FIBONACCI SEQUENCES ON $M V$-ALGEBRAS

Morteza Afshar Jahanshahi ${ }^{\text {a }}$ and Arsham Borumand Saeid ${ }^{\text {b,* }}$

Abstract

In this paper, we introduce the concept of Fibonacci sequences on $M V$ algebras and study them accurately. Also, by introducing the concepts of periodic sequences and power-associative $M V$-algebras, other properties are also obtained. The relation between $M V$-algebras and Fibonacci sequences is investigated.

1. Introduction

The Fibonacci sequence is a beautiful mathematical concept, making surprise appearances in everything from seashell patterns to the Parthenon. The Fibonacci sequence is an integer sequence defined by a simple linear recurrence relation. The sequence appears in many settings in mathematics and in other sciences. In particular, the shape of many naturally occurring biological organisms is governed by the Fibonacci sequence and its close relative, the golden ratio. Fibonacci -number has been studied in many different forms for centuries and the literature on the subject is consequently incredibly vast. Surveys and connections of the type just mentioned are provided for a very minimal set of examples of such texts in [1] and [5]. Given the usual Fibonacci-sequence in $[1,5]$ and other sequences of this type, one is naturally interested in considering what may happen in more general circumstances. Thus, one may consider what happens if one replaces (positive) integers by the modulo integer n or what happens in even more general circumstances. Han considered several properties of the Fibonacci sequence in arbitrary groupoids in [6]. Kim, Neggers and So in [8] introduced the notion of generalized Fibonacci sequences over a groupoid and discussed it in particular for the case where the groupoid contained idempotents and pre-idempotents.
$B C I / B C K$-algebras were first introduced in mathematics in 1966 by Imai and Iseki,

[^0]as a generalization of the concept of set-theoretic difference and propositional calculi [7]. The notion of the $M V$-algebra, originally introduced by Chang, is an attempt at developing a theory of algebraic systems that would correspond to the \aleph_{0}-valued propositional calculus. The axioms for this calculus are known as the Lukasiewicz axioms. In 1959, Chang proved the completeness theorem which stated the real unit interval $[0,1]$ as a standard model of this logic and also constructed an $M V$-algebra from an arbitrary totally ordered abelian group. Moreover, he showed that every linearly ordered $M V$-algebra is isomorphic to an $M V$-algebra constructed from a group [3]. With the new definition we propose, we aim to examine the relationship between this sequence and algebraic structures such as $M V$-algebras and show the relations and concepts which exist in $M V$-algebras in Fibonacci sequences and vice versa. Also, the results can be useful based on the relationship between Fibonacci sequences and sequences such as Lucas series or applied algebras such as Clifford algebras which are used in many domains, including geometry, theoretical physics, and digital image processing.

In this paper, we introduce the notion of the Fibonacci sequences on $M V$-algebras and study it where the $M V$-algebras have idempotent, infinitesimal and archimedean elements. We make a new generalization of the Fibonacci sequences and derive various identities involving the Fibonacci sequences on $M V$-algebra. One direction is concerned with structures obtained by adding operations to the $M V$-algebra structure, or even combining the $M V$-algebras with other structures in order to obtain more expressive models and powerful logical systems. We obtain several relations on the $M V$-algebras which are derived from the generalized Fibonacci sequences and make some connections between the Fibonacci sequences and $M V$-algebras via bounded commutative $B C K$-algebras. We find some results regarding $M V$-algebras and the results is an elegant expression illustrating the connection between the Fibonacci sequences and Lukasiewicz many valued logic.

2. Preliminaries

Definition 2.1 ([9]). An algebra $(X, *, 0)$ of type (2,0) is called a BCI-algebra if the following conditions are fulfilled for all $x, y, z \in X$:
BCI-1 $(((x * y) *(x * z)) *(z * y)=0)$,
BCI-2 $((x *(x * y)) * y=0)$,
BCI-3 $(x * x=0)$,
$B C I-4 \quad(x * y=0$ and $y * x=0$ imply $x=y)$.
If a $B C I$-algebra X satisfies the following identity:
$B C K-5(\forall x \in X)(0 * x=0)$, then X is called a $B C K$-algebra.
The partial order on a $B C I / B C K$-algebra is defined such that $x \leq y$ if and only if $x * y=0$.

A $B C I / B C K$-algebra X is said to be commutative if $x *(x * y)=y *(y * x)$, for all $x, y \in X$.
A bounded commutative $B C K$-algebra is an algebra $A=(A, *, 0,1)$ of type $(2,0,0)$ satisfying the following identities:
(1) $(x * y) * z=(x * z) * y$,
(2) $x *(x * y)=y *(y * x)$,
(3) $x * x=0$,
(4) $x * 0=x$,
(5) $x * 1=0$.

Bounded commutative $B C K$-algebras were introduced in [12]. Mundici in [10] showed that $M V$-algebras and bounded commutative $B C K$-algebras are categorically equivalent.

Definition $2.2([3])$. An $M V$-algebra A is an abelian monoid ($A, 0, \oplus$) equipped with an operation $*$ such that $x^{* *}=x, x \oplus 0^{*}=0^{*}$ and, finally $\left(x^{*} \oplus y\right)^{*} \oplus y=$ $\left(y^{*} \oplus x\right)^{*} \oplus x$.

Definition 2.3 ([2, 11]). An ideal of an $M V$-algebra A is a non-empty subset I of A satisfying the following conditions:
$\left(I_{1}\right)$ If $x \in I, y \in A$ and $y \leq x$, then $y \in I$,
(I_{2}) If $x, y \in I$, then $x \oplus y \in I$.
Remark 2.4 ([2, 11]). If I is an ideal of A , then $0 \in I, x, y \in I \Rightarrow x \vee y \in I$, $x \oplus y \in I \Leftrightarrow x \vee y \in I$. If $M \subseteq A$ is a nonempty set, then $(M]=\{x \in A: x \leq$ $x_{1} \oplus \ldots \oplus x_{n}$ for some $\left.x_{1}, \ldots, x_{n} \in M\right\}$. We denote by $\operatorname{Id}(\mathrm{A})$ the set of ideals of an $M V$-algebra A . If I is an ideal of $A=(A, \oplus, *, 0)$ and $x \in A$, the congruence class of x with respect to \sim_{I} will be denoted by x / I, i.e., $x / I=\left\{y \in A: x \sim_{I} y\right\}$, one can easy to see that $x \in I$ if and only if $x / I=0 / I$. We shall denote the quotient set A / \sim_{I} by A / I. Since \sim_{I} is a congruence on A, the $M V$-algebra operations on A / I given by

$$
x / I \oplus y / I=(x \oplus y) / I \text { and }(x / I)^{*}=x^{*} / I
$$

are well defined. Hence, the system $(A / I, \oplus, *, 0 / I)$ becomes an $M V$-algebra, called the quotient algebra of A by ideal I.

Theorem 2.5 ([2]). For any bounded commutative $B C K$-algebra $(A, *, 0,1)$, upon defining $x^{*}={ }_{\text {def }} 1 * x$ and $x \oplus y={ }_{\text {def }} 1 *((1 * x) * y)$, then $(A, \oplus, *, 0)$ is an $M V$-algebra, and $x \ominus y=x * y$.

Remark 2.6 ([4]). For any infinitesimal element $a>0$, the sequence $(0 \leq a \leq 2 a \leq$ $3 a \leq \ldots \leq n a \leq \ldots)$ is strictly increasing.

Definition 2.7 ($[3$, Chang's $M V$-algebra $C]$). Let $\{c, 0,1,+,-\}$ be a set of found symbols. For any $n \in N$ we define the following abbreviations:

$$
n c:=\left\{\begin{array}{c}
0 \text { if } n=0, \\
c \text { if } n=1, \\
c+(n-1) c \text { if } n>1,
\end{array} \quad 1-n c:=\left\{\begin{array}{c}
0 \text { if } n=0 \\
1-c \text { if } n=1 \\
1-(n-1) c-c \text { if } n>1 .
\end{array}\right.\right.
$$

We consider $C=\{n c: n \in N\} \cup\{1-n c: n \in N\}$ and define the $M V$-algebra operations as follows:
$(\oplus 1)$ if $x=n c$ and $y=m c$, then $x \oplus y:=(m+n) c$,
$(\oplus 2)$ if $x=1-n c$ and $y=1-m c$, then $x \oplus y:=1$,
$(\oplus 3)$ if $x=n c$ and $y=1-m c$ and $m \leq n$, then $x \oplus y:=1$,
$(\oplus 4)$ if $x=n c$ and $y=1-m c$ and $n<m$, then $x \oplus y:=1-(m-n) c$,
$(\oplus 5)$ if $x=1-m c$ and $y=n c$ and $m \leq n$, then $x \oplus y:=1$,
$(\oplus 6)$ if $x=1-m c$ and $y=n c$ and $n<m$, then $x \oplus y:=1-(m-n) c$,
(*1) if $x=n c$, then $x^{*}:=1-n c$,
(*2) if $x=1-n c$, then $x^{*}:=n c$.
Then, the structure $(C, \oplus, *, 0)$ is an $M V$-algebra, which is called the Chang's $M V$ algebra.

3. Fibonacci Sequences Generated by $M V$-algebras

In this section, we introduce the notion of the Fibonacci sequences on $M V$ algebras and provide some examples in particular for different modes in the $M V$ algebras.

The Fibonacci sequence is a series of numbers where a number is found by adding up the two numbers before it. Starting with 0 and 1 , the sequence goes $0,1,1,2,3$, $5,8,13,21,34$, and so forth. Written as a rule, the expression is $X_{n}=X_{n-1}+X_{n-2}$. In what follows, let A denote an $M V$-algebra, unless otherwise specified.

Definition 3.1. If $a, b \in A$, we construct a sequence as follows:

$$
[a, b]:=\left\{a, b, u_{0}, u_{1}, u_{2}, \ldots, u_{k}, \ldots\right\}
$$

where $u_{0}:=a \oplus b, u_{1}=b \oplus u_{0}, u_{2}=u_{0} \oplus u_{1}$, and $u_{k+2}=u_{k} \oplus u_{k+1}$.
A sequence $[a, b]$ is called a Fibonacci sequence on $M V$-algebra.
Example 3.2. If we consider an $M V$-algebra $([0,1], \oplus, *, 0)$ and for all $x, y \in[0,1]$, we define $x \oplus y=\min \{1, x+y\}$ and $x^{*}=1-x$, then the Fibonacci sequence can be denoted as follows: $[0,1]:=\left\{0,1, u_{0}, u_{1}, u_{2}, \ldots\right\}$, where $u_{0}=0 \oplus 1=\min \{1,0+1\}=1$, $u_{1}=1 \oplus 1=\min \{1,1+1\}=\min \{1,2\}=1, u_{2}=1 \oplus 1=\min \{1,1+1\}=\min \{1,2\}=$ $1, \ldots$. Then $[0,1]=\{0,1,1,1, \ldots\}$ and $\left[0, \frac{1}{2}\right]=\left\{0, \frac{1}{2}, \frac{1}{2}, 1,1, \ldots\right\}$.
Example 3.3. For each integer $n \geq 2$, the n-element set $L_{n}=\left\{0, \frac{1}{n-1}, \ldots, \frac{n-2}{n-1}, 1\right\}$, $M V$-sub algebras of $[0,1]$ and its Fibonacci sequence $\left[\frac{1}{n-1}, \frac{n-2}{n-1}\right]$ can be denoted as follows:
$\left[\frac{1}{n-1}, \frac{n-2}{n-1}\right]:=\left\{\frac{1}{n-1}, \frac{n-2}{n-1}, u_{0}, u_{1}, u_{2}, \ldots\right\}$,
where $u_{0}=\frac{1}{n-1} \oplus \frac{n-2}{n-1}=\min \left\{1, \frac{1}{n-1}+\frac{n-2}{n-1}\right\}=\min \{1,1\}=1$, $u_{1}=\frac{n-2}{n-1} \oplus 1=\min \left\{1, \frac{n-2}{n-1}+1\right\}=\min \left\{1, \frac{2 n-3}{n-1}\right\}=1, \ldots$. Then $\left[\frac{1}{n-1}, \frac{n-2}{n-1}\right]:=\left\{\frac{1}{n-1}, \frac{n-2}{n-1}, 1,1,1, \ldots\right\}$, and so on $\left[\frac{1}{5}, \frac{1}{8}\right]=\left\{\frac{1}{5}, \frac{1}{8}, \frac{13}{40}, \frac{18}{40}, \frac{31}{40}, 1,1,1, \ldots\right\}$.
Using Definition 2.1 and Theorem 2.5, we can provide examples of classes of bounded commutative $B C K$-algebras, which is an $M V$-algebra.

Example 3.4. Let $X=\{0,1,2,3\}$ be a set with the following table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	1	0	0
3	3	2	1	0

Then X is an $M V$-algebra. It is easy to see that Fibonacci sequence $[1,2]$ can be denoted as follows: $[1,2]:=\left\{1,2, u_{0}, u_{1}, u_{2}, \ldots\right\}$, then by Theorem 2.5 we have:
$u_{0}=1 \oplus 2=1 *((1 * 1) * 2)=1 *(0 * 2)=1 * 0=1, u_{1}=2 \oplus 1=1 *((1 * 2) * 1)=$ $1 *(0 * 1)=1 * 0=1, u_{3}=1 \oplus 1=1 *((1 * 1) * 1)=1 *(0 * 1)=1 * 0=1$,
$u_{4}=1 \oplus 1=1, \ldots$. Hence $[1,2]:=\{1,2,1,1,1, \ldots\}$, and $[2,1]:=\left\{2,1, u_{0}, u_{1}, u_{2}, \ldots\right\}$.

By Theorem 2.5, we have: $[2,1]:=\{2,1,1,1, \ldots\}$, and $[0,3]:=\{0,3,1,1,1, \ldots\}$.
Example 3.5. Let $X=\{0, a, b, c, d, 1\}$ be a set with the following table:

$*$	0	a	b	c	d	1
0	0	0	0	0	0	0
a	a	0	a	a	0	0
b	b	b	0	0	0	0
c	c	c	b	0	b	0
d	d	b	a	a	0	0
1	1	c	d	a	b	0

Then X is an $M V$-algebra. If $a, b \in X$, then $[a, b]:=\left\{a, b, u_{0}, u_{1}, u_{2}, \ldots\right\}$. By Theorem 2.5 we have:
$u_{0}=a \oplus b=1 *((1 * a) * b)=1 *(c * b)=1 * b=d, u_{1}=b \oplus d=1 *((1 * b) * d)=1 *(d * d)=$ $1 * 0=1, u_{3}=d \oplus 1=1 *((1 * d) * 1)=1 *(b * 1)=1 * 0=1, u_{4}=1 \oplus 1=1, \ldots$. Hence $[a, b]:=\{a, b, d, 1,1,1, \ldots\}$, and $[b, a]:=\{b, a, d, d, 1,1,1, \ldots\},[d, 1]:=\{d, 1,1,1, \ldots\}$, $[c, b]:=\{c, b, c, c, c, \ldots\},[b, c]:=\{b, c, c, c, \ldots\}$.

Example 3.6. Let C be Chang's $M V$-algebra. Then the Fibonacci sequence $[n c, 1-$ $m c]$ can be denoted as follows: $[n c, 1-m c]:=\left\{n c, 1-m c, u_{0}, u_{1}, u_{2}, \ldots\right\}$, then we have:
(a) $[n c, 1-m c]:=\{n c, 1-m c, 1,1,1, \ldots\}$,
(b) $[n c, 1-m c]:=\{n c, 1-m c, 1-(m-n) c,(1-m c) \oplus(1-(m-n) c), 1-(m-$ $n) c \oplus((1-m c) \oplus(1-(m-n) c)), \ldots\}$.
If $n=1$, then we have:
(a) $[c, 1-m c]:=\{c, 1-m c, 1,1,1, \ldots\}$,
(b) $[c, 1-m c]:=\{c, 1-m c, 1-(m-1) c, 1,1, \ldots\}$,
and $[n c, m c]:=\left\{n c, m c, u_{0}, u_{1}, u_{2}, \ldots\right\}$, so we have:
$[n c, m c]:=\{n c, m c,(m+n) c,(2 m+n) c,(3 m+2 n) c,(5 m+3 n) c, \ldots,(k m+p n) c, \ldots\}$ and $[0,1-m c]:=\left\{0,1-m c, u_{0}, u_{1}, u_{2}, \ldots\right\}$, thus we have:
$[0,1-m c]:=\{0,1-m c, 1-m c, 2(1-m c), 3(1-m c), \ldots, k(1-m c), \ldots\}$,
and $[1-m c, n c]:=\left\{1-m c, n c, u_{0}, u_{1}, u_{2}, \ldots\right\}$, hence we have:
$[1-m c, n c]:=\{1-m c, n c, 1,1,1, \ldots\}$, and $[1-m c, n c]:=\{1-m c, n c, 1-(m-$ $n) c, 1-(m-2 n) c, 1,1, \ldots\}$.

For any $M V$-algebra A we shall denote by $B(A)$ the set of all complemented elements of $L(A)$, the elements of $B(A)$ are called the Boolean elements of A.
We can provide examples of $M V$-algebras with some properties, in our case, Boolean $M V$-algebras and ideal in $M V$-algebras.

Example 3.7. We give an example of a finite $M V$-algebra which is not a chain. The set $L_{3 \times 2}=\{0, a, b, c, d, 1\} \approx L_{3} \times L_{2}=\{0,1,2\} \times\{0,1\}$ with $0<a, b<c<1$, $0<b<d<1$. We have in $L_{3 \times 2}$ the following table:

\oplus	0	a	b	c	d	1
0	0	a	b	c	d	1
a	a	a	c	c	1	1
b	b	c	d	1	d	1
c	c	c	1	1	1	1
d	d	1	d	1	d	1
1	1	1	1	1	1	1

It is easy to see that $B(A)=\{0, a, d, 1\}$. If $c \in A$, i.e., c is not Boolean and $d \in B(A)$, then the Fibonacci sequence $[c, d]$ can be denoted as follows:
$[c, d]:=\left\{c, d, u_{0}, u_{1}, u_{2}, \ldots\right\}=\{c, d, 1,1,1, \ldots\}$ and $[d, c]:=\{d, c, 1,1,1, \ldots\}$.
If $\{a, d, 0,1\} \in B(A)$, then we have:
$[a, d]:=\{a, d, 1,1,1, \ldots\}$ and $[0, d]:=\{0, d, d, d, \ldots\},[d, 0]:=\{d, 0, d, d, \ldots\}$.
Example 3.8. Consider the $M V$-algebra C from Example 3.6, then $\operatorname{Id}(\mathrm{A})=\left\{I_{1}=\{0\}, I_{2}=\{0, c, 2 c, 3 c, \ldots\}, I_{3}=C\right\}$. For $c \in I_{2}$, we have: $[c, 2 c]:=$ $\left\{c, 2 c, u_{0}, u_{1}, u_{2}, \ldots\right\}$, then we have:
$[c, 2 c]:=\{c, 2 c, 3 c, 5 c, 8 c, \ldots\}$ and $[2 c, c]:=\{2 c, c, 3 c, 4 c, 7 c, 11 c, \ldots\}$.
Remark 3.9. In Example 3.8, consider $I=I_{1}$ and $a, b \in C$, then the Fibonacci sequence $[a / I, b / I]$ can denoted as follows:
$[a / I, b / I]:=\left\{a / I, b / I, u_{0}, u_{1}, u_{2}, \ldots\right\}$. Thus $[a /\{0\}, b /\{0\}]:=\{a /\{0\}, b /\{0\},(a \oplus$ b) $/\{0\},(b \oplus(a \oplus b)) /\{0\},((a \oplus b) \oplus(b \oplus(a \oplus b))) /\{0\}, \ldots\}=\{a, b,(a \oplus b),(b \oplus(a \oplus$ b)), $((a \oplus b) \oplus(b \oplus(a \oplus b))), \ldots\}=[a, b]$ and $[a, b] /\{0\}:=\{a, b,(a \oplus b),(b \oplus(a \oplus$ b)), $((a \oplus b) \oplus(b \oplus(a \oplus b))), \ldots\} /\{0\}=[a, b]$. Hence $[a, b] / I=[a / I, b / I]$.

If $I \in I d(A)$ and $I \neq I_{1}$, then the Fibonacci sequence $[a / I, b / I]$ can denoted as follows: $[a / I, b / I]:=\{a / I, b / I,(a \oplus b) / I,(a \oplus 2 b) / I,(2 a \oplus 3 b) / I, \ldots\}$ and $[a, b] / I:=$ $\{a, b,(a \oplus b),(a \oplus 2 b),(2 a \oplus 3 b), \ldots\} / I$. Hence $[a, b] / I \neq[a / I, b / I]$.

4. On Derivation of Fibonacci Sequences

In this section, using the Boolean algebra, power-associative and periodic notions, we obtain several relations on $M V$-algebras, which are derived from the Fibonacci sequences.
An element a of an $M V$-algebra A is called an idempotent or Boolean if $a \oplus a=a$, if a and b are idempotents, then $a \oplus b$ and $a \odot b$ are also idempotents.

Remark 4.1. For $1 \neq a, 0 \in A$ we have:
$[a, 0]:=\left\{a, 0, u_{0}, u_{1}, u_{2}, \ldots, u_{k}, \ldots\right\}$, then $[a, 0]:=\{a, 0, a, a, 2 a, 3 a, \ldots, k a, \ldots\}$ and $[0, a]:=\{0, a, a, 2 a, 3 a, 4 a, \ldots,(k+1) a, \ldots\}$.

Recall that an element a in A is said to be infinitesimal if for each integer $n \geq 0$, $n a \leq \neg a$, equivalently, if and only if $n a \ominus \neg a=n a \odot a=0$. An element a in A is said to be archimedean if there is an integer $n \geq 0$, such that $(n+1) a \ominus n a=0$, equivalently, if and only if the sequence ($a \leq 2 a \leq 3 a \leq \ldots \leq n a \leq \ldots$) is stationary. Note that the only archimedean infinitesimal element is 0 .
From Remark 4.1 and Remark 2.6 we deduce that:
Corollary 4.2. For any element $1 \neq a$, the Fibonacci sequences $[a, 0]$ and $[0, a]$ are strictly increasing.

Proposition 4.3. For $1 \neq a, 0 \in A$, the following are equivalent:
(i) A is Boolean algebra,
(ii) Fibonacci sequences $[a, 0]$ and $[0, a]$ are stationary,
(iii) a is archimedean.

Proof. $(i) \Rightarrow(i i)$ and $(i i) \Rightarrow(i i i)$ are trivial.
$(i i i) \Rightarrow(i)$. Since a is archimedean, there is an integer $n \geq 0$ such that $(n+1) a \ominus n a=$ 0 , hence $n a \in B(A)$. Thus A is Boolean algebra.

Definition 4.4. A is said to be power-associative if, for any $a, b \in A$ there exists $k \in Z$ such that the Fibonacci sequence $[a, b]$ has $u_{k-2}=u_{k-1}$ for some $u \in A$.

Example 4.5. Example 3.2 and Example 3.3 are power-associative.
Remark 4.6. If A is a Boolean algebra, then for any $a, b \in A$, the $M V$-algebra A is power-associative. Since for any $a, b \in A, a \oplus a=a$. Hence we have:
$[a, b]:=\left\{a, b, u_{0}, u_{1}, u_{2}, \ldots, u_{k}, \ldots\right\}$, so $u_{0}=a \oplus b, u_{1}=b \oplus(a \oplus b)=(b \oplus b) \oplus a=b \oplus a=$ $a \oplus b, u_{2}=(a \oplus b) \oplus(a \oplus b)=a \oplus b, \ldots$. Hence $[a, b]:=\{a, b, a \oplus b, a \oplus b, a \oplus b, \ldots\}$.

Theorem 4.7. Let A be power-associative and $a, b \in A$. Then $[a, b]$ contains a subsequence $\left\{u_{k}\right\}$ such that $u_{k+n}=\left(F_{n+3}\right) u$ for some $u \in A$, where F_{n} is the usual Fibonacci number.

Proof. Given $a, b \in A$, since A is power-associative, $[a, b]$ contains an element u such that $u_{k-2}=u_{k-1}=u$. It follows that $u_{k}=u_{k-1} \oplus u_{k-2}=u \oplus u=2 u$. This
shows that $u_{k+1}=u_{k} \oplus u_{k-1}=2 u \oplus u=3 u$. In this fashion, we have $u_{k+2}=5 u$, $u_{k+3}=8 u=\left(F_{6}\right) u, \ldots, u_{k+n}=\left(F_{n+3}\right) u$.

Corollary 4.8. Every power-associative MV-algebra A is not a Boolean algebra.
Proof. Since A is power-associative, [a,b] contains an element u such that $u_{k-2}=$ $u_{k-1}=u$. It follows that $u_{k}=u_{k-1} \oplus u_{k-2}=u \oplus u=2 u$. This shows that $u_{k+1}=u_{k} \oplus u_{k-1}=2 u \oplus u=3 u$. In the sequel, we have $u_{k+2}=5 u, u_{k+3}=8 u, \ldots$ Hence $[a, b]:=\left\{a, b, u_{0}, u_{1}, \ldots, u_{k-2}, u_{k-1}, u_{k}, u_{k+1}, u_{k+2}, \ldots\right\}=\{a, b, a \oplus b, b \oplus(a \oplus$ $b), \ldots, u, u, 2 u, 3 u, 5 u, \ldots\}$, that is, a and b are not Boolean. Thus A is not Boolean algebra.

Remark 4.9. Let $a, b \in A$ be archimedean elements of A. Then the Fibonacci sequence $[a, b]$ is of the form $[a, b]:=\{a, b, a \oplus b, a \oplus b, a \oplus b, \ldots\}$. Hence A is powerassociative.

We recall that a lattice -ordered group (l-group) is a structure $(G,+, 0, \leq)$ such that $(G,+, 0)$ is a group, (G, \leq) is a lattice and the following property is satisfied:

$$
\text { for any } \mathrm{x}, \mathrm{y}, \mathrm{a}, \mathrm{~b} \in G, x \leq y \Rightarrow a+x+b \leq a+y+b \text {. }
$$

In the sequel, an lu-group will be a pair (G, u) where G is an l-group and u is a strong unit of $G . u>0$ is a strong unit for G (that is, for all $x \in G$ there is some natural number $n \geq 1$ such that $-n u \leq x \leq n u$). A strong unit u of G is an archimedean element of G, i.e., an element $u \in G$ such that for each $x \in G$ there is an integer $n \geq 0$ with $-n u \leq x \leq n u$.

Let $G=(G,+, 0,-, \vee, \wedge)$ be an abelian l-group and $0 \in G$. For any $x, y \in$ $[0, u]=\{x \in G ; 0 \leq x \leq u\}$ set $x \oplus y=(x+y) \wedge u$ and $x^{*}=u-x$. Put $\Gamma(G, u)=([0, u], \oplus, *, 0)$. Then $\Gamma(G, u)$ is an $M V$-algebra.

Proposition 4.10. Let $\Gamma(G, u)=([0, u], \oplus, *, 0)$ be an $M V$-algebra. Then for any $a, b \in \Gamma(G, u)$ the Fibonacci sequence $[a, b]$ is of the form $[a, b]:=\{a, b, u, u, u, \ldots\}$.

Proof. If (G, u) is an abelian lu-group, then for any $x \geq 0$ in G there are $x_{1}, x_{2}, \ldots, x_{n} \in$ $[0, u]$ such that $x=x_{1}+x_{2}+\ldots+x_{n}$. Hence, any abelian lu-group is generated by its unit interval $[0, u]$. Then $[a, b]:=\left\{a, b, u_{0}, u_{1}, u_{2}, \ldots, u_{k}, \ldots\right\}$, so using $x \oplus y=(x+y) \wedge u$ we have:
$u_{0}=a \oplus b=(a+b) \wedge u=(x) \wedge u=u, u_{1}=b \oplus u=(b+u) \wedge u=u$, $u_{2}=u \oplus u=(u+u) \wedge u=u, \ldots$. Hence $[a, b]:=\{a, b, u, u, u, \ldots\}$.

Remark 4.11. A sequence $a=\left(a_{1}, a_{2}, \ldots\right)$ of elements of A is said to be good if and only if for each $\mathrm{i}=\{1,2, \ldots\}, a_{i} \oplus a_{i+1}=a_{i}$ and there is an integer n such that $a_{r}=0$ for all $r>n$. Then for $a_{1}, a_{2} \in A$, we have: $\left[a_{1}, a_{2}\right]:=\left\{a_{1}, a_{2}, a_{1}, a_{2}, \ldots\right\}$.

Proposition 4.12. If I is an ideal of A and $a, b \in I$ such that $a \leq b$, then a Fibonacci sequence $[a, b]$ is of the form $\{a, b, b, b, \ldots\}$ and hence A is power-associative.

Proof. By Remark 2.4 and Definition 4.4 we have: $a \oplus b=a \vee b$ and because $a \leq b$, $a \vee b=b$. Thus $u_{0}=a \oplus b=b$ and $u_{1}=b \oplus b=b \vee b=b, \ldots$. Hence $[a, b]:=\{a, b, b, b, \ldots\}$.

An $M V$-algebra A is locally finite if every non-zero element of A has finite order.
Proposition 4.13. Let A be a locally finite $M V$-algebra and $a, b \in A$. Then a Fibonacci sequence $[a, b]$ is of the form $\{a, b, a \oplus b, 1,1,1, \ldots\}$ and the converse is true.

Proof. Since the $M V$-algebra A is locally finite, there is a natural number m such that ma=1. It follows that $[a, b]=\{a, b, a \oplus b, b \oplus(a \oplus b)=2 b \oplus a=1 \oplus a=$ $1,(a \oplus b) \oplus 1=1,1 \oplus 1=1, \ldots\}$.
Conversely, suppose that $[a, b]=\{a, b, a \oplus b, 1,1,1, \ldots\}$, by Definition 3.1 we have: $[a, b]:=\left\{a, b, u_{0}, u_{1}, u_{2}, \ldots, u_{k}, \ldots\right\}=\{a, b, a \oplus b, b \oplus(a \oplus b),(a \oplus b) \oplus(b \oplus(a \oplus b)), \ldots\}$, hence $b \oplus(a \oplus b)=1,(a \oplus b) \oplus(b \oplus(a \oplus b))=1$, i.e., $2 b \oplus a=1$ and $2 a \oplus 3 b=1, \ldots$. It follows that A is a locally finite $M V$-algebra.

Definition 4.14. A Fibonacci sequence $[a, b]$ is said to be periodic sequence if, for any $a, b \in A$ we have $[a, b]:=\left\{a, b, u_{0}, u_{1}, u_{0}, u_{1}, \ldots\right\}$.

Example 4.15. The Fibonacci sequence $\left[a_{1}, a_{2}\right]$ in Remark 4.11 is periodic sequence $\left[a_{1}, a_{2}\right]:=\left\{a_{1}, a_{2}, a_{1}, a_{2}, \ldots\right\}$.

Theorem 4.16. For $a, b \in A$, the followings are equivalent:
(i) A is a Boolean algebra,
(ii) Fibonacci sequence $[a, b]$ is periodic.

Proof. $(i) \Rightarrow(i i)$. The proof is similar to Remark 4.6.
$(i i) \Rightarrow(i)$. For a Fibonacci sequence $[\mathrm{a}, \mathrm{b}]$ we have:
$[a, b]=[a, b, a \oplus b, b \oplus(a \oplus b),(a \oplus b) \oplus(b \oplus(a \oplus b)),(b \oplus(a \oplus b)) \oplus((a \oplus b) \oplus(b \oplus(a \oplus b))), \ldots]$.
Since the Fibonacci sequence $[a, b]$ is periodic, for $k \in\{0,1,2, \ldots\}$, we have:

$$
\left\{u_{0}=u_{2}, u_{1}=u_{3}, u_{2}=u_{4}, \ldots, u_{k}=u_{k+2}, \ldots\right\} .
$$

Because $u_{0}=u_{2}$ and $u_{2}=u_{4}$, we have $a \oplus b=(a \oplus b) \oplus(b \oplus(a \oplus b))$ and $(a \oplus b) \oplus$ $(b \oplus(a \oplus b))=((a \oplus b) \oplus(b \oplus(a \oplus b))) \oplus((b \oplus(a \oplus b)) \oplus((a \oplus b) \oplus(b \oplus(a \oplus b))))$. It follows that $a \oplus b=(a \oplus b) \oplus(a \oplus b)$. In particular by taking $\mathrm{b}=0$ in $u_{0}=u_{2}$ and $u_{2}=u_{4}$ we obtain $a=a \oplus a$, that is, A is a Boolean algebra.

An $M V$-algebra A is said to be pre-idempotent if $x \oplus y$ is an idempotent in A for any $x, y \in A$. Note that if A is an idempotent $M V$-algebra, then it is a preidempotent $M V$-algebra as well.

Proposition 4.17. Let A be an pre-idempotent $M V$-algebra. Then the Fibonacci sequence $[a, b]$ is of the form $[a, b]:=\{a, b, a \oplus b, a \oplus b, a \oplus b, \ldots\}$ and the converse is true.

Proof. If A is a pre-idempotent $M V$-algebra, then for a Fibonacci sequence $[\mathrm{a}, \mathrm{b}]$ we have:
$[a, b]:=\left\{a, b, u_{0}, u_{1}, u_{2}, u_{3}, \ldots\right\}=\{a, b, a \oplus b, b \oplus(a \oplus b),(a \oplus b) \oplus(b \oplus(a \oplus b)), \ldots\}$, hence $u_{0}=a \oplus b, u_{1}=b \oplus(a \oplus b)=a \oplus 2 b=a \oplus b, u_{2}=(a \oplus b) \oplus(b \oplus(a \oplus b))=$ $((a \oplus b) \oplus(a \oplus b)) \oplus b=(a \oplus b) \oplus b=a \oplus 2 b=a \oplus b, u_{3}=(a \oplus b) \oplus(a \oplus b)=a \oplus b, \ldots$ So $[a, b]:=\{a, b, a \oplus b, a \oplus b, a \oplus b, \ldots\}$.
Conversely, suppose that $[a, b]=\{a, b, a \oplus b, a \oplus b, a \oplus b, a \oplus b, \ldots\}$, by Definition 3.1 we have: $[a, b]:=\left\{a, b, u_{0}, u_{1}, u_{2}, u_{3} \ldots\right\}=\{a, b, a \oplus b, b \oplus(a \oplus b),(a \oplus b) \oplus(b \oplus(a \oplus b)),(b \oplus$ $(a \oplus b)) \oplus((a \oplus b) \oplus(b \oplus(a \oplus b))), \ldots\}$, hence $b \oplus(a \oplus b)=a \oplus b,(a \oplus b) \oplus(b \oplus(a \oplus b))=$ $a \oplus b,(b \oplus(a \oplus b)) \oplus((a \oplus b) \oplus(b \oplus(a \oplus b)))=a \oplus b$, i.e., $2 b \oplus a=a \oplus b, 3 b \oplus 2 a=a \oplus b$, $5 b \oplus 3 a=a \oplus b \ldots$. Since $3 b \oplus 2 a=a \oplus b$ and $2 b \oplus a=a \oplus b$ we deduce that $(2 b \oplus a) \oplus(a \oplus b)=a \oplus b$, so $(a \oplus b) \oplus(a \oplus b)=(a \oplus b)$. Since $5 b \oplus 3 a=a \oplus b$ and $3 b \oplus 2 a=a \oplus b$ we obtain $(3 b \oplus 2 a) \oplus(2 b \oplus a)=a \oplus b$, thus $(a \oplus b) \oplus(a \oplus b)=(a \oplus b)$. It follows that A is a pre-idempotent $M V$-algebra.

Theorem 4.18. Let $u \in A$ be such that $[a, b]:=\{a, b, u, u, u, \ldots\}$ for any $a, b \in A$. Then A is a Boolean algebra.

Theorem 4.19. Let $u, q \in A$ be such that $[a, b]:=\{a, b, u, u, u, \ldots\}$ and $[b, a]:=$ $\{b, a, q, q, q, \ldots\}$ for any $a, b \in A$. Then
(i) if $u=q=1$, then A is a standard MV-algebra,
(ii) if $u=q=a \oplus b$, then A is a Boolean algebra,
(iii) if $u=q=a$ or b, then I is an ideal in MV-algebra $(A / I, \oplus, *, 0 / I)$ for $a, b \in$ A / I.

Proof. By Remark 4.6 and Proposition 4.12 it is trivial.
By Theorem 4.19 and Proposition 4.10 we have the following corollary:
Corollary 4.20. (i) Let $A=(A, \oplus, *, 0)$ be an linearly ordered $M V$-algebra and $a, b \in A$. Then the Fibonacci sequence $[a, b]$ is of the form $[a, b]:=\{a, b, u, u, u, \ldots\}$, (ii) Let $A=([0,1], \oplus, *, 0)$ be an MV-algebra and $a, b \in A$. Then the Fibonacci sequence $[a, b]$ is of the form $[a, b]:=\{a, b, u, u, u, \ldots\}$.

Conclusions

We first introduced the notion of the Fibonacci sequences on $M V$-algebras, investigated their properties and proved some relations between the Fibonacci sequences in the $M V$-algebra. We observed that the Fibonacci sequences can be used for the study of the $M V$-algebras, to provide orders which we can built algebras with some properties. Moreover, using the notion of ideal and Boolean algebra in the $M V$-algebras, we obtained several relations on the $M V$-algebras which were derived from the Fibonacci sequences. Furthermore, we obtained the interesting Fibonacci sequences for the $M V$-algebras and investigated the special cases of this sequence.

Acknowledgments

The authors are extremely grateful to the editor and the referees for their valuable comments and helpful suggestions which help to improve the presentation of this paper.

References

1. K.T. Atanassov, V. Atanassova, A.G. Shannon \& J.C. Turner: New Visual Perspectives On Fibonacci Numbers. World Scientific, Singapore, 2002.
2. R.L.O. Cignoli, I.M.L.D. Ottaviano \& D. Mundici: Algebraic foundations of manyvalued reasoning ser. Trends in Logic-Studia Logica Library. Dordrecht: Kluwer Academic Publishers, Vol 7, 2000.
3. C.C. Chang: Algebraic analysis of many valued logics. Trans. Amer. Math. Soc. $\mathbf{8 8}$ (1958), 467-490.
4. E.J. Dubuc \& J.C. Zilber: Some remarks on infinitesimals in $M V$-algebras. MultipleValued Logic and Soft Computing 29 (2017), 647-656.
5. R.A. Dunlap: The Golden Ratio and Fibonacci Numbers. World Scientific, Singapore, 1997.
6. J.S. Han, H.S. Kim \& J. Neggers: Fibonacci sequences in groupoids. Adv. Differ. Eq. 19 (2012).
7. Y. Imai \& K. Iseki: On axiom systems of propositional calculi. Proc. Japan Academic bf 42 (1966), 19-22.
8. H.S. Kim, J. Neggers \& K.S. So: Generalized Fibonacci sequences in groupoids. Adv. Differ. Eq. 26 (2013).
9. J. Meng \& Y.B. Jun: BCK-algebras. Kyung Moon Sa Co. Seoul, Korea, 1994.
10. D. Mundici: $M V$-algebras are categorically equivalent to bounded commutative $B C K$ algebras. Math. J. 31 (1986), 889-894.
11. D. Piciu: Algebras of fuzzy logic. Ed. Universitaria Craiova, 2007.
12. S. Tanaka: On \wedge-commutative algebras. Math. Sem. Notes Kobe 3, 59-64, 1975.
${ }^{\text {a }}$ Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran
Email address: morteza.afshar@gmail.com
${ }^{\text {b }}$ Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran
Email address: arsham@uk.ac.ir

[^0]: Received by the editors January 11, 2018. Accepted September 14, 2018.
 2010 Mathematics Subject Classification. 11B39, 06D35, 03G05.
 Key words and phrases. Fibonacci sequences, Boolean algebras, $M V$-algebras.
 *Corresponding author.

