# FILTER SPACES ON ECL-PREMONOIDS 

Young-Hee Kim ${ }^{\text {a }}$, Taewon Kang ${ }^{\text {b }}$ and Yong Chan Kim ${ }^{\text {c,* }}$

Abstract. In this paper, we introduce the notion of the $(L, *)$-filter spaces on eclpremonoids. Moreover, we obtain various $(L, *)$-filters incuced by two $(L, *)$-filters and give their examples.

## 1. Introduction

Filter spaces are very useful tools in several area of mathematical structures with direct applications, both mathematical (e.g. topology, logic) and extramathematical (e.g. data mining, knowledge representation). In fuzzy set theory, Gäher $[2,3]$ introduced the notions of fuzzy filters in a frame $L$. Höhle and Sostak [4] introduced the concept of $L$-filters for a complete quasimonoidal lattice $L$. Kim and Ko [8,9] introduced the images and preimages of $L$-filter bases on stsc quantales and developed $(L, *, \odot)$-quasiuniform convergence spaces on ecl-premonoid in Orpen's sense [10].

In this paper, we introduce the notion of the $(L, *)$-filter spaces on ecl-premonoids in Orpen's sense [10]. Moreover, we obtain various $(L, *)$-filters incuced by two $(L, *)$-filters and give their examples.

## 2. Preliminaries

In this paper, we consider complete lattices $(L, \leq, \perp, \top)$ with bottom element $\perp$ and top element $T$.

[^0]Definition 2.1 ( $[1,4,10]$ ). A complete lattice $(L, \leq, \perp, \top)$ is called a GL-monoid $(L, \leq, *, \perp, \top)$ with a binary operation $*: L \times L \rightarrow L$ satisfying the following conditions:
(G1) $a * \top=a$, for all $a \in L$,
(G2) $a * b=b * a$, for all $a, b \in L$,
(G3) $a *(b * c)=(a * b) * c$, for all $a, b \in L$,
(G4) if $a \leq b$, there exists $c \in L$ such that $b * c=a$,
(G5) $a * \bigvee_{i \in \Gamma} b_{i}=\bigvee_{i \in \Gamma}\left(a * b_{i}\right)$.
We can define an implication operator:

$$
a \Rightarrow b=\bigvee\{c \mid a * c \leq b\}
$$

Remark $2.2([1,4,10])$. (1) A continuous t-norm $([0,1], \leq, *)$ is a GL-monoid.
(2) A frame $(L, \leq, \wedge)$ is a GL-monoid.

Definition 2.3 ([1, 4, 10]). A complete lattice $(L, \leq, \perp, \top)$ is called a cl-premonoid $(L, \leq, \odot)$ with a binary operation $\odot: L \times L \rightarrow L$ satisfying the following conditions:
(CL1) $a \leq a \odot \top$ and $a \leq \top \odot a$, for all $a \in L$,
(CL2) if $a \leq b$ and $c \leq d$, then $a \odot c \leq b \odot d$,
$(\mathrm{CL} 3) a \odot \bigvee_{i \in \Gamma} b_{i}=\bigvee_{i \in \Gamma}\left(a \odot b_{i}\right)$ and $\bigvee_{j \in \Gamma} a_{j} \odot b=\bigvee_{j \in \Gamma}\left(a_{j} \odot b\right)$.
We can define an implication operator:

$$
a \rightarrow b=\bigvee\{c \mid a \odot c \leq b\}
$$

Example 2.4. (1) Every GL-monoid $(L, \leq, *)$ is a cl-premonoid.
(2) Defines maps $\odot_{i}:[0,1] \times[0,1] \rightarrow[0,1]$ as follows:

$$
x \odot_{1} y=x^{\frac{1}{p}} \cdot y^{\frac{1}{p}}(p \geq 1), x \odot_{2} y=\left(x^{p}+y^{p}\right) \wedge 1(p \geq 1)
$$

Then $\left(L, \leq, \odot_{i}\right)$ is a cl-premonoid for $i=1,2$.
Definition $2.5([1,4,10])$. A complete lattice $(L, \leq, \perp, \top)$ is called an ecl-premonoid $(L, \leq, \odot, *)$ with a GL-monoid $(L, \leq, *)$ and a cl-premonoid $(L, \leq, \odot)$ which satisfy the following condition:
(D) $(a \odot b) *(c \odot d) \leq(a * c) \odot(b * d)$, for all $a, b, c, d \in L$.

An ecl-premonoid $(L, \leq, \odot, *)$ is called an M-ecl-premonoid if it satisfies the following condition:
(M) $a \leq a \odot a$ for all $a \in L$.

Example 2.6. (1) Let $(L, \leq, *)$ be a GL-monoid and $(L, \leq, \wedge)$ is a cl-premonoid. Then $(L, \leq, \wedge, *)$ is an M-ecl-premonoid.
(2) Let $(L, \leq, *)$ be a GL-monoid. Then $(L, \leq, *, *)$ is an ecl-premonoid. If $*=\cdot$, $0.5 \not \leq 0.5 \cdot 0.5=0.25$. $(L, \leq, \cdot, \cdot)$ is not an M-ecl-premonoid.
(3) Let $(L, \leq, \cdot)$ be a GL-monoid. Define a map $\odot:[0,1] \times[0,1] \rightarrow[0,1]$ as $x \odot y=(x+y) \wedge 1$. Then $(L, \leq, \odot, \cdot)$ is not an M-cl-premonoid because

$$
0.7=(0.3 \odot 0.4) \cdot(0.5 \odot 0.7) \not \leq(0.3 \cdot 0.5) \odot(0.4 \cdot 0.7)=0.15+0.28=0.43
$$

(4) Let $(L, \leq, \cdot)$ be a GL-monoid. Define a map $\odot:[0,1] \times[0,1] \rightarrow[0,1]$ as $x \odot y=x^{\frac{1}{3}} \cdot y^{\frac{1}{3}}$. Then $(L, \leq, \odot, \cdot)$ is an M-cl-premonoid.

In this paper, we always assume that $(L, \leq, \odot, *)$ is an ecl-premonoid unless otherwise specified.

Lemma $2.7([1,4,9,10]) . \operatorname{Let}(L, \leq, \odot, *)$ be an ecl-premonoid. For each $a, b, c, d, a_{i}, b_{i} \in$ $L$ and for $\uparrow \in\{\rightarrow, \Rightarrow\}$, we have the following properties.
(1) If $b \leq c$, then $a \odot b \leq a \odot c$ and $a * b \leq a * c$.
(2) $a \odot b \leq c$ iff $a \leq b \rightarrow c$. Moreover, $a * b \leq c$ iff $a \leq b \Rightarrow c$.
(3) If $b \leq c$, then $a \uparrow b \leq a \uparrow c$ and $c \uparrow a \leq b \uparrow a$.
(4) $a \leq b$ iff $a \Rightarrow b=\top$.
(5) $a * b \leq a \odot b, a \rightarrow b \leq a \Rightarrow b$ and $a *(b \odot c) \leq(a * b) \odot c$.
(6) $(a \uparrow b) \odot(c \uparrow d) \leq(a \odot c) \uparrow(b \odot d)$.
(7) $(b \uparrow c) \leq(a \odot b) \uparrow(a \odot c)$.
(8) $(b \uparrow c) \leq(a \uparrow b) \uparrow(a \uparrow c)$ and $(b \uparrow a) \leq(a \uparrow c) \uparrow(b \uparrow c)$.
(9) $(b \rightarrow c) \leq(a \uparrow b) \rightarrow(a \uparrow c)$ and $(b \uparrow a) \leq(a \rightarrow c) \rightarrow(b \uparrow c)$
(10) $a_{i} \uparrow b_{i} \leq\left(\bigwedge_{i \in \Gamma} a_{i}\right) \uparrow\left(\bigwedge_{i \in \Gamma} b_{i}\right)$.
(11) $a_{i} \uparrow b_{i} \leq\left(\bigvee_{i \in \Gamma} a_{i}\right) \uparrow\left(\bigvee_{i \in \Gamma} b_{i}\right)$.
(12) $(c \uparrow a) *(b \rightarrow d) \leq(a \rightarrow b) \rightarrow(c \uparrow d)$.

Definition $2.8([4,10])$. A mapping $\mathcal{F}: L^{X} \rightarrow L$ is called an $(L, *)$-filter on $X$ if it satisfies the following conditions:
(F1) $\mathcal{F}\left(\perp_{X}\right)=\perp$ and $\mathcal{F}\left(\top_{X}\right)=\top$, where $\perp_{X}(x)=\perp, \top_{X}(x)=\top$ for $x \in X$.
(F2) $\mathcal{F}(f * g) \geq \mathcal{F}(f) * \mathcal{F}(g)$, for each $f, g \in L^{X}$,
(F3) if $f \leq g, \mathcal{F}(f) \leq \mathcal{F}(g)$.
An $(L, *)$-filter is called stratified if
(S) $\mathcal{F}(\alpha * f) \geq \alpha * \mathcal{F}(f)$ for each $f \in L^{X}$ and $\alpha \in L$.

The pair $(X, \mathcal{F})$ is called an (resp. a stratified) $(L, *)$-filter space. Let $F_{*}(X)$ (resp. $\left.F_{*}^{s}(X)\right)$ is a family of (resp. stratified) $(L, *)$-filters on $X$.

Example 2.9. (1) Define a map $[x]: L^{X} \rightarrow L$ as $[x](f)=f(x)$. Then $[x]$ is a stratified $(L, *)$-filter on $X$.
(2) Define a map inf : $L^{X} \rightarrow L$ as $\inf (f)=\bigwedge_{x \in X} f(x)$. Then inf is a stratified $(L, *)$-filter on $X$.

## 3. Filter Spaces on ECL-PREMONOIDS

Theorem 3.1. For $\mathcal{F}, \mathcal{G} \in F_{*}(X)$ and for $\diamond \in\{\odot, *\}$, we define $\mathcal{F} \diamond \mathcal{G}, \mathcal{F} \diamond_{*} \mathcal{G}$ : $L^{X} \rightarrow L$ as follows:

$$
\begin{gathered}
(\mathcal{F} \diamond \mathcal{G})(h)=\mathcal{F}(h) \diamond \mathcal{G}(h) \\
\mathcal{F} \diamond_{*} \mathcal{G}(h)=\bigvee\{\mathcal{F}(f) \diamond \mathcal{G}(g) \mid f * g \leq h\} .
\end{gathered}
$$

Then we have the following properties:
(1) $\mathcal{F} \diamond \mathcal{G}$ is an $(L, *)$-filter on $X$ for $\diamond \in\{\odot, *\}$.
(2) If $(L, \leq, \odot, *)$ is an $M$-ecl-premonoid and $\mathcal{F}, \mathcal{G} \in F_{*}^{s}(X)$, then $\mathcal{F} \odot \mathcal{G} \in F_{*}^{s}(X)$.
(3) If $f * g=\perp$ implies $\mathcal{F}(f) \odot \mathcal{G}(g)=\perp$, then $\mathcal{F} \odot_{*} \mathcal{G} \in F_{*}(X)$ is the filter finer than $\mathcal{F}$ and $\mathcal{G}$.
(4) If $f * g=\perp$ implies $\mathcal{F}(f) * \mathcal{G}(g)=\perp$, then $\mathcal{F} *_{*} \mathcal{G}$ is an $(L, *)$-filter on $X$ which is the coarsest filter finer than $\mathcal{F}$ and $\mathcal{G}$.
(5) If $\mathcal{F} \in F_{*}^{s}(X)$ or $\mathcal{G} \in F_{*}^{s}(X)$, then $\mathcal{F} \diamond_{*} \mathcal{G} \in F_{*}^{s}(X)$ for $\diamond \in\{\odot, *\}$.
(6) If $\mathcal{F} \in F_{*}^{s}(X)$, then $\mathcal{F} *_{*}\left(\bigwedge_{x \in X}[x]\right)=\mathcal{F}$.
(7) $\mathcal{F} *_{*} \mathcal{F}=\mathcal{F}$ and $\left(\mathcal{F} *_{*} \mathcal{G}\right) *_{*} \mathcal{H}=\mathcal{F} *_{*}\left(\mathcal{G} *_{*} \mathcal{H}\right)$.
(8) $\left(\mathcal{F}_{1} \odot \mathcal{F}_{2}\right) \diamond_{*}\left(\mathcal{G}_{1} \odot \mathcal{G}_{2}\right) \leq\left(\mathcal{F}_{1} \diamond_{*} \mathcal{G}_{1}\right) \odot\left(\mathcal{F}_{2} \diamond_{*} \mathcal{G}_{2}\right)$ for $\diamond \in\{\odot, *\}$.

Proof. (1) Since $\top=\top \odot \top$ and $\perp=\perp \odot \perp$ from (CL3), $(\mathcal{F} \odot \mathcal{G})(T)=\top$ and $(\mathcal{F} \odot \mathcal{G})(\perp)=\perp$. For each $f, g \in L^{X}$,

$$
\begin{aligned}
& (\mathcal{F} \odot \mathcal{G})(f * g)=\mathcal{F}(f * g) \odot \mathcal{G}(f * g) \geq(\mathcal{F}(f) * \mathcal{F}(g)) \odot(\mathcal{G}(f) * \mathcal{G}(g)) \\
& \geq(\mathcal{F}(f) \odot \mathcal{G}(f)) *(\mathcal{F}(g) \odot \mathcal{G}(g))=(\mathcal{F} \odot \mathcal{G})(f) *(\mathcal{F} \odot \mathcal{G})(g)
\end{aligned}
$$

Hence $\mathcal{F} \odot \mathcal{G}$ is an $(L, *)$-filter. Similarly, $\mathcal{F} * \mathcal{G}$ is an $(L, *)$-filter.
(2) For each $f \in L^{X}$ and $\alpha \in L$,

$$
\begin{aligned}
& (\mathcal{F} \odot \mathcal{G})(\alpha * f)=\mathcal{F}(\alpha * f) \odot \mathcal{G}(\alpha * f) \geq(\alpha * \mathcal{F}(f)) \odot(\alpha * \mathcal{G}(f)) \\
& \geq(\alpha \odot \alpha) *(\mathcal{F}(f) \odot \mathcal{G}(f)) \geq \alpha *(\mathcal{F} \odot \mathcal{G})(f)
\end{aligned}
$$

Hence $\mathcal{F} \odot \mathcal{G}$ is a stratified $(L, *)$-filter.
(3) (F1) Since $f * g=\perp$ implies $\mathcal{F}(f) \odot \mathcal{G}(g)=\perp,\left(\mathcal{F} \odot_{*} \mathcal{G}\right)\left(\perp_{X}\right)=\perp$.
(F2) is easy. (F3)

$$
\begin{aligned}
& \left(\mathcal{F} \odot_{*} \mathcal{G}\right)\left(h_{1}\right) *\left(\mathcal{F} \odot_{*} \mathcal{G}\right)\left(h_{2}\right) \\
& =\bigvee\left\{\mathcal{F}\left(f_{1}\right) \odot \mathcal{G}\left(g_{1}\right) \mid f_{1} * g_{1} \leq h_{1}\right\} * \bigvee\left\{\mathcal{F}\left(f_{2}\right) \odot \mathcal{G}\left(g_{2}\right) \mid f_{2} * g_{2} \leq h_{2}\right\} \\
& =\bigvee\left\{\left(\mathcal{F}\left(f_{1}\right) \odot \mathcal{G}\left(g_{1}\right)\right) *\left(\mathcal{F}\left(f_{2}\right) \odot \mathcal{G}\left(g_{2}\right)\right) \mid f_{1} * g_{1} \leq h_{1}, f_{2} * g_{2} \leq h_{2}\right\} \\
& \leq \bigvee\left\{\left(\mathcal{F}\left(f_{1}\right) * \mathcal{F}\left(g_{2}\right)\right) \odot\left(\mathcal{G}\left(g_{1}\right) * \mathcal{G}\left(g_{2}\right)\right) \mid\left(f_{1} * g_{1}\right) *\left(f_{2} * g_{2}\right) \leq h_{1} \odot h_{2}\right\} \\
& \leq \bigvee\left\{\mathcal{F}\left(f_{1} * f_{2}\right) \odot \mathcal{G}\left(g_{1} * g_{2}\right) \mid\left(f_{1} * f_{2}\right) *\left(g_{1} * g_{2}\right) \leq h_{1} * h_{2}\right\} \\
& \leq\left(\mathcal{F} \odot_{*} \mathcal{G}\right)\left(h_{1} * h_{2}\right) .
\end{aligned}
$$

(4) By a similar method, $\mathcal{F} *_{*} \mathcal{G}$ is an $(L, *)$-filter on $X$.

If $\mathcal{F} \leq \mathcal{H}$ and $\mathcal{G} \leq \mathcal{H}$, then $\mathcal{F} *_{*} \mathcal{G} \leq \mathcal{H}$ from

$$
\begin{aligned}
& \left(\mathcal{F} *_{*} \mathcal{G}\right)(h)=\bigvee\{\mathcal{F}(f) * \mathcal{G}(g) \mid f * g \leq h\} \\
& \leq \bigvee\{\mathcal{H}(f) * \mathcal{H}(g) \mid f * g \leq h\} \leq \bigvee\{\mathcal{H}(f * g) \mid f * g \leq h\} \leq \mathcal{H}(h)
\end{aligned}
$$

(5) Let $\mathcal{F} \in F_{*}^{s}(X)$. Since $(a \odot \top) *(b \odot c) \leq(a * b) \odot(\top * c)$, we have

$$
\begin{aligned}
& \alpha *\left(\mathcal{F} \odot_{*} \mathcal{G}\right)(h)=\alpha * \bigvee\{\mathcal{F}(f) \odot \mathcal{G}(g) \mid f * g \leq h\} \\
& \leq(\alpha \odot \top) * \bigvee\{\mathcal{F}(f) \odot \mathcal{G}(g) \mid f * g \leq h\} \\
& =\bigvee\{(\alpha * \mathcal{F}(f)) \odot \mathcal{G}(g) \mid \alpha * f * g \leq \alpha * h\} \\
& \leq \bigvee\{\mathcal{F}(\alpha * f) \odot \mathcal{G}(g) \mid \alpha * f * g \leq \alpha * h\} \leq\left(\mathcal{F} \odot_{*} \mathcal{G}\right)(\alpha * h)
\end{aligned}
$$

Similarly, $\mathcal{F} *_{*} \mathcal{G} \in F_{*}^{s}(X)$.
(6) By (4), $\mathcal{F} *_{*}\left(\bigwedge_{x \in X}[x]\right) \geq \mathcal{F}$. Moreover, we have

$$
\begin{aligned}
& \left(\mathcal{F} *_{*}\left(\bigwedge_{x \in X}[x]\right)\right)(h)=\bigvee\left\{\mathcal{F}(f) *\left(\bigwedge_{x \in X}[x]\right)(g) \mid f * g \leq h\right\} \\
& =\bigvee\left\{\mathcal{F}(f) * \bigwedge_{x \in X} g(x) \mid f * g \leq h\right\} \\
& \leq \bigvee\left\{\mathcal{F}\left(f * \bigwedge_{x \in X} g(x)\right) \mid f * g \leq h\right\} \leq \mathcal{F}(h)
\end{aligned}
$$

(7) $\mathcal{F} *_{*} \mathcal{F}$ is finer than $\mathcal{F}$ from (4). It follows from:

$$
\begin{aligned}
\left(\mathcal{F} *_{*} \mathcal{F}\right)(h) & =\bigvee\{\mathcal{F}(f) * \mathcal{F}(g) \mid f * g \leq h\} \\
& \leq \bigvee\{\mathcal{F}(f * g) \mid f * g \leq h\}=\mathcal{F}(h) \\
\left(\left(\mathcal{F} *_{*} \mathcal{G}\right) *_{*} \mathcal{H}\right)(l)= & \bigvee\left\{\left(\mathcal{F} *_{*} \mathcal{G}\right)(k) * \mathcal{H}(h) \mid k * h \leq l\right\} \\
& =\bigvee\{\bigvee(\mathcal{F}(f) * \mathcal{G}(g)) * \mathcal{H}(h) \mid f * g \leq k, k * h \leq l\} \\
& =\bigvee\{(\mathcal{F}(f) * \mathcal{G}(g)) * \mathcal{H}(h) \mid f * g * h \leq l\} \\
& =\bigvee\{\mathcal{F}(f) *(\mathcal{G}(g) * \mathcal{H}(h)) \mid f * g * h \leq l\} \\
& =\left(\mathcal{F} *_{*}\left(\mathcal{G} *_{*} \mathcal{H}\right)\right)(l)
\end{aligned}
$$

(8) For $\diamond=*$,

$$
\begin{aligned}
& \left(\left(\mathcal{F}_{1} \odot \mathcal{F}_{2}\right) *_{*}\left(\mathcal{G}_{1} \odot \mathcal{G}_{2}\right)\right)(h) \\
& =\bigvee\left\{\left(\mathcal{F}_{1} \odot \mathcal{F}_{2}\right)(f) *\left(\mathcal{G}_{1} \odot \mathcal{G}_{2}\right)(g) \mid f * g \leq h\right\} \\
& \leq \bigvee\left\{\left(\mathcal{F}_{1}(f) * \mathcal{G}_{1}(g)\right) \odot\left(\mathcal{F}_{2}(f) * \mathcal{G}_{2}(g)\right) \mid f * g \leq h\right\} \\
& \leq \bigvee\left\{\left(\mathcal{F}_{1} *_{*} \mathcal{G}_{1}\right)(f * g) \odot\left(\mathcal{F}_{2} *_{*} \mathcal{G}_{2}\right)(f * g) \mid f * g \leq h\right\} \\
& \leq\left(\mathcal{F}_{1} *_{*} \mathcal{G}_{1}\right)(h) \odot\left(\mathcal{F}_{2} *_{*} \mathcal{G}_{2}\right)(h) .
\end{aligned}
$$

Example 3.2. Let $X=\{x, y\}$ be a set. Define a map $\odot, *:[0,1] \times[0,1] \rightarrow[0,1]$ as $a \odot b=\frac{a b}{a+b-a b}$ and $a * b=a b$. Then $(L=[0,1], \odot)$ is a cl-premonoid and ( $L=[0,1], *$ ) is a GL-monoid. It satisfies
(D) $(a \odot b) *(c \odot d) \leq(a * c) \odot(b * d)$, for all $a, b, c, d \in L$ from

$$
\begin{aligned}
& (a+b-a b)(c+d-c d)-a c-b d+a b c d \\
& =b c+a d-a b c-a b d-a c d-b c d+2 a b c d \\
& =b c(1-a)+a d(1-b)-a c d(1-b)-b c d(1-a) \\
& =b c(1-a)(1-d)+a d(1-b)(1-c) \geq 0 .
\end{aligned}
$$

Hence $(L, \leq, \odot, *)$ is an ecl-premonoid. But it is not an M-ecl-premonoid because $a \odot a=\frac{a}{2-a}<a$ for $0<a<1$. Let $[x]$ and $[y]$ are stratified $(L, *)$-filters on $X$. Then $[x] \odot[y]$ is an $(L, *)$-filter on $X$ and not a stratified $(L, *)$-filter on $X$ because

$$
([x] \odot[y])(0.7 * A)=0.28 \odot 0.35 \nsupseteq 0.7 *([x] \odot[y])(A)=0.2
$$

where $A(x)=0.4, A(y)=0.5$.
For $A_{1} * A_{2}=0_{X}$ with $A_{1}(x)=1, A_{1}(y)=0$ and $A_{2}(x)=0, A_{1}(y)=1,[x]\left(A_{1}\right) \odot$ $[y]\left(A_{2}\right)=1 \neq 0$. Hence $[x] \odot_{*}[y]$ is not an $(L, *)$-filter.

Let $\phi: X \rightarrow Y$ be a function, $\mathcal{F} \in L^{\left(L^{X}\right)} L$-filter on $X$ and $\mathcal{G} \in L^{\left(L^{Y}\right)} L$-filter on $Y$. Two functions $\phi^{\Rightarrow}(\mathcal{F}): L^{Y} \rightarrow L$ and $\phi^{\digamma}(\mathcal{G}): L^{X} \rightarrow L$ are defined by

$$
\begin{gathered}
\phi^{\Rightarrow}(\mathcal{F})(g)=\mathcal{F}\left(\phi^{\leftarrow}(g)\right), \\
\phi^{\leftarrow}(\mathcal{G})(f)=\bigvee\left\{\mathcal{G}(h) \mid \phi^{\leftarrow}(h) \leq f\right\} .
\end{gathered}
$$

Definition 3.3. Let $\mathcal{F} \in F_{*}(X)$ and $\mathcal{G} \in F_{*}(Y)$. Then we define $\mathcal{F} \otimes_{\odot} \mathcal{G}: L^{X \times Y} \rightarrow$ $L$ as follows:

$$
\mathcal{F} \otimes_{\odot} \mathcal{G}=\pi_{1}^{\Leftarrow}(\mathcal{F}) \odot_{*} \pi_{2}^{\Leftarrow}(\mathcal{G})
$$

where $\pi_{1}(x, y)=x$ and $\pi_{2}(x, y)=y$.
Theorem 3.4. Let $\mathcal{F}, \mathcal{H} \in F_{*}(X)$ and $\mathcal{G} \in F_{*}(Y)$. Then we have the following properties:
(1) For $f \otimes g(x, y)=f(x) * g(y)$ and $u \in L^{X \times Y}$, we have

$$
\mathcal{F} \otimes_{\odot} \mathcal{G}(u)=\bigvee\{\mathcal{F}(f) \odot \mathcal{G}(g) \mid f \otimes g \leq u\} .
$$

(2) $\left(\mathcal{G} \otimes_{\odot} \mathcal{F}\right)^{-1}=\mathcal{F} \otimes_{\odot} \mathcal{G}$ where $\left(\mathcal{G} \otimes_{\odot} \mathcal{F}\right)^{-1}(u)=\left(\mathcal{G} \otimes_{\odot} \mathcal{F}\right)\left(u^{-1}\right)$ for $u^{-1}(x, y)=$ $u(y, x)$.
(3) $f \otimes g=\perp$ implies $\mathcal{F}(f) \odot \mathcal{G}(g)=\perp$ iff $\mathcal{F} \otimes_{\odot} \mathcal{G} \in F_{*}(X \times Y)$.
(4) If $\mathcal{F} \in F_{*}^{s}(X)$ and $\mathcal{G} \in F_{*}^{s}(Y)$, then $\mathcal{F} \otimes_{\odot} \mathcal{G} \in F_{*}^{s}(X \times Y)$.
(5) For $x \in X, \mathcal{F}, \mathcal{G} \in F_{*}(X),\left(\mathcal{F} \otimes_{\odot}[x]\right) *\left(\mathcal{G} \otimes_{\odot}[x]\right) \leq(\mathcal{F} * \mathcal{G}) \otimes_{\odot}[x]$.
(6) If $(L, \leq, \odot, *)$ is an $M$-ecl-premonoid and for $x \in X, \mathcal{F}, \mathcal{G} \in F_{*}(X),\left(\mathcal{F} \otimes_{\odot}\right.$ $[x]) \odot\left(\mathcal{G} \otimes_{\odot}[x]\right) \geq(\mathcal{F} \odot \mathcal{G}) \otimes_{\odot}[x]$.
(7) For $x \in X, \mathcal{F}, \mathcal{G} \in F_{*}(X)$, we have $\left(\mathcal{F} \otimes_{\odot}[x]\right) *_{*}\left(\mathcal{G} \otimes_{\odot}[x]\right) \leq\left(\mathcal{F} *_{*} \mathcal{G}\right) \otimes_{\odot}[x]$. In particular, $\left(\mathcal{F} \otimes_{*}[x]\right) *_{*}\left(\mathcal{G} \otimes_{*}[x]\right)=\left(\mathcal{F} *_{*} \mathcal{G}\right) \otimes_{*}[x]$.
(8) For $x \in X$ and $y \in Y, \pi_{1}^{\Rightarrow}([(x, y)])=[x]$ and $\pi_{2}^{\Rightarrow}([(x, y)])=[y]$.
(9) For $x \in X, \mathcal{F}, \mathcal{G} \in F_{*}^{s}(X)$ and $u \in L^{X \times X},\left(\mathcal{F} \otimes_{*}[x]\right)(u)=\mathcal{F}(u(-, x))$ and $\left(\mathcal{F} \otimes_{*}[x]\right) *\left(\mathcal{G} \otimes_{*}[x]\right)=(\mathcal{F} * \mathcal{G}) \otimes_{*}[x]$.
(10) For $x, y \in X$ and $u \in L^{X \times Y},\left([x] \otimes_{*}[y]\right)(u)=[x](u(-, y))=u(x, y)=$ $[(x, y)](u)$.
(11) For $x, y \in X$ and $u \in L^{X \times Y},\left([x] \otimes_{\odot}[y]\right)(u) \geq\left([x] \otimes_{*}[y]\right)(u)=[(x, y)](u)$.
(12) For $x \in X, \mathcal{F}, \mathcal{G} \in F_{*}^{s}(X)$ and $u \in L^{X \times X}$, we have $\left(\mathcal{F} \otimes_{*}[x]\right) *_{*}\left(\mathcal{G} \otimes_{*}[x]\right)(u)=$ $\left(\mathcal{F} *_{*} \mathcal{G}\right)(u(-, x))=\left(\left(\mathcal{F} *_{*} \mathcal{G}\right) \otimes_{*}[x]\right)(u)$.
(13) $\mathcal{I}_{x} \otimes_{\diamond} \mathcal{I}_{y} \geq \mathcal{I}_{(x, y)}$ for $\diamond \in\{*, \odot\}$, the equality holds, if $a * b \neq \perp$ for each $a \neq \perp$ and $b \neq \perp$, where

$$
\mathcal{I}_{y}(f)= \begin{cases}\mathrm{T}, & \text { if } f(y) \neq \perp, \\ \perp, & \text { if } f(y)=\perp .\end{cases}
$$

(14) Let $\mathcal{F}, \mathcal{H} \in F_{*}(X)$. Then $\left(\mathcal{F} \otimes_{*} \mathcal{I}_{y}\right) *\left(\mathcal{H} \otimes_{*} \mathcal{I}_{y}\right)=(\mathcal{F} * \mathcal{H}) \otimes_{*} \mathcal{I}_{y}$.

Proof. (1) From the definition of $\mathcal{F} \otimes_{\odot} \mathcal{G}$, we only show that $\bigvee\left\{\pi_{1}^{\ominus}(\mathcal{F})\left(u_{1}\right) \odot\right.$ $\left.\pi_{2}^{\leftarrow}(\mathcal{G})\left(u_{2}\right) \mid u_{1} * u_{2} \leq u\right\}=\bigvee\{\mathcal{F}(f) \odot \mathcal{G}(g) \mid f \otimes g \leq u\}$. For each $f \otimes g=\pi_{1}^{\leftarrow}(f) *$ $\pi_{2}^{\leftarrow}(g) \leq u, \mathcal{F}(f) \odot \mathcal{G}(g) \leq \pi_{1}^{\leftarrow}(\mathcal{F})\left(\pi_{1}^{\leftarrow}(f)\right) \odot \pi_{2}^{\leftarrow}(\mathcal{G})\left(\pi_{2}^{\leftarrow}(g)\right)$. Hence, $\bigvee\left\{\pi_{1}^{\leftarrow}(\mathcal{F})\left(u_{1}\right) \odot\right.$ $\left.\pi_{2}^{\leftarrow}(\mathcal{G})\left(u_{2}\right) \mid u_{1} * u_{2} \leq u\right\} \geq \bigvee\{\mathcal{F}(f) \odot \mathcal{G}(g) \mid f \otimes g \leq u\}$.

Suppose $\bigvee\left\{\pi_{1}^{\Leftarrow}(\mathcal{F})\left(u_{1}\right) \odot \pi_{2}^{\Leftarrow}(\mathcal{G})\left(u_{2}\right) \mid u_{1} * u_{2} \leq u\right\} \not 又 \bigvee\{\mathcal{F}(f) \odot \mathcal{G}(g) \mid f \otimes g \leq u\}$. Then there exist $u_{1}, u_{2} \in L^{X \times Y}$ with $u_{1} * u_{2} \leq u$ such that $\pi_{1}^{\Leftarrow}(\mathcal{F})\left(u_{1}\right) \odot \pi_{2}^{\epsilon}(\mathcal{G})\left(u_{2}\right) \not 又$ $\bigvee\{\mathcal{F}(f) \odot \mathcal{G}(g) \mid f \otimes g \leq u\}$. From the definitions of $\pi_{1}^{\Leftarrow}(\mathcal{F})\left(u_{1}\right)$ and $\pi_{2}^{\Leftarrow}(\mathcal{G})\left(u_{2}\right)$, there exist $f \in L^{X}$ and $g \in L^{Y}$ with $\pi_{1}^{\leftarrow}(f) \leq u_{1}$ and $\pi_{2}^{\leftarrow}(g) \leq u_{2}$ such that $\pi_{1}^{\leftarrow}(f)(x, y) * \pi_{2}^{\leftarrow}(g)(x, y)=f(x) * g(y) \leq u(x, y)$ and

$$
\mathcal{F}(f) \odot \mathcal{G}(g) \not \leq \bigvee\{\mathcal{F}(f) \odot \mathcal{G}(g) \mid f \otimes g \leq u\}
$$

It is a contradiction. Thus $\bigvee\left\{\pi_{1}^{\Leftarrow}(\mathcal{F})\left(u_{1}\right) \odot \pi_{2}^{\Leftarrow}(\mathcal{G})\left(u_{2}\right) \mid u_{1} * u_{2} \leq u\right\} \leq \bigvee\{\mathcal{F}(f) \odot$ $\mathcal{G}(g) \mid f \otimes g \leq u\}$.
(2) For $f \otimes g(x, y)=f(x) * g(y)$ and $u \in L^{X \times Y}$, we have

$$
\begin{aligned}
& \left(\mathcal{G} \otimes_{\odot} \mathcal{F}\right)^{-1}(u)=\left(\mathcal{G} \otimes_{\odot} \mathcal{F}\right)\left(u^{-1}\right)=\bigvee\left\{\mathcal{G}(g) \odot \mathcal{F}(f) \mid g \otimes f \leq u^{-1}\right\} \\
& =\bigvee\{\mathcal{F}(f) \odot \mathcal{G}(g) \mid f \otimes g \leq u\}=\mathcal{F} \otimes_{\odot} \mathcal{G}(u) .
\end{aligned}
$$

(3) (F2) For each $f_{1} \otimes g_{1} \leq u$ and $f_{2} \otimes g_{2} \leq v$, since $\left(f_{1} * f_{2}\right) \otimes\left(g_{1} * g_{2}\right)=$ $\left(f_{1} \otimes g_{1}\right) *\left(f_{2} \otimes g_{2}\right) \leq u * v$, we have:

$$
\begin{aligned}
& \left(\mathcal{F} \otimes_{\odot} \mathcal{G}\right)(u) *(\mathcal{F} \otimes \odot \mathcal{G})(v) \\
& =\bigvee\left\{\mathcal{F}\left(f_{1}\right) \odot \mathcal{G}\left(g_{1}\right) \mid f_{1} \otimes g_{1} \leq u\right\} * \bigvee\left\{\mathcal{F}\left(f_{2}\right) \odot \mathcal{G}\left(g_{2}\right) \mid f_{2} \otimes g_{2} \leq v\right\} \\
& \leq \bigvee\left\{\left(\mathcal{F}\left(f_{1}\right) \odot \mathcal{G}\left(g_{1}\right)\right) *\left(\mathcal{F}\left(f_{2}\right) \odot \mathcal{G}\left(g_{2}\right)\right) \mid\left(f_{1} \otimes g_{1}\right) *\left(f_{2} \otimes g_{2}\right) \leq u \odot v\right\} \\
& \leq \bigvee\left\{\left(\mathcal{F}\left(f_{1}\right) * \mathcal{F}\left(f_{2}\right)\right) \odot\left(\mathcal{G}\left(g_{1}\right) * \mathcal{G}\left(g_{2}\right)\right) \mid\left(f_{1} * f_{2}\right) \otimes\left(g_{1} * g_{2}\right) \leq u \odot v\right\} \\
& \leq \bigvee\left\{\mathcal{F}\left(f_{1} * f_{2}\right) \odot \mathcal{G}\left(g_{1} * g_{2}\right) \mid\left(f_{1} * f_{2}\right) \otimes\left(g_{1} * g_{2}\right) \leq u \odot v\right\} \\
& \leq\left(\mathcal{F} \otimes_{\odot}^{\mathcal{G}}\right)(u * v) .
\end{aligned}
$$

Other cases are easily proved.
(4) Let $f \otimes g=\perp$. Then $\mathcal{F}(f) * \mathcal{G}(g) \leq \mathcal{G}(\mathcal{F}(f) * g)$. Since $\mathcal{F}(f) * g(y) \leq$ $\mathcal{F}(f * g(y))=\mathcal{F}(\perp)=\perp$, we have $\mathcal{F}(f) * \mathcal{G}(g) \leq \mathcal{G}(\mathcal{F}(f) * g)=\perp$.

$$
\begin{aligned}
& \alpha *(\mathcal{F} \otimes \odot \mathcal{G})(u)=\alpha * \bigvee\{\mathcal{F}(f) \odot \mathcal{G}(g) \mid f \otimes g \leq u\} \\
& =\bigvee\{\alpha *(\mathcal{F}(f) \odot \mathcal{G}(g)) \mid f \otimes g \leq u\} \\
& \leq \bigvee\{(\alpha \odot T) *(\mathcal{F}(f) \odot \mathcal{G}(g)) \mid f \otimes g \leq u\} \\
& \leq \bigvee\{(\alpha * \mathcal{F}(f)) \odot(\top * \mathcal{G}(g)) \mid(\alpha * f) \otimes g \leq \alpha * u\} \\
& \leq \bigvee\{\mathcal{F}(\alpha * f)) \odot \mathcal{G}(g) \mid(\alpha * f) \otimes g \leq \alpha * u\} \\
& \leq\left(\mathcal{F} \otimes_{\odot} \mathcal{G}\right)(\alpha * u) .
\end{aligned}
$$

(5) Suppose there exists $u \in L^{X \times X}$ such that

$$
\left(\left(\mathcal{F} \otimes_{\odot}[x]\right) *\left(\mathcal{G} \otimes_{\odot}[x]\right)\right)(u) \not \leq\left((\mathcal{F} * \mathcal{G}) \otimes_{\odot}[x]\right)(u) .
$$

There exist $f_{i} \in L^{X}, g_{i} \in L^{X}$ with $\left(f_{i} \otimes g_{i}\right) \leq u$ such that

$$
\left(\mathcal{F}\left(f_{1}\right) \odot[x]\left(g_{1}\right)\right) *\left(\mathcal{G}\left(f_{2}\right) \odot[x]\left(g_{2}\right)\right) \not \leq\left((\mathcal{F} * \mathcal{G}) \otimes_{\odot}[x]\right)(u) .
$$

Since $\left(\mathcal{F}\left(f_{1}\right) \odot[x]\left(g_{1}\right)\right) *\left(\mathcal{G}\left(f_{2}\right) \odot[x]\left(g_{2}\right)\right) \leq\left(\mathcal{F}\left(f_{1}\right) * \mathcal{G}\left(f_{2}\right)\right) \odot\left([x]\left(g_{1}\right) *[x]\left(g_{2}\right)\right)$, we have

$$
\left(\mathcal{F}\left(f_{1}\right) * \mathcal{G}\left(f_{2}\right)\right) \odot[x]\left(g_{1} * g_{2}\right) \not \leq\left((\mathcal{F} * \mathcal{G}) \otimes_{\odot}[x]\right)(u) .
$$

On the other hand, since $\left(f_{1} \vee f_{2}\right) \otimes\left(g_{1} * g_{2}\right) \leq\left(f_{1} \otimes g_{1}\right) \vee\left(f_{2} \otimes g_{2}\right) \leq u$,

$$
\begin{aligned}
& \left((\mathcal{F} * \mathcal{G}) \otimes_{\odot}[x]\right)(u) \geq(\mathcal{F} * \mathcal{G})\left(f_{1} \vee f_{2}\right) \odot[x]\left(g_{1} * g_{2}\right) \\
& \geq \mathcal{F}\left(f_{1}\right) * \mathcal{G}\left(f_{2}\right) \odot[x]\left(g_{1} * g_{2}\right) .
\end{aligned}
$$

It is a contradiction. Hence the result holds.
(6) Suppose there exist $x \in X$ and $u \in L^{X \times X}$ such that

$$
\left(\left(\mathcal{F} \otimes_{\odot}[x]\right) \odot\left(\mathcal{G} \otimes_{\odot}[x]\right)(u) \nsupseteq\left((\mathcal{F} \odot \mathcal{G}) \otimes_{\odot}[x]\right)(u) .\right.
$$

There exist $f \in L^{X}, g \in L^{X}$ with $f \otimes g \leq u$ such that

$$
\left(\left(\mathcal{F} \otimes_{\odot}[x]\right) \odot\left(\mathcal{G} \otimes_{\odot}[x]\right)(u) \nsupseteq(\mathcal{F} \odot \mathcal{G})(f) \odot[x](g) .\right.
$$

On the other hand, since $(L, \leq, \odot, *)$ is an M-ecl-premonoid,

$$
\begin{aligned}
& \left(\left(\mathcal{F} \otimes_{\odot}[x]\right) \odot\left(\mathcal{G} \otimes_{\odot}[x]\right)\right)(u) \geq\left(\mathcal{F} \otimes_{\odot}[x]\right)(u) \odot\left(\mathcal{G} \otimes_{\odot}[x]\right)(u) \\
& \geq \mathcal{F}(f) \odot \mathcal{G}(f) \odot[x](g) \odot[x](g) \geq \mathcal{F}(f) \odot \mathcal{G}(f) \odot[x](g) .
\end{aligned}
$$

It is a contradiction. Hence $\left(\mathcal{F} \otimes_{\odot}[x]\right) \odot\left(\mathcal{G} \otimes_{\odot}[x]\right) \geq(\mathcal{F} \odot \mathcal{G}) \otimes_{\odot}[x]$.
(7) For $x \in X, \mathcal{F}, \mathcal{G} \in F_{*}(X)$,

$$
\begin{aligned}
& \left(\left(\mathcal{F} \otimes_{\odot}[x]\right) *_{*}\left(\mathcal{G} \otimes_{\odot}[x]\right)\right)(u) \\
& =\bigvee\left\{\left(\mathcal{F} \otimes_{\odot}[x]\right)\left(u_{1}\right) *\left(\mathcal{G} \otimes_{\odot}[x]\right)\left(u_{2}\right) \mid u_{1} * u_{2} \leq u\right\} \\
& =\bigvee\left\{\left(\mathcal{F}\left(f_{1}\right) \odot[x]\left(g_{1}\right)\right) *\left(\mathcal{G}\left(f_{2}\right) \odot[x]\left(g_{2}\right)\right) \mid f_{i} \otimes g_{i} \leq u_{i}, u_{1} * u_{2} \leq u\right\} \\
& \leq \bigvee\left\{\left(\mathcal{F}\left(f_{1}\right) * \mathcal{G}\left(f_{2}\right) \odot\left([x]\left(g_{1}\right) *[x]\left(g_{2}\right)\right) \mid f_{i} \otimes g_{i} \leq u_{i}, u_{1} * u_{2} \leq u\right\}\right. \\
& \leq \bigvee\left\{\left(\mathcal{F} *_{*} \mathcal{G}\right)\left(f_{1} * g_{1}\right) \odot[x]\left(g_{1} * g_{2}\right) \mid\left(f_{1} * f_{2}\right) \otimes\left(g_{1} * g_{2}\right) \leq u\right\} \\
& \leq\left(\left(\mathcal{F} *_{*} \mathcal{G}\right) \otimes_{\odot}[x]\right)(u) .
\end{aligned}
$$

Similarly, $\left(\mathcal{F} \otimes_{*}[x]\right) *_{*}\left(\mathcal{G} \otimes_{*}[x]\right) \leq\left(\mathcal{F} *_{*} \mathcal{G}\right) \otimes_{*}[x]$.
Suppose there exists $u \in L^{X \times X}$ such that

$$
\left(\left(\mathcal{F} \otimes_{*}[x]\right) *_{*}\left(\mathcal{G} \otimes_{*}[x]\right)\right)(u) \nsupseteq\left(\left(\mathcal{F} *_{*} \mathcal{G}\right) \otimes_{*}[x]\right)(u) .
$$

There exist $f, g \in L^{X}$ with $f \otimes g \leq u$ such that

$$
\left(\left(\mathcal{F} \otimes_{*}[x]\right) *_{*}\left(\mathcal{G} \otimes_{*}[x]\right)\right)(u) \nsupseteq\left(\mathcal{F} *_{*} \mathcal{G}\right)(f) *[x](g) .
$$

There exist $f_{1}, f_{2} \in L^{X}$ with $\left(f_{1} * f_{2}\right) \otimes g \leq f \otimes g \leq u$ such that

$$
\left(\left(\mathcal{F} \otimes_{*}[x]\right) *_{*}\left(\mathcal{G} \otimes_{*}[x]\right)\right)(u) \nsupseteq\left(\mathcal{F}\left(f_{1}\right) * \mathcal{G}\left(f_{2}\right)\right) *[x](g) .
$$

There exist $g_{1}, g_{2} \in L^{X}$ with $g_{1} * g_{2}=g$ such that

$$
\begin{aligned}
& \left(f_{1} * f_{2}\right) \otimes g=\left(f_{1} * f_{2}\right) \otimes\left(g_{1} * g_{2}\right) \\
& =\left(f_{1} \otimes g_{1}\right) *\left(f_{2} \otimes g_{2}\right) \leq f \otimes g \leq u
\end{aligned}
$$

Thus, we have

$$
\begin{aligned}
& \left(\left(\mathcal{F} \otimes_{*}[x]\right) *_{*}\left(\mathcal{G} \otimes_{*}[x]\right)\right)(u) \\
& \geq\left(\mathcal{F} \otimes_{*}[x]\right)\left(f_{1} \otimes g_{1}\right) *\left(\left(\mathcal{G} \otimes_{*}[x]\right)\left(f_{2} \otimes g_{2}\right)\right. \\
& \geq\left(\mathcal{F}\left(f_{1}\right) *[x]\left(g_{1}\right)\right) *\left(\mathcal{G}\left(f_{2}\right) *[x]\left(g_{2}\right)\right)=\left(\mathcal{F}\left(f_{1}\right) * \mathcal{G}\left(f_{2}\right)\right) *[x](g)
\end{aligned}
$$

It is a contradiction. Hence $\left(\mathcal{F} \otimes_{*}[x]\right) *_{*}\left(\mathcal{G} \otimes_{*}[x]\right)=\left(\mathcal{F} *_{*} \mathcal{G}\right) \otimes_{*}[x]$.
(8) $\pi_{1}^{\Rightarrow}([(x, y)])(h)=[(x, y)]\left(\pi_{1}^{\leftarrow}(h)\right)=h\left(\pi_{1}(x, y)\right)=h(x)=[x](h)$.
(9) For $x \in X$ and $\mathcal{F} \in F_{*}^{s}(X)$,
$\left(\mathcal{F} \otimes_{*}[x]\right)(u)=\bigvee\{\mathcal{F}(f) *[x](g) \mid f \otimes g \leq u\}$
$=\bigvee\{\mathcal{F}(f) * g(x) \mid f \otimes g \leq u\} \leq \bigvee\{\mathcal{F}(g(x) * f) \mid f(-) \otimes g(x) \leq u(-, x)\}$
$\leq \mathcal{F}(u(-, x))$.

$$
\begin{aligned}
& \left(\mathcal{F} \otimes_{*}[x]\right)(u)=\bigvee\{\mathcal{F}(f) *[x](g) \mid f \otimes g \leq u\} \\
& \geq\left\{\mathcal{F}(u(-, x)) * 1_{X}(x) \mid u(-, x) \otimes 1_{X} \leq u(-, x)\right\}=\mathcal{F}(u(-, x)) \\
& \quad\left(\left(\mathcal{F} \otimes_{*}[x]\right) *\left(\mathcal{G} \otimes_{*}[x]\right)\right)(u)=\mathcal{F}(u(-, x)) * \mathcal{G}(u(-, x)) \\
& \quad=(\mathcal{F} * \mathcal{G})(u(-, x))=\left((\mathcal{F} * \mathcal{G}) \otimes_{*}[x]\right)(u)
\end{aligned}
$$

(10) Since $[x] \in F_{*}^{s}(X)$, by (9), the results hold.
(11) It is easy from the definition of $\otimes_{\odot}$.
(12) For $x \in X, \mathcal{F}, \mathcal{G} \in F_{*}^{s}(X)$ and $u \in L^{X \times X}$,

$$
\begin{aligned}
& \left(\left(\mathcal{F} \otimes_{*}[x]\right) *_{*}\left(\mathcal{G} \otimes_{*}[x]\right)\right)(u) \\
& =\bigvee\left\{\left(\mathcal{F} \otimes_{*}[x]\right)\left(u_{1}\right) *(\mathcal{G} \otimes[x])\left(u_{2}\right) \mid u_{1} * u_{2} \leq u\right\} \\
& =\bigvee\left\{\mathcal{F}\left(u_{1}(-, x)\right) * \mathcal{G}\left(u_{2}(-, x)\right) \mid u_{1}(-, x) * u_{2}(-, x) \leq u(-, x)\right\} \\
& =\left(\mathcal{F} *_{*} \mathcal{G}\right)(u(-, x))=\left(\left(\mathcal{F} *_{*} \mathcal{G}\right) \otimes_{*}[x]\right)(u) .
\end{aligned}
$$

(13) Let $u(x, y)=f(x) * g(y) \neq \perp$ such that $\mathcal{I}_{(x, y)}(u)=\mathrm{T}$. Then $f(x) \neq \perp$ and $g(y) \neq \perp$. Hence $\left(\mathcal{I}_{x} \otimes_{\odot} \mathcal{I}_{y}\right)(u) \geq \mathcal{I}_{x}(f) \odot \mathcal{I}_{y}(g)=\top$. So, $\mathcal{I}_{x} \otimes_{\odot} \mathcal{I}_{y} \geq \mathcal{I}_{(x, y)}$. Let $\left(\mathcal{I}_{x} \otimes_{\odot} \mathcal{I}_{y}\right)(w) \neq \perp$. Then there exist $f(x) \neq \perp$ and $g(y) \neq \perp$ with $f \otimes g \leq w$. Since $f(x) * g(y) \neq \perp$ for each $f(x) \neq \perp$ and $g(y) \neq \perp, \perp \neq f(x) * g(y) \leq w(x, y)$. Hence $\mathcal{I}_{(x, y)}(w)=\mathrm{T} . \mathrm{So}, \mathcal{I}_{x} \otimes_{\odot} \mathcal{I}_{y} \leq \mathcal{I}_{(x, y)}$.
(14) Suppose there exist $y \in Y$ and $\perp_{X \times Y} \neq u \in L^{X \times Y}$ such that

$$
\left(\left(\mathcal{F} \otimes_{*} \mathcal{I}_{y}\right) *\left(\mathcal{H} \otimes_{*} \mathcal{I}_{y}\right)\right)(u) \not \leq\left((\mathcal{F} * \mathcal{H}) \otimes_{*} \mathcal{I}_{y}\right)(u) .
$$

There exist $f_{i} \in L^{X}, g_{i} \in L^{Y}$ with $\left(f_{i} \otimes g_{i}\right) \leq u$ and $g_{i}(y) \neq \perp$ such that

$$
\left(\mathcal{F}\left(f_{1}\right) * \mathcal{I}_{y}\left(g_{1}\right)\right) *\left(\mathcal{H}\left(f_{2}\right) * \mathcal{I}_{y}\left(g_{2}\right)\right) \not \leq\left((\mathcal{F} * \mathcal{H}) \otimes_{*} \mathcal{I}_{y}\right)(u) .
$$

Thus, $\mathcal{F}\left(f_{1}\right) * \mathcal{H}\left(f_{2}\right) \not \leq\left((\mathcal{F} * \mathcal{H}) \otimes_{*} \mathcal{I}_{y}\right)(u)$.
On the other hand, since $\left(f_{1} \vee f_{2}\right) \otimes\left(g_{1} \wedge g_{2}\right) \leq\left(f_{1} \otimes g_{1}\right) \vee\left(f_{2} \otimes g_{2}\right) \leq u$,

$$
\begin{aligned}
\left((\mathcal{F} * \mathcal{H}) \otimes_{*} \mathcal{I}_{y}\right)(u) & \geq(\mathcal{F} * \mathcal{H})\left(f_{1} \vee f_{2}\right) * \mathcal{I}_{y}\left(g_{1} \wedge g_{2}\right) \\
& \geq \mathcal{F}\left(f_{1}\right) * \mathcal{H}\left(f_{2}\right) .
\end{aligned}
$$

It is a contradiction. Hence $\left(\mathcal{F} \otimes_{*} \mathcal{I}_{y}\right) *\left(\mathcal{H} \otimes_{*} \mathcal{I}_{y}\right) \leq(\mathcal{F} * \mathcal{H}) \otimes_{*} \mathcal{I}_{y}$.
Suppose there exist $y \in Y$ and $\perp_{X \times Y} \neq u \in L^{X \times Y}$ such that

$$
\left(\left(\mathcal{F} \otimes_{*} \mathcal{I}_{y}\right) *\left(\mathcal{H} \otimes_{*} \mathcal{I}_{y}\right)\right)(u) \nsupseteq\left((\mathcal{F} * \mathcal{H}) \otimes_{*} \mathcal{I}_{y}\right)(u) .
$$

There exist $f \in L^{X}, g \in L^{Y}$ with $f \otimes g \leq u$ and $g(y) \neq \perp$ such that

$$
\left(\left(\mathcal{F} \otimes_{*} \mathcal{I}_{y}\right) *\left(\mathcal{H} \otimes_{*} \mathcal{I}_{y}\right)\right)(u) \nsupseteq(\mathcal{F} * \mathcal{H})(f) * \mathcal{I}_{y}(g) .
$$

On the other hand,

$$
\begin{aligned}
\left(\left(\mathcal{F} \otimes_{*} \mathcal{I}_{y}\right) *\left(\mathcal{H} \otimes_{*} \mathcal{I}_{y}\right)\right)(u) & \geq\left(\mathcal{F} \otimes_{*} \mathcal{I}_{y}\right)(u) *\left(\mathcal{H} \otimes_{*} \mathcal{I}_{y}\right)(u) \\
& \geq \mathcal{F}(f) * \mathcal{H}(f) .
\end{aligned}
$$

It is a contradiction. Hence $\left(\mathcal{F} \otimes_{*} \mathcal{I}_{y}\right) *\left(\mathcal{H} \otimes_{*} \mathcal{I}_{y}\right) \geq(\mathcal{F} * \mathcal{H}) \otimes_{*} \mathcal{I}_{y}$.

Example 3.5. Let $X=\left\{x_{1}, x_{2}\right\}$ and $Y=\left\{y_{1}, y_{2}\right\}$ be sets, $(L=[0,1], *)$ an GLmonoid with $a * b=a \cdot b$ and $f, g \in[0,1]^{X}$ as follows:

$$
f\left(x_{1}\right)=1, f\left(x_{2}\right)=0.6, \quad g\left(x_{1}\right)=0.5, g\left(x_{2}\right)=1 .
$$

Define $([0,1], *)$-filters as $\mathcal{F}:[0,1]^{X} \rightarrow[0,1]$ and $\mathcal{G}:[0,1]^{Y} \rightarrow[0,1]$ as follows:

$$
\begin{aligned}
& \mathcal{F}(h)= \begin{cases}1, & \text { if } h=1_{X}, \\
0.4^{n}, & \text { if } f^{n} \leq h \nsupseteq f^{n-1}, n \in N \\
0, & \text { otherwise, }\end{cases} \\
& \mathcal{G}(h)= \begin{cases}1, & \text { if } h=1_{X}, \\
0.3^{n}, & \text { if } g^{n} \leq h \ngtr g^{n-1}, n \in N \\
0, & \text { otherwise },\end{cases}
\end{aligned}
$$

where $k^{n}=k^{n-1} * k$ and $k^{0}=1$.
(1) Let $x \odot y=x^{\frac{1}{3}} \cdot y^{\frac{1}{3}}$. Since $h * k=\perp_{X \times Y}$ implies $\mathcal{F}(h) \odot \mathcal{G}(k)=\perp$, we obtain $([0,1], *)$-filters as $\mathcal{F} \otimes_{\odot} \mathcal{G}:[0,1]^{X} \rightarrow[0,1]$ as follows:

$$
\mathcal{F} \otimes_{\odot} \mathcal{G}(h)= \begin{cases}1, & \text { if } h=1_{X}, \\ 0.4^{n} \odot 0.3^{m}, & \text { if } f^{n} * g^{m} \leq h \nsupseteq f^{n-1} * g^{m}, \\ 0, & f^{n} * g^{m} \leq h \nsupseteq f^{n} * g^{m-1}, \\ \text { otherwise, }\end{cases}
$$

where $k^{[n]}=k^{[n-1]} \odot k$ and $k^{0}=1$.
(2) For $u \in[0,1]^{X \times X}$ with

$$
u\left(x_{1}, x_{1}\right)=0.3, u\left(x_{1}, x_{2}\right)=1, u\left(x_{2}, x_{1}\right)=0.8, u\left(x_{2}, x_{2}\right)=0.7,
$$

For $1_{X} \otimes h \leq 0.9 * u$ with $h\left(x_{1}\right)=0.27, h\left(x_{2}\right)=0.63, \mathcal{F} \otimes_{*} \mathcal{G}(0.9 * u)=\mathcal{F}\left(1_{X}\right) *$ $\left[x_{2}\right](h)=0.63=0.9 *\left(\mathcal{F} \otimes_{*} \mathcal{G}\right)(u) \neq \mathcal{F}\left(0.9 * u\left(-, x_{2}\right)\right)=0$.

## References

1. R. Bělohlávek: Fuzzy Relational Systems. Kluwer Academic Publishers, New York, 2002.
2. W. Gähler: The general fuzzy filter approach to fuzzy topology $I$. Fuzzy Sets and Systems 76 (1995), 205-224.
3. $\qquad$ : The general fuzzy filter approach to fuzzy topology $I I$. Fuzzy Sets and Systems 76 (1995), 225-246.
4. U. Höhle \& A.P. Sostak: Axiomatic foundation of fixed-basis fuzzy topology. Chapter 3 in Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory, Handbook of fuzzy set series, Kluwer Academic Publisher, Dordrecht, 1999.
5. G. Jäger: Subcategories of lattice-valued convergence spaces. Fuzzy Sets and Systems 156 (2005), 1-24.
6. $\qquad$ : Pretopological and topological lattice-valued convergence spaces. Fuzzy Sets and Systems 158 (2007), 424-435.
7. Jinming Fang: Stratified L-order convergence structures. Fuzzy Sets and Systems 161 (2010), 2130-2149.
8. Y.C. Kim \& J.M. Ko: Images and preimages of L-filter bases. Fuzzy Sets and Systems 173 (2005), 93-113.
9. $\qquad$ $:(L, *, \odot)$-quasiuniform convergence spaces. Submit to International Journal of Pure and Applied Mathematics.
10. D. Orpen \& G. Jäger: Lattice-valued convergence spaces. Fuzzy Sets and Systems 190 (2012), 1-20.
${ }^{\text {a }}$ Ingenium College of Liberal Arts-Mathematics, Kwangwoon University, Seoul 01897, Korea
Email address: yhkim@kw.ac.kr
${ }^{\text {b }}$ Department of Computer Science Engineering, Gangneung-Wonju National Wonju 26403, Korea
Email address: twkang@gwnu.ac.kr
${ }^{\text {c Department of Mathematics,Gangneung-Wonju National Gangneung 25457, Korea }}$
Email address: yck@gwnu.ac.kr

[^0]:    Received by the editors February 17, 2018. Accepted October 30, 2018.
    2010 Mathematics Subject Classification. 03E72, 54A40,54B10.
    Key words and phrases. GL-monoid, cl-premonoid, ecl-premonoid, ( $L, *$ )-filters.
    ${ }^{*}$ This work was supported by the Research Institute of Natural Science of Gangneung-Wonju National University.

    * Corresponding author.

