (o) and My, .4, (o) > My, (o) for all sufficiently large values of o. Therefore
for all sufficiently large values of o, we obtain that Mg1 g0 (0) < Mgzl (o) and
M g_1-1g2 (0) < M 9_21 (o). Hence it follows that for all sufficiently large values of o

log” My 'y, (My, () _ log? My,' (M, (0))

g1-92
logld & - logld &
So APD (£ < APD (1)) and similarly, AP (1) < A2D (1))
Thus the theorem follows. O

Theorem 18. Let f1, g1 and g2 be any three entire functions VVDS defined by (1).
Also let the relative index-pair of fi1 with respect to g1 and g2 is (p,q) where p > 0
and ¢ > 0. Then

pgl 92 (fl) > min {pg1 (fl) ng (fl)} >

provided f1 is of regular relative (p,q) Ritt growth with respect to at least any one of
g1 or g2 and fy satisfy the Property (A). The equality holds when g1 and go satisfy
Property (X).
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We omit the proof of Theorem 18 as it can easily be carried out in the line of
Theorem 17.

Now we state the following two theorems without their proofs as those can easily
be carried out with the help of Theorem 15, Theorem 16, Theorem 17 and Theorem
18 and in the line of Theorem 13 and Theorem 14 respectively.

Theorem 19. Let f1, fo,91 and go be any four entire functions VVDS defined by
(1). Also let g1-g2, f1 and fa be satisfy the Property (A). Then forp >0 and g > 0,

pg’i‘él (f1- f2)
~ max {mm{pgm(ﬁ) ppa (fl)},min{pgl (f2) p* (fz)H,

when the following two conditions holds:

(1) f1 is of regqular relative (p,q) growth with respect to at least any one of g1 or ga;
(i1) f2 is of reqular relative (p,q) growth with respect to at least any one of g1 or ga;
(7i7) f1 and fa satisfy Property (X); and

(iv) g1 and g2 satisfy Property (X).

Theorem 20. Let fi, fo, g1 and g2 be any four entire functions VVDS defined by
(1). Also let gl g2, f1 and fy be satisfy the Property (A). Then forp >0 and ¢ > 0,

AP (f1- f)
= min {max {)\gl”q) (f1) ,)\g’;"” (fQ)} max {)\(p a) (f1),A pq) (fZ)}]

when the following two conditions holds:

(1) At least f1 or fo is of regular relative (p,q) growth with respect to g1 ;
(ii) At least f1 or fo is of reqular relative (p,q) growth with respect to go;
(131) f1 and fo satisfy Property (X); and

(iv) g1 and g2 satisfy Property (X).

Theorem 21 Let fl,fg,gl and gg be any four entire functions VVDS defined by

(1). Also let p (f1) pg1 (fg) p92 (fl) and p(p D (f2) are all non zero and finite
where p > 0 and g > 0.

(A) prgf’q) (fi) > pé’l’q (fj) fori, j = 1,2 and i # j, then
APD (fy £ fo) = APD () and ALY (fi+ f2) = ALV (f;) |i=1,2.

(B) If pg, (p.q) (fr) < pgfq (f1) with at least fy is of regular relative (p,q) Ritt growth
with respect to g; for i, j = 1,2 and i # j, then

ARL, () = APD (1) and AJL, (f) =B (F) [i=1.2.
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(C) Assume the functions fi, fa, 91 and ga satisfy the following conditions:
(1) pgz’q) (f1) < pgg’q) (f1) with at least f1 is of regular relative (p,q) Ritt growth with
respect to g; fori = 1 2, j=12and i #j;
(17) pgl (fg) < pg] (fQ) with at least fa is of reqular relative (p,q) Ritt growth
with respect to g; fori =1,2,j = 1,2 and i # j;
(131) p(gf 2 (fi) > pgfq (fj) and ppq) (fi) > pggq (fj) holds simultaneously for i =
1,2, =1,2 and i # j;
<w> P (i) = max min { o ¥ (1), o %7 (f1) } o min { o () o (f2) }] 11 =
=1,2;
then we have
Afy, (1 f2) = ARD (f) [ 1=m = 1,2
and

gligz (fitfo)= q)(fl)\lzmzl,Q.

Proof. From the definition of relative (p, ¢)-th Ritt type and relative (p, ¢)-th lower
Ritt type of entire function VVDS defined by (1), we have for all sufficiently large

values of o that

(p,q)
- _ Po " (fi)
(35) My, (o) < M,, (exph’ 1] ((Agz;,q) (fe) +€> [log[q 1] } 9 )) ’

(P, q)
(36) Mfk (J) > Mgl <exp[p_1} ((Aéfljvq) (f ) ) |:10g[q 1] Pgl ))

and for a sequence of values of ¢ tending to infinity, we obtaln that

. _ lo [p71] pgl q)(fk
(37) i.e., Mg, (o) < My, explt ™! *(Wi
(A (fx) —

)

(38) My, (0) = My, (eXP[p_” <<A§]1107Q) (fr) — ) [log[q Uo pgl

[p_l] P q)(fk
(39) ie., My, (o) < My, exple—1] (10g) b7
(A% (i) -
and

(p, q)
0 o= (o (270 ) 1))
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where € > 0 is any arbitrary positive number k=1,2and [l =1,2.
CAsE I. Suppose that p(p ) (f1) > pg1 (fz) hold. Also let € (> 0) be arbitrary.
Since for all large o, My, 14, (o) < My, (o) + My, (o), we get in view of (35) and for

all sufficiently large values of o that

(41)  Myip, (0) <

M,, <expL”—” ((A(gfj‘” (f1) +¢) [loglr~ ]pgl ”“)) (1+ A)

(p,q)
Mg, <exP[P1] <(A<g€’q>(f2)+6) [10g[q71] g']pgl (f2)>>

(r.0) and in view of p(p q) (f1)
Mg, <exp[p1] ((Aé’;’”(ﬁ)ﬁ) [10g[q71] U]pgl (f1)>>

> pgl ( f2), and for all sufficiently large values of o, we can make the term A

where A =

sufficiently small. Hence for any a > 1 4+ ¢; where €1 = A, it follows from Lemma 1

(a) and (41) for all sufficiently large values of o that

_ _ P& (f1)
Msp, (0) < M, (exp“’ ! ((Aéfz"” (1) +) [oge~10]" ))‘”51)

PV (f1)
ey Mpxp, (0) < My, (exp[p_l} (a (Afff’q) (f1) +5) [log[q—ll } n"h )) )

Therefore in view of Theorem 10 and pgff’q) (fr) > pg1 ( f2), we get from above

for all sufficiently large values of ¢ that
IOg[P—l] M;l (Mflifz (0’)) <a (A(p
(p»a) -
|:10g[q71} ]Pqﬁq (flif2)

? (f1)+€> :

Hence making o — 1+, we obtain from above for all sufficiently large values of

o that )
loglP ™ MY (My, 1 g, (J))

lim APD (f1)
o 00 (p,q) -
—+ |:10g[q_1] O_:| Pgy (flif2)

(42) ie., APD (fy £ fo) < A9 (fl) .

Now we may consider that f = f; + fo. Since p ( fi) > pg1 ( f2) hold. Then
Aép ) (f) = Agfq (fitfo) < A(pq (fl) Further, let fi = (f £ f2). Therefore in
view of Theorem 10 and p(p 2 (fi)>p ZZ ) (f2), we obtain that pgf’q) (f) > pgj 2 (f2)
holds. Hence in view of (42) Ag’l) ) (fi) < Agf ) (f) = Agﬁ’q) (f1 £ f2) . Therefore
ALY (1) = AR (1) = ARY (i + ) = AFY ().
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Similarly, if we consider p(l’q) (f1) < pg1 ( f2), then one can easily verify that

AR (frt f2) = ASD (fo).
CASE IT. Let us c0n51der that p (fl) > pg1 (fg) hold. Also let € (> 0) are
arbitrary. Since for all large o, My 1, (0) < My, (o) + My, (o), we get from (35)

and (40) for a sequence of values of o tending to infinity that

(43)  Mpap, (on) <

S
_ D (f1)
M,, (exp[pl] ((Agj"” (f1) +5) [1og[q—11 o } & )) (1+ B)
My, <exp[p1] <(A§£7Q)(f2) >[10g[q 1, :ngl q)(f2)>>

where B = o and in view of ,o(p’Q) (f1) >
-1 (AP lq—1] pgy (F1)
My, | exp (Agl (f1)+<€> [log O'n]

pgf ) (f2), we can make the term B sufficiently small by taking n sufficiently large

and therefore using the similar technique for as executed in the proof of Case I we
get from (43) that ALY (i + fo) = ( fl) when p? (1) > p? (£3) hold.
Likewise, if we consider pé’f’q) ( f1) < pg1 ( f2), then one can easily verify that
g (fiEfo)= Zé’f’q) (f2)-
Thus combining Case I and Case II, we obtain the first part of the theorem
CAsE III. Let us consider that pg’Q) (fr) < pg @) (f1) with at least fi is of reg-
ular relative (p,q) Ritt growth with respect to go. As for all large o, My, +4, (0) <
My, (o) + My, (o), we get from (37) and (39) for a sequence of values of o tending
to infinity that

(44) My, +g, (on) <

1
log?U o, P2 (£1)

p.q
(Agh "(f1) - 5)
My, | expla=11 | | Hee?on ol ")<f1>
f1 P (Z(P,Q)(f - )
g2 1 5
W(f) ’
My, | expla—1] loglt=Ug, | Po1 )
1 (Af(lziyq)(fl)*%

we can make the term C sufficiently small by taking n sufficiently large. Hence in

My expld— 1] (1+0C),

1

where C = Since Péll)’q) (f1) < sz (fl)

view of Lemma 1 (a) and Theorem 12, we get from (44) for a sequence of values of
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o tending to infinity that

logl?~1 o, P q)(fl)

(Agm (f1) = 5)

MgliQQ (Jn) < Mf1 eXp[q_l] (1+51)

logP~ g, z(z’;ﬂq:)gz(fl)

(Ag’q) (fr) - 5)

o _
Mg, 1, <En) < My exp[q U

where €1 = C and a > (1 + ¢;1) . Hence, making o — 14, we obtain from above for

a sequence of values of o tending to infinity that

(p.q) [g—1] ot (1) [p—1]
(A0 (f1) — &) [loglt ™ o <logP U ML (M, (02)) -

Since € > 0 is arbitrary, we find that
(45) APD (f1) > ALD (1) .

Now we may consider that ¢ = g1 + go. Also p(p ) (fr) < pg‘g (p.) (f1) and at least
f1 is of regular relative (p,q) Ritt growth with respect to go. Then Ay (p.q) (fr) =
Ag’i)gg (f1) > Ay p 2 (f1). Further let g1 = (g £ g2). Therefore in view of Theorem
12 and p(pq (f1) < p(ggq (f1), we obtain that p(p 9 (fi) < p;; & (f1) as at least

f1is of regular relative (p,q) tht growth with respect to g3. Hence in view of

45), APD (f1) > APD (f1) = APD (1), Therefore AP (1) = AP? (1) =
APD <f1> = AP (1)
(p,9)

Similarly if we consider p ( f1) > pg " (f1) with at least f1 is of regular relative
(p, q) Ritt growth with respect to g1, then Ag(ni)gz (fl) (fl)

CASE IV. In this case suppose that p (fl) < pg2 (fl) with at least f; is of
regular relative (p,q) Ritt growth with respect to go. Therefore from (37), we get

for all sufficiently large values of ¢ that

(46) My, +g, (o) <

log[”_” o
(B (1) — <)

My, expld—1!
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M wwugiﬁﬂL,&wm
1 G900

My, | exple—1] leglr=llo Pé‘i q>(f1)
1 (ZEII;Q)(fl)—s)

,og2 ( f1), we can make the term D sufficiently small by taking o sufficiently large

where D = and in view of p(p ) (fi) <

and therefore using the similar technique for as executed in the proof of Case III we

get from (46) that A(ﬁi)gz (fr) = p 2 (f1) where p(pq (fi) < pg; ) (f1) and at least
f1 is of regular relative (p, ¢) Ritt growth with respect to gs. Likewise if we consider
p_((fl) ) (f1) > p§€ @) (f1) with at least f; is of regular relative (p,q) Ritt growth with
respect to g1, then Z;f’i; (fi) = ZSZ’Q) (f1).
Thus combining Case IIT and Case IV, we obtain the second part of the theorem.
The third part of the theorem is a natural consequence of Theorem 13 and the

first part and second part of the theorem. Hence its proof is omitted. O

Theorem 22. Let fi, fo,91 and g2 be any four entire functions VVDS defined by
(1). Also let )\gf’Q) (f1), A pQ) (f2), /\gg"” (f1) and /\g,q) (f2) are all non zero and
finite where p>0 and q > 0

(A) If )\é (fi) > )\ (fj) with at least f; is of reqular relative (p,q) Ritt growth
with respect to g1 for i, j = 1,2 and i # j, then

PO (fr £ f2) = 70D (f;) and TED (fi £ f2) =TED(fi) [i=1.2.
(B) If/\( (f1)</\ (fl)forz ]—12and27éj, then

PO (f1) =P (f1) and TLL (f1) =TV (f) |i=1,2.

(C) Assume the functions f1, f2, 91 and go satisfy the following conditions:

(1) pg1 (fz) > pg1 (f]) with at least f; is of reqular relative (p,q) Ritt growth with
respect to g1 fori, j = 1,2 and @ # j;

(i) pg2 (fz) > pgg ) (fj) with at least f; is of reqular relative (p, q) Ritt growth with
respect to go for i, j =1,2 and i 75 75

(141) pgj’q) (fi) < pg] (fl) and p )(fg) < pg ) (f2) holds simultaneously for i,
j=1, 2 and i1 F# 75

(i > &0 () = min [max ALY (1), 009 ()} max D (1) AR (£2)}] |
l=m=1,2;

then we have

g1:tgz(f1:l:f2)_7-pq (fl)‘l_ _172
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and

TP (it fo) =T (f) [l=m=1,2.

Proof. For any arbitrary positive number £(> 0), we have for all sufficiently large

values of o that

(p,q)
47) My, (0) < My, (eXP[p_u << B9 (i) + z-:) [log[q—l] g] & Uk))) ;

p a)
(48) My, (o) > My, (exp[Pl} <<T£§f’:q) (i) — E) {log[q 1, (fx) ))

(ng (fr) —

and for a sequence of values of o tending to infinity we obtain that

1] x“’ V)
(49) i.e., My, (o) < My, expld ! ( log )

(p q)
(fx)
(50) Mfk (O‘) > Mgl (exp[p_l] ((T§€7Q) (fk) _ 6) |:10g[q 1] k )

_ log? o “”
(51) e, My (0) < My, | explt™! 7<p¢§
(Tgl’ (fi) —

and

/\(Pyll)(f)
(52 My (o) <M, (exp“”” ((Tg(f”” () +e) [log=ta] ™) )

where k=1,2and [ =1,2.

Cask 1. Let )\gfq (fr) > )\ (fg) with at least fo is of regular relative (p,q)
Ritt growth with respect to g;. Also let € (> 0) be arbitrary.

Since for all large o, My, 1, (0) < My, (0) + My, (o), we get in view of (47) and
(52) for a sequence {r,} of values of ¢ tending to infinity that

(53)  Mpap, (on) <

Mg, (exp[p_” << (P.a) (1) + 5) [log[q_” o*n} o q>(f1)>> (1+E),
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(P q)

Mgl <exp[l7—1] ((TEJZ;’Q) (f2)+5) [log[q—l] ] (f2)>>
(p q)

Mg,y <9XP[p_1] <<ngz1)’q) (fl)-‘r&) [log[q_l] ] (f1)>>

)\gf’q) (f2), we can make the term FE sufficiently small by taking n sufficiently large.

where E = and in view of )\gf’q) (f1) >

Therefore with the help of Lemma 1 (a), Theorem 9 and using the similar technique
of Case I of Theorem 21, we get from (53) that

(54) D (fr£fo2) <PV (f1) .

Further, we may consider that f = f1 £ fo. Also suppose that /\ ( fi) >
)\_((ﬁq (f2) and at least fy is of regular relatrve (p,q) Ritt growth with respect to
g1. Then Tg(f’Q) (f) = pQ) (fitfo) < Tg (fl) Now let f; = (f = f2). Therefore
in view of Theorem 9, )\571 9 (f1) > )\g(f;q (f2) and at least fy is of regular relative
(p,q) Ritt growth with respect to g;, we obtain that )\g{’q) (f) > (p 9 (f2) holds.
Hence in view of (54) Téfq (fl) < Tg(f’Q) (f) = Tg(f ) (fr £ f2). Therefore Tg(p ) (f) =

(p,9)

it (f1) = 7 (fu £ fo) = 70 (o).
Similarly, if we consider )\gl )( fi) < (p %) (f2) with at least f; is of regu-

lar relative (p,q) Ritt growth with respect to g1 then one can easily verify that

T.‘]l (fl + fo) = Tgl (f2)
CASE II. Let us consider that )\E(fl”q) (f1) > )\ (fg) with at least f> is of regular

relative (p, q) Ritt growth with respect to g;. Also let € (> 0) be arbitrary. Since for
all large o, My, 14, (0) < My, (0) + My, (o), we get in view of (47) for all sufficiently

large values of o that

(55)  Myap, (0) <

)\(P#Z)(f )
My, (exp[p” ((Tgf’q) (f1) + 5) [log[q’” a} o (1+F),

(p,a)

My, (explp” <(T§fi’q><f2)+s) [logla=11 o] 9 <fz>>>
(T—’ )

My, (eXplpll <(r§’;’q’(f1)+s> [logla—1] ]% <f1)>>

(p 2 (f2), one can make the term F' sufficiently small by taking o sufficiently large

where F' =

and in view of )\(p 9 (f1) >

and therefore for similar reasoning of Case I we get from (55) that ?g;"’q) (fi£ f2) =
Tgl (fl) when )\gz; ) (fr) > )\(p 2 (f2) and at least fo is of regular relative (p, ¢) Ritt
growth with respect to g;.
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Likewise, if we consider >\ ( f1) < >\ ( f2) with at least fj is of regular relative
(p, q) Ritt growth with respect to g1 then one can easily verify that 7 7' (f 1+ f2) =
29 (1)

Thus combining Case I and Case II, we obtain the ﬁrst part of the theorem.

CASE III. Let us consider that )\gf ) (fi) < )\ (fl) As for all large o,
Mg, +q, (0) < Mg, (o) + My, (o), we get from (49) for all sufficiently large values of
o that

(56)  Myxg, (0) <

1

logl?~1 & 75D (1)

(Téfq (f1) — 5)

My, | expla=1] logP 1 o ody g SR
' (w52 cri-¢)

TGy

M ex [q—1] log[p_l] o nglhq (1)
f1 P ( (P:Q)(f )— )
Tgl 1 €

we can make the term G sufficiently small by taking o sufficiently large. Now with

My, | explt™ 1+@),

1

where G = ) , and as Aﬁfi’q) (fi) < Aé@’q) (f1),

the help of Lemma 1 (a) and Theorem 11 and using the similar technique of Case
III of Theorem 21, we get from (56) that

(57) 0 (f1) = PO (1)

Further, we may consider that g = g14go. As )\ (fl) < )\ (fl) SO Tg (fl)
Tg(ff!)h (f1) > T(p a) (f1). Also let g1 = (g £ g2)- Therefore in view of Theorem 11
and AP ( fl) < Alpa) ( fl) we obtain that A% (f1) < A%9 (#) holds. Hence in

view of (57) Tg1 (fl) > Ty (p-a) (f1) = (p.2) (f1) - Therefore Tg(p 2 (f1) = Tg(:f @ (S1) =

(0:d) g1£g2
Tgf;ll:]gg (fl) - Tgl (fl)

Likewise, if we consider that )\gff’q) (f1) > )\ff;q) (f1), then one can easily verify
that T(ffgg (f1) = Tg(g’q) (f1)-

CASE IV. In this case further we consider /\(ng’q) (f1) < /\gg’q) (f1)-

As for all large o, Mg, 44, (0) < My, (0)+ My, (o), we obtain from (49) and (51)

for a sequence {r,} of values of r tending to infinity that

(58) My, +g, (on) <
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N SR
logP~t g, | 70D

(789 (1) —¢)

R
Mo | excpla=11 | [ —20eP=on Agqu)(fl)
1 P ( (p,q)<f - )
792 1)—¢
N —
My, | expla—t) | | Aol on AP (1)
n P —(p,a) B
791 (f1)—¢

)\g’Q) (f1), we can make the term H sufficiently small by taking n sufficiently large

My, exp[q*”

(1+H) ,

where H = , and in view of )\éf’q) (fi) <

and therefore using the similar technique as executed in the proof of Case IV of The-
orem 21, we get from (58) that TgliQQ (fr) = ?gq (f1) when )\gf"n (fr) < )\g’q) (f1)-
Similarly, if we consider that /\(p 9 (fr) > )\ég ) (f1), then one can easily verify
that 707, (1) =77 (7).
Thus combining Case IIT and Case IV, we obtain the second part of the theorem.
The proof of the third part of the Theorem is omitted as it can be carried out in

view of Theorem 14 and the above cases. O

In the next two theorems we reconsider the equalities in Theorem 9 to Theorem

12 under somewhat different conditions.

Theorem 23. Let f1, f2, g1 and g be any four entire functions VVDS defined by
(1). Also let p >0 and ¢ > 0.

(A) The following condition is assumed to be satisfied:
(i) Bither AR (f1) # APD (f5) or B2V (f1) £ BV (1) holds, then

plPD (f1 £ fo) = pPD (1) = p®D (fo) .

(B) The following conditions are assumed to be satisﬁed:
(i) Bither AR (f1) # AED (f1) or Bp? (f1) # A2 (f1) holds;
(ii) f1 is of regular relative (p,q) Ritt gmwth with Tespect to at least any one of g1

or gz, then

PP (1) = p®D (f1) = p2D (f1) .

Proof. Let f1, f2, g1 and g2 be any four entire functions VVDS defined by (1) satisfy

the conditions of the theorem.

Case L. Suppose that pii? (f1) = o™ (f2) (0 < p D)y oD (f2) < 00).
Now in view of Theorem 10 it is easy to see that p (f1 + fa) < pQ) (fr) =
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pfﬁ ) (f2) . If possible let

(59) P (fr & f2) < oD (F1) = oV (f2) -
Let Agff’Q) (f1) # Agf’q (fg) . Then in view of the first part of Theorem 21 and (59)
we obtain that Agf ) (fr) = (f1 + foF fo) = Ag”) (f2) which is a contradic-

tion. Hence p (f1 + fo) = le (f ) = pgl) ) (f2) . Similarly with the help of the
first part of Theorem 21, one can obtain the same conclusion under the hypothesis
Q) (fr) # Z(p ) (f2) . This proves the first part of the theorem
CASE IT. Let us consider that p (fl) = ng (fl) (0 < p (f1) pg 2 (f1)
< o0) and fi is of regular relative (p,q) Ritt growth with respect to at least any
one of g1 or g2 and (g1 + 92) Therefore in view of Theorem 12, it follows that

P_Efl,i)gQ (f1) > pgff’q) (fr) = ng ( f1) and if possible let
(60) 2D, (1) > o0 (1) = p20 (f1) -

Let us consider that A(gf’Q) (fr) # Agg’q (f1) - Then. in view of the proof of the
second part of Theorem 21 and (60) we obtain that A(f’Q) (f1) = Aéf’jq:)gﬁgg (fr) =

2 (f1) which is a contradiction. Hence pg;’jq:; (fr) = pf(fl) D (fr) = ng (fl) .
Also in view of the proof of second part of Theorem 21 one can derive the same
conclusion for the condition Z;?’Q) (f1) # A, p 2 (f1) and therefore the second part

of the theorem is established. O

Theorem 24. Let f1, fo, g1 and g2 be any four entire functions VVDS defined by
(1). Also let p >0 and ¢ > 0.

(A) The following conditions are assumed to be satisfied:

(7) (f1 £ f2) is of regular relative (p,q) Ritt growth with respect to at least any one
of g1 or g2;

(MEMwA%WﬁiM#A V(f o) or BV (fy £ fo) £ B0 (f1 £ fo);
(iii) Bither Af (f1) # A <ﬁ>rAPQU>¢ﬂ“Nﬁ»

(iv) Either ABD (f1) # ALY (f2) or ALY (11) # BPD (£5); then

Pt (i f2) = pZD (f1) = pB9) (f2) = pBD (f1) = p29) (f2) -

(B) The following conditions are assumed to be satisfied:

(1) f1 and fo are of reqular relative (p,q) Ritt growth with respect to at least any one
of g1 or g2;

(id) Bither ARDY, (f1) # ALY, () or Bty (1) # B, (f2);
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(iii) Either AR (f1) # ARD (£1) or APV (f >#A ()
(iv) Either AZD (f5) # ALY (f2) or ALY (f2) # BPD (£5); then

pg1igg (fl + f2) = pgl (fl) = pgl (f2) = pgg (fl) = qu (f2) :

We omit the proof of Theorem 24 as it is a natural consequence of Theorem 23.

Theorem 25. Let f1, fo, g1 and g2 be any four entire functions VVDS defined by
(1).

(A) The following conditions are assumed to be satisfied:

(1) At least any one of f1 or fay is of reqular relative (p,q) Ritt growth with respect
to g1 wherep> 0 and q > 0'

(13) Either Tg (fl) # Tg (fg) or Tgl (fl) #T 7' (fg) holds, then

MED (fr £ f2) = AED (f1) = Agzm (f2) -

(B) The following conditions are assumed to be satisfied:

(1) f1, o1 and ga be any three entire functions such that )\ (fl) and )\g @) (f1)
exists where p > 0 and ¢ > 0;

(13) Either Tg(fq (fr) # Tgp ) (f1) or Tg]f ) (fr) # T(pq (f1) holds, then

Moy (F) = 20D (£1) = AE (£) -

Proof. Let f1, fa, g1 and go be any four entire functions functions VVDS defined by
(1) satisfy the conditions of the theorem.

Case I Let APD (1) = AP (£5) (0 < AP9 (1), 029 (£,) < 00) and at least f1
or fy and (f1 £ f2) are of regular relative (p, ) Ritt growth with respect to g1. Now,
in view of Theorem 9, it is easy to see that \g p (p.q) (fi £ f2) < Ag pq (fi) = Ag’f’Q) (f2).
If possible let

(61) APD (fr £ f2) < APD(f1) = APV (f)

Let Tg ( f1) # Tg(? q) (f2) . Then in v1ew of the proof of the ﬁrst part of Theorem
22 and (61) we obtain that T(p 2 (fr) = Tgl (f1 + fo $ fo) = Tg1 (fg) which is a
contradiction. Hence )\gf 2 (fitfo)= )\gf ) (f1) = )\gf ) (f2) . Similarly in view of
the proof of the ﬁrst part of Theorem 22 , one can establish the same conclusion under
the hypothesis 7' ( f1) #7g p 9 (f2) . This proves the first part of the theorem.

CAasE II. Let us consider that )\gf’q) (f1) = /\(p’q) (f1) (0< /\yl”q) (f1) ,)\g’Q) (f1) <
oo. Therefore in view of Theorem 11, it follows that )‘éli)gz (fr) > )\gf’q) (fr) =
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APD (1)) and if possible let
(62) Aé’;ﬁ?gQ (f1) > APD (f1) = X2 (f)

Suppose Tgl ( f1) # Tg ( f1)- Then in view of the second part of Theorem 22
and (62), we obtain that Tg(p ) (fr) = g1:|:gzZng (fl) = Tg(g 2 (f1) which is a contra-
diction. Hence )\éli)g2 (fr) = )\gf’q) (fi) = Ag pq (f1) . Analogously with the help
of the second part of Theorem 22, the same conclus10n can also be derived under
the condition T(p 9 (f1) #74 p 9 (f1) and therefore the second part of the theorem is

established. O

Theorem 26. Let f1, fo, g1 and gs be any four entire functions VVDS defined by
(1).

(A) The following conditions are assumed to be satisfied:

(1) At least any one of f1 or fo is of reqular relative (p,q) Ritt growth with respect
to g1 and g wherep >0andqg>0

(iii) Either Tg (f ) # T@ D (f2) or 7V (1) £7 T < 2);

(iv) Either Tg (fl) # Tg ( 2) or ng (fl) # 7' (fg), then

Aoy, (Fut f2) = ARD (F1) = AP (f2) = ALD (F1) = A (f2) -
(B) The following conditions are assumed to be satisfied:

(1) At least any one of f1 or fa are of regular relative (p,q) Ritt growth with respect
to g1 £ g2 wherep>0 cmdq>0

(4 ) Either T 1:tgz (f ) # T, 1:i:g2 (f2) or Tg1:|:g2 (f1 ) 7é Tglzl:gg (fQ) holds;
(id) Bither 7! (£1) # 7! (£1) or 71" (£) # 70" (1) holds
(iv) Either Tg (fg) # Tg ( 9) or Tgl (fg) 75 T (fg) holds, then

N, (fr £ f2) = ARD (1) = M9 (F2) = AR (1) = MR2 (fa) -

We omit the proof of Theorem 26 as it is a natural consequence of Theorem 25.

Theorem 27. Let f1, fa, g1 and go be any four entz're functions VVDS defined by
(1). Also let pgf’q) (f1), pgj D (f2), p92 (fl) and p (fg) are all non zero where
p>0 and g > 0.

(A) Assume the functions f1, fo and g1 satisfy the following conditions:

(1) g1 satisfies the Property (A) and

(ii) f1 and fo satisfy Property (X); then

D(f1- fo) = APD () and B (fi - fo) =B (f,).
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(B) Assume the functions g1, g2 and fi satisfy the following conditions:

(1) f1 is of regular relative (p,q) Ritt growth with respect to at least any one of g1
or g2 and f1 satisfy the Property (A) and

(i) g1 and go satisfy Property (X); then

APD (£1) = APD (f1) and BZY (1) =BPD (1),

g1-92

C) Assume the functions f1, fa, g1 and ga satisfy the following conditions:

(

(1) g1 92, f1 and fo satisfy the Property (A);

(13) f1 and fa satisfy Property (X);

(131) g1 and go satisfy Property (X);

(1v) f1 is of regular relative (p,q) Ritt growth with respect to at least any one of g1

or gz
(v) fa is of regqular relative (p,q) Ritt growth with respect to at least any one of ¢

or g2;

(vii) o (fi) = max [min{p? (f1), o (£1) fomin { o7 (£2) o2 () }] |
I[,m=1,2; then

APD (1 f2) = APD () and ALY (fr- f) = ALV ().

Proof. CASE I. Suppose that p (fl) > pg1 (f2) Also let g1 satisfy the Property
(A). Now for any arbitrary ¢ > 0, we have from (35) for all sufficiently large values
of r that

(p.q)
_ € _ pgy (f1)
(63) My,.p, (0) < My, (exp“’ ! ((Aéﬁ"” () + 5) [rog~ o] ™ ))

€ P (f2)
x M,, (exp[pl] ((Ag},q) (f2) + 5) [log[qfl} } o )) .
Since pgf’q) (f1) > pg1 (fg) we get that
B P& (f1)
. (AE(]Z;Q) (f1>+%) [1Og[q 1] } o
lim =

= (0 (4 5) [ 1] F

As My, (o) is an increasing function of o, therefore we get from (63) for all

sufficiently large values of o that

(64) My, .5, (0) < <M91 <exp[1?—1] (( (fl) ) [log[q 1 ré‘i‘”(h))))Q |
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Let us observe that

(p.9)

APD(f1) +5

expl? (Agf’q) (f1) +5) [log[q_ll }pgl ()

expl =2 (AR (f1) + 5 ) [toglt ]pgl (1)

(©) - = (say) > 1.

Since g1 satisfy the Property (A), so we obtain from (64) and (65) for all suffi-

ciently large values of ¢ that

Myy.p, () < My, ((exp[P” (( D (f1) + ) [log[q 1] réﬁq)(fl)>>6>

91 fl
ey Mgy (0) < My, (exp[pl] <(A§ff’q) (f1) +€> [log[qfll r K )>> .

Now in view of Theorem 16, we get from above for all sufficiently large values of
o that

(p,a)
Py (f1-f2)
My, 1, (o) < My, (eXp[”‘” ((Aé’f’q) (f1) +€) [1og[q—1l U} Lo )) :

[p—1] a1
i.€.7 logp Mg (Mfl f2( )) < (A(pq) (f1)+€)
_ p91 (fl f2)
[log[q 1] }
(6) e APD (fy - £2) < AP (f1)

Now we establish the equality of (66) . Since fi and fy satisfy Property (X), then
of course we have (My, .5, (0)) > My, (o) for all sufficiently large values of o and

therefore
log[Pfl] Mg—l (Mf1 ( )) N log[pfl] Mg_l (Mfl( ))

[log[q_” }pgl Vffa) [log[q_” ]pgl D (f1)

as |Mg_11( o) is an 1ncreasmg function of r. So qu (fr-f2) > A (fl) Hence
q) (f1- f2) < Ay (p.9) (fl) Similarly, if we consider pg,l D(f) < pg1 ) (f2), then

one can verify that A (f1 f ) = A(p 9 (f2).

CaAsE II. Let p (fl) > pg1 (fg) and g; satisfy the Property (A). Now for any
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arbitrary € > 0, we have from (35) and (40) for a sequence of values of o tending to
infinity that

(p,q)
_ —(p, € _ pgr " (f1)
(67)  Myy.p, (0) < My, (exp“” 1 ((ASZ‘” (f1)+§) loglt =1 | ™ ))

x M, <exp[p—1] (( ) (o) + ) {log[q 1] }P(QI{‘D(fz))) '

Now in view of p(p @) (f1) > pé‘? ) (f2), we get that

i (Zéf’” (f1)+g) [1Og[q71] }pgl D(f1)
1m

B (Aéﬁ”q’ (f2) + %) [1og[q’” }pgl o

As My, (o) is an increasing function of o, therefore it follows from (67) for a

sequence of values of o tending to infinity that

2
My,.p, (0) < (Mm (exp[p_l] <(Aé}1”q) (f1) + %) [log[q—ll }”91 Ul))))

Now using the similar technique for a sequence of values of a tending to infinity as
explored in the proof of Case I, one can easily verify that A ( fi-fo) = Z;I;’q) (f1)
under the conditions spemﬁed 1n the theorem

Similarly, if we consider p ( f1) < pg1 ( f2), then one can verify that A ( fi- f2)
=20 ().

Therefore the first part of theorem follows from Case I and Case II.

CAsE II1. Let f; satisfy the Property (A) and pé’l)’q) (fi) < ,092 (fl) with f is
of regular relative (p,q) Ritt growth with respect to at least any one of g; or gs.
Therefore in view of (37) and (39), we obtain for a sequence of values of o tending
to infinity that

N
loglP~1 & oV (1)

(Agf’q) (f1) — %)

(68) Mgl'g2 (U) < Mfl exp[q_l}

1
log[p—l} o pgg’q)(h)

(B2 () -3)

XMy, expld—1]
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Now in view of p(p ) (fi) < p(g ) (f1), we obtain that

1
loglP—1 & pg(f;’Q)(fl)
(a8 )-3)

lim =00 .

r—+00 NCT VN
log[p—l] o p§’; q)(f1)
(357 ()-%)

As My, (o) is an increasing function of o, therefore it follows from (68) for a

sequence of values of ¢ tending to infinity that

2

log?1 & e q)(f1)

(69) My, (0) < | My, | explt™
(A8 (1) - 5)

Now we observe that

51 _ A(p q) (f ) %
P fI) (f ) €
oglp—1] pro
eXp[q*Q] ( Al(pgq’)' > g1 M1
(70) = 0 (say) > 1.

)
expld—2] i 10g[)1° Ve o ()
(A&?()-5)

Since fi satisfy the Property (A), therefore we obtain from (69) and (70) for a
sequence of values of ¢ tending to infinity that

logl?~1 pgl‘”m)

(A5 (1) - 5)

M91'92 (U) < Mf1 eXp[qil]

loglP~1 & oy q><f1)

<A§€’Q) (f1) — €)

Now we get in view of Theorem 18 and from above for a sequence of values of o

i, Myy.q, (0) < My, | expli™!

tending to infinity that

log[p_l] o p(f; %)2(f1)

(AR (£1) —¢)

My, .q, (0) < My, exp[q_l]



SOME RESULTS ON (p,q)-TH RELATIVE RITT ORDER 331

Since € > 0 is arbitrary, it follows from above that
(71) APD (F1) > ARD (f1) .

Now we establish the equality of (71). Since g1 and g9 satisfy Property (X), then
of course we have My, 4, (6) > My, (o) for all sufficiently large values of o and
therefore My ! (o) < M, (o). Hence

g1-g2
log”™ ! My, , (M, (0)) _ Tog?”™ ! M, (M, ()

(p,a) - (p»a)
} Pg1 gy (1) [1og[q41 r] P (f1)

[log[q*” r

as My, (o) is an increasing function of o. So Agf’g)z (fr) < Ag{’q) (f1)-.So Ag’.% (fr) =
AR (f1).

CAsE IV. Suppose f; satisfy the Property (A). Also let pg’q) (fr) < pg’@ (f1)
with f; is of regular relative (p, q¢) Ritt growth with respect to at least any one of ¢;

or go. Therefore in view of (37), we obtain for all sufficiently large values of o that

1
(p.q)
logP—1] pgy ¥ (1)
(72) My, .4, (0) < My, exp[q_l] 7(p0qg) g '
(B (1) - 5)
1
logl?~1 & P B9 (£1)

XMy, expld—1 —
(B8 () - 5)

Now in view of pgﬂ) (fr) < pgm (f1), we get that

1

loglP~1 & pﬁﬁ’”(h)
o\ (&7 0-3)
lim

1
T—>+00 OOV
log[pﬂ] o p§g’q)(f1)

(85" (m)-5)

As My, (o) is an increasing function of o, therefore it follows from (72) for all

=00 .

sufficiently large values of o that

2

1
log? & o2V (£1)

(357 (1) - 5)
Now using the similar technique for all sufficiently large values of ¢ as explored

in the proof of Case I11, one can easily verify that Zgl)’,(;l (fr) = Zgl)’q) (f1) under the

My, .q, (0) < | My, exp[q_l]

conditions specified in the theorem.
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Likewise, if we consider p ( fi) > ng ( f1) with at least f; is of regular relative
(p, q) Ritt growth with respect to g1, then one can verify that Agj 37)2 (fr)= Zg;’q) (f1)-

Therefore the second part of theorem follows from Case III and Case IV.

Proof of the third part of the Theorem is omitted as it can be carried out in view

of Theorem 19 and the above cases. O

Theorem 28. Let f1, fa, g1 and go be any four entire functions VVDS defined by
(1). Also let )\gf’q) (f1i), /\éﬁ”q) (f2), A (f1) and )\g;q (f2) are all non zero and
finite where p > 0 and g > 0.

(A) Assume the functions fi, fo and g1 satisfy the following conditions:

(1) At least f1 or fa is of regular relative (p,q) Ritt growth with respect to g1 and ¢,
satisfy the Property (A) and

(13) f1 and fa satisfy Property (X); then

D(fr-fo) =78V (fi) and 7D (fi- fo) = 7PV (fi)

(B) Assume the functions g1, g2 and f1 satisfy the following conditions:
(1) f1 satisfy the Property (A) and
(i) g1 and go satisfy Property (X); then

TR (f1) = 7D (1) and 78D (f1) = 7P (fr).

(C) Assume the functions f1, fa, g1 and go satisfy the following conditions:

(1) g1 - 92, f1 and fa are satisfy the Property (A);

(i) f1 and fo satisfy Property (X);

(7i1) g1 and go satisfy Property (X);

(tv) At least fi or fa is of regular relative (p,q) Ritt growth with respect to g1 for i

(v) At least f1 or fo is of reqular relative (p,q) Ritt growth with respect to go for i
=1,2,j=12andi+# j;

(v)) AR () = min [max ALY (1), 009 (f2) b max DD (1) AL (£2)}] |
Il,m=1,2; then

D (fr- fo) = 72D () and 708 (i f2) = 729 (fi).

Proof. CASE 1. Suppose )\ (fl) > )\g]fq (f2) with at least f; or fa is of regular
relative (p, ¢) Ritt growth Wlth respect to g1 and g; satisfy the Property (A). Now

for any arbitrary € > 0, we obtain from (47) and (52) for a sequence values of o
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tending to infinity that

(73) Mf1-f2( o) < M, (eXp[p 1] (( (fl) )[lOg[‘I 1] ]/\(pq)(fl)>>

(exp —1] < pq) (f2) + )[log[q 1] } ffi’q)(fz))) ‘

Now in view of )\(p 9 p 2 (f2), we get that
(p q)
B (f1)
Té? D () +3) [og o]

A2 (1) + 5) [logl= o] N ()

AsM,, (o) is an increasing function of o, therefore we get from (73) for a sequence

lim
r—+00 (

=0 .

of values of ¢ tending to infinity that

A2\
(14) Mypp, (0) < (Mgl <exp“?—” ((Té?‘” (1) +5) [logh 1o .

Now using the similar technique as explored in the proof of Case I of Theorem
27 we obtain from (74) that

V(- fo) =7V (f)
Similarly, if we consider )\5(;1’ )( f1) < (p 9 ( fg) with at least fi or fo is of regu-

lar relative (p,q) Ritt growth with respect to g1, then one can easily verify that

it (- f2) = 730 (fa).

CASE II. Let )\(gﬁ)’q) (f1) > )\Eff’q) (f2) with at least f1 or fy is of regular relative
(p,q) Ritt growth with respect to g; and g; satisfy the Property (A). Now for any
arbitrary € > 0, we get from (47) for all sufficiently large values of o that

(75) Mp.p, (o) < My, (exp[pl] ((Télf’q) (f1) + %) [log[qfll ] pq)(f1)>>
X Mg, (eXp[pl] <( (f2) ) [log[q 1] ])‘(Pq)(fz)>> '

Now in view of )\gf’q) (f1) > p 9 (f2), we get that

(56 (1) + 5) oo 1]

lim =00 .

ro+oo (Tgl (F2) + %) [log[qfl] ]/\g’iq (f2)




334 TANMAY Biswas

As My, (o) is an increasing function of o, therefore we get from (75) for all

sufficiently large values of o that

A2\
(76) Mypp, () < (Mm <exp“?—” ((Téfi’q) (f)+3) [logltt o] ™ .

Now using the similar technique as explored in the proof of Case I of Theorem 28
we obtain from (76) that ?gf’q) (f1-f2) = T;l (f1) under the conditions specified
in the theorem.

Likewise, if we consider )\gz;’q) (fr) < )\ ( f2) with at least f; or fo is of reg-
ular relative (p,q ) Ritt growth with respect to g1, then one can easily verify that
7_91 (fl f2) = 7-91 (fZ)

Therefore the first part of theorem follows Case I and Case II.

CASE III. Let )\gj’Q) (fi) < AE,’;’Q) (f1) and f; satisfy the Property (A). Therefore

in view of (49) we obtain for all sufficiently large values of o that

loglP~1 & A ‘”(h)

(77) My, 4, (0) < My, | expld™!
<Tg(f D (f) — %)

1
logl?~1 & A5 (1)

(27 (1) - 5)

Now in view of )\gl)’q) (fi) < )\g’q) (f1), we get that

-1
log[p l]o. Agli,q)<f1)
( (p, lI)(fl) >

lim =00 .

1
r—+4-00 o
log[p—l] o ng’q)(h)
(w52 (-3)

As My, (o) is an increasing function of o, therefore it follows from (77) for all

XMy, expli—1

sufficiently large values of ¢ that
1 2
log?~1 & AED (£1)

(70 ()~ 5)
Now using the similar technique as explored in the proof of Case III of Theorem

27 we obtain from (78) that Tél gg (fr) = (p 2 (fr). If )\g’Q) (fr) > pq) (f1), then

one can easily verify that Tgf ‘glg (fr) = Tég q) (f1)-

(78) My, (0) < | My, | explt™]
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CASE IV. Suppose )\Eﬁ’q) (fr) < )\gg’q) (f1) and f; satisfy the Property (A). There-
fore in view of (49) and (51) we obtain for a sequence of values of o tending to infinity

that
1
(p,q)
loglP—1] A (£1)
(19) Mg (0) < My, |expli ! | | =20 )
(7 (h) - 5)

logh~lg | Vi
(7 (1) - 5)
Now in view of )\gf’Q) (fi) < AE,’;"” (f1), we get that

loglP~ g )‘(p q)(fl)
(72 (r0-5)

lim =00 .

1
r—-+00 ——
logl?—11 & Aff;’q)(h)

(w5 ()-35)

As My, (o) is an increasing function of o, therefore it follows from (79) for a

XMy, expli—1]

sequence of values of ¢ tending to infinity that
2

1
log? 1 & AED (£1)

(70 () - 5)

Now using the similar technique as explored in the proof of Case III of Theo-

(80) My, .4, (0) < | My, expld 1]

rem 28, we obtain from (80) that ?!(figl (fi) = Tgl ( fi). Similarly if we consider

that )\gf’q) (f1) > )\g,q) (f1), then one can easily verify that Tgl . (fl) = 792 (fl)

Therefore the second part of the theorem follows from Case III and Case IV.
Proof of the third part of the Theorem is omitted as it can be carried out in view

of Theorem 20 and the above cases. OJ
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