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FILTER SPACES ON ECL-PREMONOIDS

Young-Hee Kim a, Taewon Kang b and Yong Chan Kim c, ∗

Abstract. In this paper, we introduce the notion of the (L, ∗)-filter spaces on ecl-
premonoids. Moreover, we obtain various (L, ∗)-filters incuced by two (L, ∗)-filters
and give their examples.

1. Introduction

Filter spaces are very useful tools in several area of mathematical structures with

direct applications, both mathematical (e.g. topology, logic) and extramathemati-

cal (e.g. data mining, knowledge representation). In fuzzy set theory, Gäher [2,3]

introduced the notions of fuzzy filters in a frame L. Höhle and Sostak [4] introduced

the concept of L-filters for a complete quasimonoidal lattice L. Kim and Ko [8,9]

introduced the images and preimages of L-filter bases on stsc quantales and devel-

oped (L, ∗,⊙)-quasiuniform convergence spaces on ecl-premonoid in Orpen’s sense

[10].

In this paper, we introduce the notion of the (L, ∗)-filter spaces on ecl-premonoids

in Orpen’s sense [10]. Moreover, we obtain various (L, ∗)-filters incuced by two

(L, ∗)-filters and give their examples.

2. Preliminaries

In this paper, we consider complete lattices (L,≤,⊥,⊤) with bottom element ⊥
and top element ⊤.
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Definition 2.1 ([1, 4, 10]). A complete lattice (L,≤,⊥,⊤) is called a GL-monoid

(L,≤, ∗,⊥,⊤) with a binary operation ∗ : L×L → L satisfying the following condi-

tions:

(G1) a ∗ ⊤ = a, for all a ∈ L,

(G2) a ∗ b = b ∗ a, for all a, b ∈ L,

(G3) a ∗ (b ∗ c) = (a ∗ b) ∗ c, for all a, b ∈ L,

(G4) if a ≤ b, there exists c ∈ L such that b ∗ c = a,

(G5) a ∗
∨

i∈Γ bi =
∨

i∈Γ(a ∗ bi).
We can define an implication operator:

a ⇒ b =
∨

{c | a ∗ c ≤ b}.

Remark 2.2 ([1, 4, 10]). (1) A continuous t-norm ([0, 1],≤, ∗) is a GL-monoid.

(2) A frame (L,≤,∧) is a GL-monoid.

Definition 2.3 ([1, 4, 10]). A complete lattice (L,≤,⊥,⊤) is called a cl-premonoid

(L,≤,⊙) with a binary operation ⊙ : L×L → L satisfying the following conditions:

(CL1) a ≤ a⊙⊤ and a ≤ ⊤⊙ a, for all a ∈ L,

(CL2) if a ≤ b and c ≤ d, then a⊙ c ≤ b⊙ d,

(CL3) a⊙
∨

i∈Γ bi =
∨

i∈Γ(a⊙ bi) and
∨

j∈Γ aj ⊙ b =
∨

j∈Γ(aj ⊙ b).

We can define an implication operator:

a → b =
∨

{c | a⊙ c ≤ b}.

Example 2.4. (1) Every GL-monoid (L,≤, ∗) is a cl-premonoid.

(2) Defines maps ⊙i : [0, 1]× [0, 1] → [0, 1] as follows:

x⊙1 y = x
1
p · y

1
p (p ≥ 1), x⊙2 y = (xp + yp) ∧ 1(p ≥ 1).

Then (L,≤,⊙i) is a cl-premonoid for i = 1, 2.

Definition 2.5 ([1, 4, 10]). A complete lattice (L,≤,⊥,⊤) is called an ecl-premonoid

(L,≤,⊙, ∗) with a GL-monoid (L,≤, ∗) and a cl-premonoid (L,≤,⊙) which satisfy

the following condition:

(D) (a⊙ b) ∗ (c⊙ d) ≤ (a ∗ c)⊙ (b ∗ d), for all a, b, c, d ∈ L.

An ecl-premonoid (L,≤,⊙, ∗) is called an M-ecl-premonoid if it satisfies the fol-

lowing condition:

(M) a ≤ a⊙ a for all a ∈ L.

Example 2.6. (1) Let (L,≤, ∗) be a GL-monoid and (L,≤,∧) is a cl-premonoid.

Then (L,≤,∧, ∗) is an M-ecl-premonoid.
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(2) Let (L,≤, ∗) be a GL-monoid. Then (L,≤, ∗, ∗) is an ecl-premonoid. If ∗ = ·,
0.5 ̸≤ 0.5 · 0.5 = 0.25. (L,≤, ·, ·) is not an M-ecl-premonoid.

(3) Let (L,≤, ·) be a GL-monoid. Define a map ⊙ : [0, 1] × [0, 1] → [0, 1] as

x⊙ y = (x+ y) ∧ 1. Then (L,≤,⊙, ·) is not an M-cl-premonoid because

0.7 = (0.3⊙ 0.4) · (0.5⊙ 0.7) ̸≤ (0.3 · 0.5)⊙ (0.4 · 0.7) = 0.15 + 0.28 = 0.43

(4) Let (L,≤, ·) be a GL-monoid. Define a map ⊙ : [0, 1] × [0, 1] → [0, 1] as

x⊙ y = x
1
3 · y

1
3 . Then (L,≤,⊙, ·) is an M-cl-premonoid.

In this paper, we always assume that (L,≤,⊙, ∗) is an ecl-premonoid unless

otherwise specified.

Lemma 2.7 ([1, 4, 9, 10]). Let (L,≤,⊙, ∗) be an ecl-premonoid. For each a, b, c, d, ai, bi ∈
L and for ↑∈ {→,⇒}, we have the following properties.

(1) If b ≤ c, then a⊙ b ≤ a⊙ c and a ∗ b ≤ a ∗ c.
(2) a⊙ b ≤ c iff a ≤ b → c. Moreover, a ∗ b ≤ c iff a ≤ b ⇒ c.

(3) If b ≤ c, then a ↑ b ≤ a ↑ c and c ↑ a ≤ b ↑ a.

(4) a ≤ b iff a ⇒ b = ⊤.

(5) a ∗ b ≤ a⊙ b, a → b ≤ a ⇒ b and a ∗ (b⊙ c) ≤ (a ∗ b)⊙ c.

(6) (a ↑ b)⊙ (c ↑ d) ≤ (a⊙ c) ↑ (b⊙ d).

(7) (b ↑ c) ≤ (a⊙ b) ↑ (a⊙ c).

(8) (b ↑ c) ≤ (a ↑ b) ↑ (a ↑ c) and (b ↑ a) ≤ (a ↑ c) ↑ (b ↑ c).

(9) (b → c) ≤ (a ↑ b) → (a ↑ c) and (b ↑ a) ≤ (a → c) → (b ↑ c)

(10) ai ↑ bi ≤ (
∧

i∈Γ ai) ↑ (
∧

i∈Γ bi).

(11) ai ↑ bi ≤ (
∨

i∈Γ ai) ↑ (
∨

i∈Γ bi).

(12) (c ↑ a) ∗ (b → d) ≤ (a → b) → (c ↑ d).

Definition 2.8 ([4, 10]). A mapping F : LX → L is called an (L, ∗)-filter on X if

it satisfies the following conditions:

(F1) F(⊥X) = ⊥ and F(⊤X) = ⊤, where ⊥X(x) = ⊥,⊤X(x) = ⊤ for x ∈ X.

(F2) F(f ∗ g) ≥ F(f) ∗ F(g), for each f, g ∈ LX ,

(F3) if f ≤ g, F(f) ≤ F(g).

An (L, ∗)-filter is called stratified if

(S) F(α ∗ f) ≥ α ∗ F(f) for each f ∈ LX and α ∈ L.

The pair (X,F) is called an (resp. a stratified)(L, ∗)-filter space. Let F∗(X) (resp.

F s
∗ (X)) is a family of (resp. stratified) (L, ∗)-filters on X.
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Example 2.9. (1) Define a map [x] : LX → L as [x](f) = f(x). Then [x] is a

stratified (L, ∗)-filter on X.

(2) Define a map inf : LX → L as inf(f) =
∧

x∈X f(x). Then inf is a stratified

(L, ∗)-filter on X.

3. Filter Spaces on ecl-premonoids

Theorem 3.1. For F ,G ∈ F∗(X) and for ⋄ ∈ {⊙, ∗}, we define F ⋄ G,F ⋄∗ G :

LX → L as follows:

(F ⋄ G)(h) = F(h) ⋄ G(h)

F ⋄∗ G(h) =
∨

{F(f) ⋄ G(g) | f ∗ g ≤ h}.

Then we have the following properties:

(1) F ⋄ G is an (L, ∗)-filter on X for ⋄ ∈ {⊙, ∗}.
(2) If (L,≤,⊙, ∗) is an M-ecl-premonoid and F ,G ∈ F s

∗ (X), then F⊙G ∈ F s
∗ (X).

(3) If f ∗ g = ⊥ implies F(f)⊙G(g) = ⊥, then F ⊙∗ G ∈ F∗(X) is the filter finer

than F and G.
(4) If f ∗ g = ⊥ implies F(f) ∗ G(g) = ⊥, then F ∗∗ G is an (L, ∗)-filter on X

which is the coarsest filter finer than F and G.
(5) If F ∈ F s

∗ (X) or G ∈ F s
∗ (X), then F ⋄∗ G ∈ F s

∗ (X) for ⋄ ∈ {⊙, ∗}.
(6) If F ∈ F s

∗ (X), then F ∗∗ (
∧

x∈X [x]) = F .

(7) F ∗∗ F = F and (F ∗∗ G) ∗∗ H = F ∗∗ (G ∗∗ H).

(8) (F1 ⊙F2) ⋄∗ (G1 ⊙ G2) ≤ (F1 ⋄∗ G1)⊙ (F2 ⋄∗ G2) for ⋄ ∈ {⊙, ∗}.

Proof. (1) Since ⊤ = ⊤ ⊙ ⊤ and ⊥ = ⊥ ⊙ ⊥ from (CL3), (F ⊙ G)(⊤) = ⊤ and

(F ⊙ G)(⊥) = ⊥. For each f, g ∈ LX ,

(F ⊙ G)(f ∗ g) = F(f ∗ g)⊙ G(f ∗ g) ≥ (F(f) ∗ F(g))⊙ (G(f) ∗ G(g))
≥ (F(f)⊙ G(f)) ∗ (F(g)⊙ G(g)) = (F ⊙ G)(f) ∗ (F ⊙ G)(g).

Hence F ⊙ G is an (L, ∗)-filter. Similarly, F ∗ G is an (L, ∗)-filter.
(2) For each f ∈ LX and α ∈ L,

(F ⊙ G)(α ∗ f) = F(α ∗ f)⊙ G(α ∗ f) ≥ (α ∗ F(f))⊙ (α ∗ G(f))
≥ (α⊙ α) ∗ (F(f)⊙ G(f)) ≥ α ∗ (F ⊙ G)(f).

Hence F ⊙ G is a stratified (L, ∗)-filter.
(3) (F1) Since f ∗ g = ⊥ implies F(f)⊙ G(g) = ⊥, (F ⊙∗ G)(⊥X) = ⊥.
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(F2) is easy. (F3)

(F ⊙∗ G)(h1) ∗ (F ⊙∗ G)(h2)
=

∨
{F(f1)⊙ G(g1) | f1 ∗ g1 ≤ h1} ∗

∨
{F(f2)⊙ G(g2) | f2 ∗ g2 ≤ h2}

=
∨
{(F(f1)⊙ G(g1)) ∗ (F(f2)⊙ G(g2)) | f1 ∗ g1 ≤ h1, f2 ∗ g2 ≤ h2}

≤
∨
{(F(f1) ∗ F(g2))⊙ (G(g1) ∗ G(g2)) | (f1 ∗ g1) ∗ (f2 ∗ g2) ≤ h1 ⊙ h2}

≤
∨
{F(f1 ∗ f2)⊙ G(g1 ∗ g2) | (f1 ∗ f2) ∗ (g1 ∗ g2) ≤ h1 ∗ h2}

≤ (F ⊙∗ G)(h1 ∗ h2).

(4) By a similar method, F ∗∗ G is an (L, ∗)-filter on X.

If F ≤ H and G ≤ H, then F ∗∗ G ≤ H from

(F ∗∗ G)(h) =
∨
{F(f) ∗ G(g) | f ∗ g ≤ h}

≤
∨
{H(f) ∗ H(g) | f ∗ g ≤ h} ≤

∨
{H(f ∗ g) | f ∗ g ≤ h} ≤ H(h).

(5) Let F ∈ F s
∗ (X). Since (a⊙⊤) ∗ (b⊙ c) ≤ (a ∗ b)⊙ (⊤ ∗ c), we have

α ∗ (F ⊙∗ G)(h) = α ∗
∨
{F(f)⊙ G(g) | f ∗ g ≤ h}

≤ (α⊙⊤) ∗
∨
{F(f)⊙ G(g) | f ∗ g ≤ h}

=
∨
{(α ∗ F(f))⊙ G(g) | α ∗ f ∗ g ≤ α ∗ h}

≤
∨
{F(α ∗ f)⊙ G(g) | α ∗ f ∗ g ≤ α ∗ h} ≤ (F ⊙∗ G)(α ∗ h).

Similarly, F ∗∗ G ∈ F s
∗ (X).

(6) By (4), F ∗∗ (
∧

x∈X [x]) ≥ F . Moreover, we have

(F ∗∗ (
∧

x∈X [x]))(h) =
∨
{F(f) ∗ (

∧
x∈X [x])(g) | f ∗ g ≤ h}

=
∨
{F(f) ∗

∧
x∈X g(x) | f ∗ g ≤ h}

≤
∨
{F(f ∗

∧
x∈X g(x)) | f ∗ g ≤ h} ≤ F(h).

(7) F ∗∗ F is finer than F from (4). It follows from:

(F ∗∗ F)(h) =
∨
{F(f) ∗ F(g) | f ∗ g ≤ h}

≤
∨
{F(f ∗ g) | f ∗ g ≤ h} = F(h),

((F ∗∗ G) ∗∗ H)(l) =
∨
{(F ∗∗ G)(k) ∗ H(h) | k ∗ h ≤ l}

=
∨
{
∨
(F(f) ∗ G(g)) ∗ H(h) | f ∗ g ≤ k, k ∗ h ≤ l}

=
∨
{(F(f) ∗ G(g)) ∗ H(h) | f ∗ g ∗ h ≤ l}

=
∨
{F(f) ∗ (G(g) ∗ H(h)) | f ∗ g ∗ h ≤ l}

= (F ∗∗ (G ∗∗ H))(l).

(8) For ⋄ = ∗,

((F1 ⊙F2) ∗∗ (G1 ⊙ G2))(h)
=

∨
{(F1 ⊙F2)(f) ∗ (G1 ⊙ G2)(g) | f ∗ g ≤ h}

≤
∨
{(F1(f) ∗ G1(g))⊙ (F2(f) ∗ G2(g)) | f ∗ g ≤ h}

≤
∨
{(F1 ∗∗ G1)(f ∗ g)⊙ (F2 ∗∗ G2)(f ∗ g) | f ∗ g ≤ h}

≤ (F1 ∗∗ G1)(h)⊙ (F2 ∗∗ G2)(h).

�
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Example 3.2. Let X = {x, y} be a set. Define a map ⊙, ∗ : [0, 1] × [0, 1] → [0, 1]

as a ⊙ b = ab
a+b−ab and a ∗ b = ab. Then (L = [0, 1],⊙) is a cl-premonoid and

(L = [0, 1], ∗) is a GL-monoid. It satisfies

(D) (a⊙ b) ∗ (c⊙ d) ≤ (a ∗ c)⊙ (b ∗ d), for all a, b, c, d ∈ L from

(a+ b− ab)(c+ d− cd)− ac− bd+ abcd
= bc+ ad− abc− abd− acd− bcd+ 2abcd
= bc(1− a) + ad(1− b)− acd(1− b)− bcd(1− a)
= bc(1− a)(1− d) + ad(1− b)(1− c) ≥ 0.

Hence (L,≤,⊙, ∗) is an ecl-premonoid. But it is not an M-ecl-premonoid because

a ⊙ a = a
2−a < a for 0 < a < 1. Let [x] and [y] are stratified (L, ∗)-filters on X.

Then [x]⊙ [y] is an (L, ∗)-filter on X and not a stratified (L, ∗)-filter on X because

([x]⊙ [y])(0.7 ∗A) = 0.28⊙ 0.35 ̸≥ 0.7 ∗ ([x]⊙ [y])(A) = 0.2

where A(x) = 0.4, A(y) = 0.5.

For A1 ∗A2 = 0X with A1(x) = 1, A1(y) = 0 and A2(x) = 0, A1(y) = 1, [x](A1)⊙
[y](A2) = 1 ̸= 0. Hence [x]⊙∗ [y] is not an (L, ∗)-filter.

Let ϕ : X → Y be a function, F ∈ L(LX) L-filter on X and G ∈ L(LY ) L-filter on

Y . Two functions ϕ⇒(F) : LY → L and ϕ⇐(G) : LX → L are defined by

ϕ⇒(F)(g) = F(ϕ←(g)),

ϕ⇐(G)(f) =
∨

{G(h) | ϕ←(h) ≤ f}.

Definition 3.3. Let F ∈ F∗(X) and G ∈ F∗(Y ). Then we define F ⊗⊙ G : LX×Y →
L as follows:

F ⊗⊙ G = π⇐1 (F)⊙∗ π⇐2 (G)
where π1(x, y) = x and π2(x, y) = y.

Theorem 3.4. Let F ,H ∈ F∗(X) and G ∈ F∗(Y ). Then we have the following

properties:

(1) For f ⊗ g(x, y) = f(x) ∗ g(y) and u ∈ LX×Y , we have

F ⊗⊙ G(u) =
∨

{F(f)⊙ G(g) | f ⊗ g ≤ u}.

(2) (G⊗⊙F)−1 = F ⊗⊙ G where (G⊗⊙F)−1(u) = (G⊗⊙F)(u−1) for u−1(x, y) =

u(y, x).

(3) f ⊗ g = ⊥ implies F(f)⊙ G(g) = ⊥ iff F ⊗⊙ G ∈ F∗(X × Y ).

(4) If F ∈ F s
∗ (X) and G ∈ F s

∗ (Y ), then F ⊗⊙ G ∈ F s
∗ (X × Y ).

(5) For x ∈ X,F ,G ∈ F∗(X), (F ⊗⊙ [x]) ∗ (G ⊗⊙ [x]) ≤ (F ∗ G)⊗⊙ [x].
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(6) If (L,≤,⊙, ∗) is an M-ecl-premonoid and for x ∈ X,F ,G ∈ F∗(X), (F ⊗⊙
[x])⊙ (G ⊗⊙ [x]) ≥ (F ⊙ G)⊗⊙ [x].

(7) For x ∈ X, F ,G ∈ F∗(X), we have (F ⊗⊙ [x]) ∗∗ (G ⊗⊙ [x]) ≤ (F ∗∗ G)⊗⊙ [x].
In particular, (F ⊗∗ [x]) ∗∗ (G ⊗∗ [x]) = (F ∗∗ G)⊗∗ [x].

(8) For x ∈ X and y ∈ Y , π⇒1 ([(x, y)]) = [x] and π⇒2 ([(x, y)]) = [y].

(9) For x ∈ X,F ,G ∈ F s
∗ (X) and u ∈ LX×X , (F ⊗∗ [x])(u) = F(u(−, x)) and

(F ⊗∗ [x]) ∗ (G ⊗∗ [x]) = (F ∗ G)⊗∗ [x].
(10) For x, y ∈ X and u ∈ LX×Y , ([x] ⊗∗ [y])(u) = [x](u(−, y)) = u(x, y) =

[(x, y)](u).

(11) For x, y ∈ X and u ∈ LX×Y , ([x]⊗⊙ [y])(u) ≥ ([x]⊗∗ [y])(u) = [(x, y)](u).

(12) For x ∈ X, F ,G ∈ F s
∗ (X) and u ∈ LX×X , we have (F⊗∗[x])∗∗(G⊗∗[x])(u) =

(F ∗∗ G)(u(−, x)) = ((F ∗∗ G)⊗∗ [x])(u).
(13) Ix ⊗⋄ Iy ≥ I(x,y) for ⋄ ∈ {∗,⊙}, the equality holds, if a ∗ b ̸= ⊥ for each

a ̸= ⊥ and b ̸= ⊥, where

Iy(f) =
{

⊤, if f(y) ̸= ⊥,
⊥, if f(y) = ⊥.

(14) Let F ,H ∈ F∗(X). Then (F ⊗∗ Iy) ∗ (H⊗∗ Iy) = (F ∗ H)⊗∗ Iy.

Proof. (1) From the definition of F ⊗⊙ G, we only show that
∨
{π⇐1 (F)(u1) ⊙

π⇐2 (G)(u2) | u1 ∗ u2 ≤ u} =
∨
{F(f)⊙ G(g) | f ⊗ g ≤ u}. For each f ⊗ g = π←1 (f) ∗

π←2 (g) ≤ u, F(f)⊙G(g) ≤ π⇐1 (F)(π←1 (f))⊙π⇐2 (G)(π←2 (g)). Hence,
∨
{π⇐1 (F)(u1)⊙

π⇐2 (G)(u2) | u1 ∗ u2 ≤ u} ≥
∨
{F(f)⊙ G(g) | f ⊗ g ≤ u}.

Suppose
∨
{π⇐1 (F)(u1)⊙π⇐2 (G)(u2) | u1 ∗u2 ≤ u} ̸≤

∨
{F(f)⊙G(g) | f⊗g ≤ u}.

Then there exist u1, u2 ∈ LX×Y with u1∗u2 ≤ u such that π⇐1 (F)(u1)⊙π⇐2 (G)(u2) ̸≤∨
{F(f) ⊙ G(g) | f ⊗ g ≤ u}. From the definitions of π⇐1 (F)(u1) and π⇐2 (G)(u2),

there exist f ∈ LX and g ∈ LY with π←1 (f) ≤ u1 and π←2 (g) ≤ u2 such that

π←1 (f)(x, y) ∗ π←2 (g)(x, y) = f(x) ∗ g(y) ≤ u(x, y) and

F(f)⊙ G(g) ̸≤
∨

{F(f)⊙ G(g) | f ⊗ g ≤ u}.

It is a contradiction. Thus
∨
{π⇐1 (F)(u1) ⊙ π⇐2 (G)(u2) | u1 ∗ u2 ≤ u} ≤

∨
{F(f) ⊙

G(g) | f ⊗ g ≤ u}.
(2) For f ⊗ g(x, y) = f(x) ∗ g(y) and u ∈ LX×Y , we have

(G ⊗⊙ F)−1(u) = (G ⊗⊙ F)(u−1) =
∨
{G(g)⊙F(f) | g ⊗ f ≤ u−1}

=
∨
{F(f)⊙ G(g) | f ⊗ g ≤ u} = F ⊗⊙ G(u).
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(3) (F2) For each f1 ⊗ g1 ≤ u and f2 ⊗ g2 ≤ v, since (f1 ∗ f2) ⊗ (g1 ∗ g2) =

(f1 ⊗ g1) ∗ (f2 ⊗ g2) ≤ u ∗ v, we have:

(F ⊗⊙ G)(u) ∗ (F ⊗⊙ G)(v)
=

∨
{F(f1)⊙ G(g1) | f1 ⊗ g1 ≤ u} ∗

∨
{F(f2)⊙ G(g2) | f2 ⊗ g2 ≤ v}

≤
∨
{(F(f1)⊙ G(g1)) ∗ (F(f2)⊙ G(g2)) | (f1 ⊗ g1) ∗ (f2 ⊗ g2) ≤ u⊙ v}

≤
∨
{(F(f1) ∗ F(f2))⊙ (G(g1) ∗ G(g2)) | (f1 ∗ f2)⊗ (g1 ∗ g2) ≤ u⊙ v}

≤
∨
{F(f1 ∗ f2)⊙ G(g1 ∗ g2) | (f1 ∗ f2)⊗ (g1 ∗ g2) ≤ u⊙ v}

≤ (F ⊗⊙ G)(u ∗ v).

Other cases are easily proved.

(4) Let f ⊗ g = ⊥. Then F(f) ∗ G(g) ≤ G(F(f) ∗ g). Since F(f) ∗ g(y) ≤
F(f ∗ g(y)) = F(⊥) = ⊥, we have F(f) ∗ G(g) ≤ G(F(f) ∗ g) = ⊥.

α ∗ (F ⊗⊙ G)(u) = α ∗
∨
{F(f)⊙ G(g) | f ⊗ g ≤ u}

=
∨
{α ∗ (F(f)⊙ G(g)) | f ⊗ g ≤ u}

≤
∨
{(α⊙⊤) ∗ (F(f)⊙ G(g)) | f ⊗ g ≤ u}

≤
∨
{(α ∗ F(f))⊙ (⊤ ∗ G(g)) | (α ∗ f)⊗ g ≤ α ∗ u}

≤
∨
{F(α ∗ f))⊙ G(g) | (α ∗ f)⊗ g ≤ α ∗ u}

≤ (F ⊗⊙ G)(α ∗ u).

(5) Suppose there exists u ∈ LX×X such that

((F ⊗⊙ [x]) ∗ (G ⊗⊙ [x]))(u) ̸≤ ((F ∗ G)⊗⊙ [x])(u).

There exist fi ∈ LX , gi ∈ LX with (fi ⊗ gi) ≤ u such that

(F(f1)⊙ [x](g1)) ∗ (G(f2)⊙ [x](g2)) ̸≤ ((F ∗ G)⊗⊙ [x])(u).

Since (F(f1)⊙ [x](g1)) ∗ (G(f2)⊙ [x](g2)) ≤ (F(f1) ∗ G(f2))⊙ ([x](g1) ∗ [x](g2)), we
have

(F(f1) ∗ G(f2))⊙ [x](g1 ∗ g2) ̸≤ ((F ∗ G)⊗⊙ [x])(u).

On the other hand, since (f1 ∨ f2)⊗ (g1 ∗ g2) ≤ (f1 ⊗ g1) ∨ (f2 ⊗ g2) ≤ u,

((F ∗ G)⊗⊙ [x])(u) ≥ (F ∗ G)(f1 ∨ f2)⊙ [x](g1 ∗ g2)
≥ F(f1) ∗ G(f2)⊙ [x](g1 ∗ g2).

It is a contradiction. Hence the result holds.

(6) Suppose there exist x ∈ X and u ∈ LX×X such that

((F ⊗⊙ [x])⊙ (G ⊗⊙ [x])(u) ̸≥ ((F ⊙ G)⊗⊙ [x])(u).

There exist f ∈ LX , g ∈ LX with f ⊗ g ≤ u such that

((F ⊗⊙ [x])⊙ (G ⊗⊙ [x])(u) ̸≥ (F ⊙ G)(f)⊙ [x](g).
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On the other hand, since (L,≤,⊙, ∗) is an M-ecl-premonoid,

((F ⊗⊙ [x])⊙ (G ⊗⊙ [x]))(u) ≥ (F ⊗⊙ [x])(u)⊙ (G ⊗⊙ [x])(u)
≥ F(f)⊙ G(f)⊙ [x](g)⊙ [x](g) ≥ F(f)⊙ G(f)⊙ [x](g).

It is a contradiction. Hence (F ⊗⊙ [x])⊙ (G ⊗⊙ [x]) ≥ (F ⊙ G)⊗⊙ [x].

(7) For x ∈ X, F ,G ∈ F∗(X),

((F ⊗⊙ [x]) ∗∗ (G ⊗⊙ [x]))(u)
=

∨
{(F ⊗⊙ [x])(u1) ∗ (G ⊗⊙ [x])(u2) | u1 ∗ u2 ≤ u}

=
∨
{(F(f1)⊙ [x](g1)) ∗ (G(f2)⊙ [x](g2)) | fi ⊗ gi ≤ ui, u1 ∗ u2 ≤ u}

≤
∨
{(F(f1) ∗ G(f2))⊙ ([x](g1) ∗ [x](g2)) | fi ⊗ gi ≤ ui, u1 ∗ u2 ≤ u}

≤
∨
{(F ∗∗ G)(f1 ∗ g1)⊙ [x](g1 ∗ g2) | (f1 ∗ f2)⊗ (g1 ∗ g2) ≤ u}

≤ ((F ∗∗ G)⊗⊙ [x])(u).

Similarly, (F ⊗∗ [x]) ∗∗ (G ⊗∗ [x]) ≤ (F ∗∗ G)⊗∗ [x].
Suppose there exists u ∈ LX×X such that

((F ⊗∗ [x]) ∗∗ (G ⊗∗ [x]))(u) ̸≥ ((F ∗∗ G)⊗∗ [x])(u).

There exist f, g ∈ LX with f ⊗ g ≤ u such that

((F ⊗∗ [x]) ∗∗ (G ⊗∗ [x]))(u) ̸≥ (F ∗∗ G)(f) ∗ [x](g).

There exist f1, f2 ∈ LX with (f1 ∗ f2)⊗ g ≤ f ⊗ g ≤ u such that

((F ⊗∗ [x]) ∗∗ (G ⊗∗ [x]))(u) ̸≥ (F(f1) ∗ G(f2)) ∗ [x](g).

There exist g1, g2 ∈ LX with g1 ∗ g2 = g such that

(f1 ∗ f2)⊗ g = (f1 ∗ f2)⊗ (g1 ∗ g2)
= (f1 ⊗ g1) ∗ (f2 ⊗ g2) ≤ f ⊗ g ≤ u.

Thus, we have

((F ⊗∗ [x]) ∗∗ (G ⊗∗ [x]))(u)
≥ (F ⊗∗ [x])(f1 ⊗ g1) ∗ ((G ⊗∗ [x])(f2 ⊗ g2)
≥ (F(f1) ∗ [x](g1)) ∗ (G(f2) ∗ [x](g2)) = (F(f1) ∗ G(f2)) ∗ [x](g).

It is a contradiction. Hence (F ⊗∗ [x]) ∗∗ (G ⊗∗ [x]) = (F ∗∗ G)⊗∗ [x].
(8) π⇒1 ([(x, y)])(h) = [(x, y)](π←1 (h)) = h(π1(x, y)) = h(x) = [x](h).

(9) For x ∈ X and F ∈ F s
∗ (X),

(F ⊗∗ [x])(u) =
∨
{F(f) ∗ [x](g) | f ⊗ g ≤ u}

=
∨
{F(f) ∗ g(x) | f ⊗ g ≤ u} ≤

∨
{F(g(x) ∗ f) | f(−)⊗ g(x) ≤ u(−, x)}

≤ F(u(−, x)).

(F ⊗∗ [x])(u) =
∨
{F(f) ∗ [x](g) | f ⊗ g ≤ u}

≥ {F(u(−, x)) ∗ 1X(x) | u(−, x)⊗ 1X ≤ u(−, x)} = F(u(−, x)).

((F ⊗∗ [x]) ∗ (G ⊗∗ [x]))(u) = F(u(−, x)) ∗ G(u(−, x))
= (F ∗ G)(u(−, x)) = ((F ∗ G)⊗∗ [x])(u).
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(10) Since [x] ∈ F s
∗ (X), by (9), the results hold.

(11) It is easy from the definition of ⊗⊙.
(12) For x ∈ X, F ,G ∈ F s

∗ (X) and u ∈ LX×X ,

((F ⊗∗ [x]) ∗∗ (G ⊗∗ [x]))(u)
=

∨
{(F ⊗∗ [x])(u1) ∗ (G ⊗ [x])(u2) | u1 ∗ u2 ≤ u}

=
∨
{F(u1(−, x)) ∗ G(u2(−, x)) | u1(−, x) ∗ u2(−, x) ≤ u(−, x)}

= (F ∗∗ G)(u(−, x)) = ((F ∗∗ G)⊗∗ [x])(u).

(13) Let u(x, y) = f(x) ∗ g(y) ̸= ⊥ such that I(x,y)(u) = ⊤. Then f(x) ̸= ⊥ and

g(y) ̸= ⊥. Hence (Ix ⊗⊙ Iy)(u) ≥ Ix(f) ⊙ Iy(g) = ⊤. So, Ix ⊗⊙ Iy ≥ I(x,y). Let
(Ix⊗⊙ Iy)(w) ̸= ⊥. Then there exist f(x) ̸= ⊥ and g(y) ̸= ⊥ with f ⊗ g ≤ w. Since

f(x) ∗ g(y) ̸= ⊥ for each f(x) ̸= ⊥ and g(y) ̸= ⊥, ⊥ ̸= f(x) ∗ g(y) ≤ w(x, y). Hence

I(x,y)(w) = ⊤. So, Ix ⊗⊙ Iy ≤ I(x,y).
(14) Suppose there exist y ∈ Y and ⊥X×Y ̸= u ∈ LX×Y such that

((F ⊗∗ Iy) ∗ (H⊗∗ Iy))(u) ̸≤ ((F ∗ H)⊗∗ Iy)(u).

There exist fi ∈ LX , gi ∈ LY with (fi ⊗ gi) ≤ u and gi(y) ̸= ⊥ such that

(F(f1) ∗ Iy(g1)) ∗ (H(f2) ∗ Iy(g2)) ̸≤ ((F ∗ H)⊗∗ Iy)(u).

Thus, F(f1) ∗ H(f2) ̸≤ ((F ∗ H)⊗∗ Iy)(u).
On the other hand, since (f1 ∨ f2)⊗ (g1 ∧ g2) ≤ (f1 ⊗ g1) ∨ (f2 ⊗ g2) ≤ u ,

((F ∗ H)⊗∗ Iy)(u) ≥ (F ∗ H)(f1 ∨ f2) ∗ Iy(g1 ∧ g2)
≥ F(f1) ∗ H(f2).

It is a contradiction. Hence (F ⊗∗ Iy) ∗ (H⊗∗ Iy) ≤ (F ∗ H)⊗∗ Iy.
Suppose there exist y ∈ Y and ⊥X×Y ̸= u ∈ LX×Y such that

((F ⊗∗ Iy) ∗ (H⊗∗ Iy))(u) ̸≥ ((F ∗ H)⊗∗ Iy)(u).

There exist f ∈ LX , g ∈ LY with f ⊗ g ≤ u and g(y) ̸= ⊥ such that

((F ⊗∗ Iy) ∗ (H⊗∗ Iy))(u) ̸≥ (F ∗ H)(f) ∗ Iy(g).

On the other hand,

((F ⊗∗ Iy) ∗ (H⊗∗ Iy))(u) ≥ (F ⊗∗ Iy)(u) ∗ (H⊗∗ Iy)(u)
≥ F(f) ∗ H(f).

It is a contradiction. Hence (F ⊗∗ Iy) ∗ (H⊗∗ Iy) ≥ (F ∗ H)⊗∗ Iy. �
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Example 3.5. Let X = {x1, x2} and Y = {y1, y2} be sets, (L = [0, 1], ∗) an GL-

monoid with a ∗ b = a · b and f, g ∈ [0, 1]X as follows:

f(x1) = 1, f(x2) = 0.6, g(x1) = 0.5, g(x2) = 1.

Define ([0, 1], ∗)-filters as F : [0, 1]X → [0, 1] and G : [0, 1]Y → [0, 1] as follows:

F(h) =

 1, if h = 1X ,
0.4n, if fn ≤ h ̸≥ fn−1, n ∈ N
0, otherwise,

G(h) =

 1, if h = 1X ,
0.3n, if gn ≤ h ̸≥ gn−1, n ∈ N
0, otherwise,

where kn = kn−1 ∗ k and k0 = 1.

(1) Let x⊙ y = x
1
3 · y

1
3 . Since h ∗ k = ⊥X×Y implies F(h)⊙G(k) = ⊥, we obtain

([0, 1], ∗)-filters as F ⊗⊙ G : [0, 1]X → [0, 1] as follows:

F ⊗⊙ G(h) =


1, if h = 1X ,
0.4n ⊙ 0.3m, if fn ∗ gm ≤ h ̸≥ fn−1 ∗ gm,

fn ∗ gm ≤ h ̸≥ fn ∗ gm−1,
0, otherwise,

where k[n] = k[n−1] ⊙ k and k0 = 1.

(2) For u ∈ [0, 1]X×X with

u(x1, x1) = 0.3, u(x1, x2) = 1, u(x2, x1) = 0.8, u(x2, x2) = 0.7,

For 1X ⊗ h ≤ 0.9 ∗ u with h(x1) = 0.27, h(x2) = 0.63, F ⊗∗ G(0.9 ∗ u) = F(1X) ∗
[x2](h) = 0.63 = 0.9 ∗ (F ⊗∗ G)(u) ̸= F(0.9 ∗ u(−, x2)) = 0.
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