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FIBONACCI SEQUENCES ON MV -ALGEBRAS

Morteza Afshar Jahanshahi a and Arsham Borumand Saeid b, ∗

Abstract. In this paper, we introduce the concept of Fibonacci sequences on MV -
algebras and study them accurately. Also, by introducing the concepts of periodic
sequences and power-associative MV -algebras, other properties are also obtained.
The relation between MV -algebras and Fibonacci sequences is investigated.

1. Introduction

The Fibonacci sequence is a beautiful mathematical concept, making surprise

appearances in everything from seashell patterns to the Parthenon. The Fibonacci

sequence is an integer sequence defined by a simple linear recurrence relation. The

sequence appears in many settings in mathematics and in other sciences. In partic-

ular, the shape of many naturally occurring biological organisms is governed by the

Fibonacci sequence and its close relative, the golden ratio. Fibonacci -number has

been studied in many different forms for centuries and the literature on the subject

is consequently incredibly vast. Surveys and connections of the type just mentioned

are provided for a very minimal set of examples of such texts in [1] and [5]. Given the

usual Fibonacci-sequence in [1, 5] and other sequences of this type, one is naturally

interested in considering what may happen in more general circumstances. Thus,

one may consider what happens if one replaces (positive) integers by the modulo in-

teger n or what happens in even more general circumstances. Han considered several

properties of the Fibonacci sequence in arbitrary groupoids in [6]. Kim, Neggers and

So in [8] introduced the notion of generalized Fibonacci sequences over a groupoid

and discussed it in particular for the case where the groupoid contained idempotents

and pre-idempotents.

BCI/BCK-algebras were first introduced in mathematics in 1966 by Imai and Iseki,
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as a generalization of the concept of set-theoretic difference and propositional calculi

[7]. The notion of the MV -algebra, originally introduced by Chang, is an attempt

at developing a theory of algebraic systems that would correspond to the ℵ0-valued

propositional calculus. The axioms for this calculus are known as the Lukasiewicz

axioms. In 1959, Chang proved the completeness theorem which stated the real unit

interval [0,1] as a standard model of this logic and also constructed an MV -algebra

from an arbitrary totally ordered abelian group. Moreover, he showed that every

linearly ordered MV -algebra is isomorphic to an MV -algebra constructed from a

group [3]. With the new definition we propose, we aim to examine the relationship

between this sequence and algebraic structures such as MV -algebras and show the

relations and concepts which exist in MV -algebras in Fibonacci sequences and vice

versa. Also, the results can be useful based on the relationship between Fibonacci

sequences and sequences such as Lucas series or applied algebras such as Clifford

algebras which are used in many domains, including geometry, theoretical physics,

and digital image processing.

In this paper, we introduce the notion of the Fibonacci sequences onMV -algebras

and study it where theMV -algebras have idempotent, infinitesimal and archimedean

elements. We make a new generalization of the Fibonacci sequences and derive var-

ious identities involving the Fibonacci sequences on MV -algebra. One direction is

concerned with structures obtained by adding operations to the MV -algebra struc-

ture, or even combining the MV -algebras with other structures in order to obtain

more expressive models and powerful logical systems. We obtain several relations

on the MV -algebras which are derived from the generalized Fibonacci sequences

and make some connections between the Fibonacci sequences and MV -algebras via

bounded commutative BCK-algebras. We find some results regarding MV -algebras

and the results is an elegant expression illustrating the connection between the Fi-

bonacci sequences and Lukasiewicz many valued logic.

2. Preliminaries

Definition 2.1 ([9]). An algebra (X, ∗, 0) of type (2, 0) is called a BCI-algebra if

the following conditions are fulfilled for all x, y, z ∈ X:

BCI-1 (((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

BCI-2 ((x ∗ (x ∗ y)) ∗ y = 0),

BCI-3 (x ∗ x = 0),
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BCI-4 (x ∗ y = 0 and y ∗ x = 0 imply x = y).

If a BCI-algebra X satisfies the following identity:

BCK-5 (∀x ∈ X) (0 ∗ x = 0), then X is called a BCK-algebra.

The partial order on a BCI/BCK-algebra is defined such that x ≤ y if and only

if x ∗ y = 0.

A BCI/BCK-algebra X is said to be commutative if x ∗ (x ∗ y) = y ∗ (y ∗ x), for
all x, y ∈ X.

A bounded commutative BCK-algebra is an algebra A = (A, ∗, 0, 1) of type (2, 0, 0)
satisfying the following identities:

(1) (x ∗ y) ∗ z = (x ∗ z) ∗ y,
(2) x ∗ (x ∗ y) = y ∗ (y ∗ x),
(3) x ∗ x = 0,

(4) x ∗ 0 = x,

(5) x ∗ 1 = 0.

Bounded commutative BCK-algebras were introduced in [12]. Mundici in [10]

showed that MV -algebras and bounded commutative BCK-algebras are categor-

ically equivalent.

Definition 2.2 ([3]). An MV -algebra A is an abelian monoid (A, 0,⊕) equipped

with an operation ∗ such that x∗∗ = x, x ⊕ 0∗ = 0∗ and, finally (x∗ ⊕ y)∗ ⊕ y =

(y∗ ⊕ x)∗ ⊕ x.

Definition 2.3 ([2, 11]). An ideal of an MV -algebra A is a non-empty subset I of

A satisfying the following conditions:

(I1) If x ∈ I, y ∈ A and y ≤ x, then y ∈ I,

(I2) If x, y ∈ I, then x⊕ y ∈ I.

Remark 2.4 ([2, 11]). If I is an ideal of A, then 0 ∈ I, x, y ∈ I ⇒ x ∨ y ∈ I,

x ⊕ y ∈ I ⇔ x ∨ y ∈ I. If M ⊆ A is a nonempty set, then (M ] = {x ∈ A : x ≤
x1 ⊕ ...⊕ xn for some x1, ..., xn ∈ M}. We denote by Id(A) the set of ideals of an

MV -algebra A. If I is an ideal of A = (A,⊕, ∗, 0) and x ∈ A, the congruence class

of x with respect to ∼I will be denoted by x/I, i.e., x/I = {y ∈ A : x ∼I y}, one
can easy to see that x ∈ I if and only if x/I = 0/I. We shall denote the quotient

set A/ ∼I by A/I. Since ∼I is a congruence on A, the MV -algebra operations on

A/I given by

x/I ⊕ y/I = (x⊕ y)/I and (x/I)∗ = x∗/I,
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are well defined. Hence, the system (A/I,⊕, ∗, 0/I) becomes an MV -algebra, called

the quotient algebra of A by ideal I.

Theorem 2.5 ([2]). For any bounded commutative BCK-algebra (A, ∗, 0, 1), upon
defining x∗ =def 1∗x and x⊕y =def 1∗((1∗x)∗y), then (A,⊕, ∗, 0) is an MV -algebra,

and x⊖ y = x ∗ y.

Remark 2.6 ([4]). For any infinitesimal element a > 0, the sequence (0 ≤ a ≤ 2a ≤
3a ≤ ... ≤ na ≤ ...) is strictly increasing.

Definition 2.7 ([3, Chang’s MV -algebra C]). Let {c, 0, 1,+,−} be a set of found

symbols. For any n ∈ N we define the following abbreviations:

nc :=

 0 if n = 0,
c if n = 1,

c+ (n− 1)c if n > 1,
1− nc :=

 0 if n = 0,
1− c if n = 1,

1− (n− 1)c− c if n > 1.

We consider C = {nc : n ∈ N} ∪ {1 − nc : n ∈ N} and define the MV -algebra

operations as follows:

(⊕1) if x = nc and y = mc, then x⊕ y := (m+ n)c,

(⊕2) if x = 1− nc and y = 1−mc, then x⊕ y := 1,

(⊕3) if x = nc and y = 1−mc and m ≤ n, then x⊕ y := 1,

(⊕4) if x = nc and y = 1−mc and n < m, then x⊕ y := 1− (m− n)c,

(⊕5) if x = 1−mc and y = nc and m ≤ n, then x⊕ y := 1,

(⊕6) if x = 1−mc and y = nc and n < m, then x⊕ y := 1− (m− n)c,

(∗1) if x = nc, then x∗ := 1− nc,

(∗2) if x = 1− nc, then x∗ := nc.

Then, the structure (C,⊕, ∗, 0) is an MV -algebra, which is called the Chang’s MV -

algebra.

3. Fibonacci Sequences Generated by MV -algebras

In this section, we introduce the notion of the Fibonacci sequences on MV -

algebras and provide some examples in particular for different modes in the MV -

algebras.

The Fibonacci sequence is a series of numbers where a number is found by adding

up the two numbers before it. Starting with 0 and 1, the sequence goes 0, 1, 1, 2, 3,

5, 8, 13, 21, 34, and so forth. Written as a rule, the expression is Xn = Xn−1+Xn−2.

In what follows, let A denote an MV -algebra, unless otherwise specified.
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Definition 3.1. If a, b ∈ A, we construct a sequence as follows:

[a, b] := {a, b, u0, u1, u2, ..., uk, ...},
where u0 := a⊕ b, u1 = b⊕ u0, u2 = u0 ⊕ u1, and uk+2 = uk ⊕ uk+1.

A sequence [a, b] is called a Fibonacci sequence on MV -algebra.

Example 3.2. If we consider an MV -algebra ([0, 1],⊕, ∗, 0) and for all x, y ∈ [0, 1],

we define x⊕ y = min{1, x+ y} and x∗ = 1−x, then the Fibonacci sequence can be

denoted as follows: [0, 1] := {0, 1, u0, u1, u2, ...}, where u0 = 0⊕1 = min{1, 0+1} = 1,

u1 = 1⊕1 = min{1, 1+1} = min{1, 2} = 1, u2 = 1⊕1 = min{1, 1+1} = min{1, 2} =

1, ... . Then [0, 1] = {0, 1, 1, 1, ...} and [0,
1

2
] = {0, 1

2
,
1

2
, 1, 1, ...}.

Example 3.3. For each integer n ≥ 2, the n-element set Ln={0, 1

n− 1
, ...,

n− 2

n− 1
, 1},

MV -sub algebras of [0,1] and its Fibonacci sequence [
1

n− 1
,
n− 2

n− 1
] can be denoted

as follows:

[
1

n− 1
,
n− 2

n− 1
] := { 1

n− 1
,
n− 2

n− 1
, u0, u1, u2, ...},

where u0 =
1

n− 1
⊕ n− 2

n− 1
= min{1, 1

n− 1
+

n− 2

n− 1
} = min{1, 1} = 1,

u1 =
n− 2

n− 1
⊕ 1 = min{1, n− 2

n− 1
+ 1} = min{1, 2n− 3

n− 1
} = 1, ... . Then

[
1

n− 1
,
n− 2

n− 1
] := { 1

n− 1
,
n− 2

n− 1
, 1, 1, 1, ...}, and so on

[
1

5
,
1

8
] = {1

5
,
1

8
,
13

40
,
18

40
,
31

40
, 1, 1, 1, ...}.

Using Definition 2.1 and Theorem 2.5, we can provide examples of classes of

bounded commutative BCK-algebras, which is an MV -algebra.

Example 3.4. Let X = {0, 1, 2, 3} be a set with the following table:

∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 0
2 2 1 0 0
3 3 2 1 0

Then X is an MV -algebra. It is easy to see that Fibonacci sequence [1, 2] can be

denoted as follows: [1, 2] := {1, 2, u0, u1, u2, ...}, then by Theorem 2.5 we have:

u0 = 1⊕ 2 = 1 ∗ ((1 ∗ 1) ∗ 2) = 1 ∗ (0 ∗ 2) = 1 ∗ 0 = 1, u1 = 2⊕ 1 = 1 ∗ ((1 ∗ 2) ∗ 1) =
1 ∗ (0 ∗ 1) = 1 ∗ 0 = 1, u3 = 1 ⊕ 1 = 1 ∗ ((1 ∗ 1) ∗ 1) = 1 ∗ (0 ∗ 1) = 1 ∗ 0 = 1,

u4 = 1⊕ 1 = 1, ... . Hence [1, 2] := {1, 2, 1, 1, 1, ...}, and [2, 1] := {2, 1, u0, u1, u2, ...}.
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By Theorem 2.5, we have: [2, 1] := {2, 1, 1, 1, ...}, and [0, 3] := {0, 3, 1, 1, 1, ...}.

Example 3.5. Let X = {0, a, b, c, d, 1} be a set with the following table:

∗ 0 a b c d 1
0 0 0 0 0 0 0
a a 0 a a 0 0
b b b 0 0 0 0
c c c b 0 b 0
d d b a a 0 0
1 1 c d a b 0

Then X is an MV -algebra. If a, b ∈ X, then [a, b] := {a, b, u0, u1, u2, ...}. By

Theorem 2.5 we have:

u0 = a⊕b = 1∗((1∗a)∗b) = 1∗(c∗b) = 1∗b = d, u1 = b⊕d = 1∗((1∗b)∗d) = 1∗(d∗d) =
1∗0 = 1, u3 = d⊕1 = 1∗((1∗d)∗1) = 1∗(b∗1) = 1∗0 = 1, u4 = 1⊕1 = 1, ... . Hence

[a, b] := {a, b, d, 1, 1, 1, ...}, and [b, a] := {b, a, d, d, 1, 1, 1, ...}, [d, 1] := {d, 1, 1, 1, ...},
[c, b] := {c, b, c, c, c, ...}, [b, c] := {b, c, c, c, ...}.

Example 3.6. Let C be Chang’sMV -algebra. Then the Fibonacci sequence [nc, 1−
mc] can be denoted as follows: [nc, 1 − mc] := {nc, 1 − mc, u0, u1, u2, ...}, then we

have:

(a) [nc, 1−mc] := {nc, 1−mc, 1, 1, 1, ...},
(b) [nc, 1 − mc] := {nc, 1 − mc, 1 − (m − n)c, (1 − mc) ⊕ (1 − (m − n)c), 1 − (m −
n)c⊕ ((1−mc)⊕ (1− (m− n)c)), ...}.
If n = 1, then we have:

(a) [c, 1−mc] := {c, 1−mc, 1, 1, 1, ...},
(b) [c, 1−mc] := {c, 1−mc, 1− (m− 1)c, 1, 1, ...},
and [nc,mc] := {nc,mc, u0, u1, u2, ...}, so we have:

[nc,mc] := {nc,mc, (m+ n)c, (2m+ n)c, (3m+ 2n)c, (5m+ 3n)c, ..., (km+ pn)c, ...}
and [0, 1−mc] := {0, 1−mc, u0, u1, u2, ...}, thus we have:

[0, 1−mc] := {0, 1−mc, 1−mc, 2(1−mc), 3(1−mc), ..., k(1−mc), ...},
and [1−mc, nc] := {1−mc, nc, u0, u1, u2, ...}, hence we have:

[1 − mc, nc] := {1 − mc, nc, 1, 1, 1, ...}, and [1 − mc, nc] := {1 − mc, nc, 1 − (m −
n)c, 1− (m− 2n)c, 1, 1, ...}.

For any MV -algebra A we shall denote by B(A) the set of all complemented

elements of L(A), the elements of B(A) are called the Boolean elements of A.

We can provide examples of MV -algebras with some properties, in our case, Boolean

MV -algebras and ideal in MV -algebras.
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Example 3.7. We give an example of a finite MV -algebra which is not a chain.

The set L3×2 = {0, a, b, c, d, 1} ≈ L3 × L2 = {0, 1, 2} × {0, 1} with 0 < a, b < c < 1,

0 < b < d < 1. We have in L3×2 the following table:

⊕ 0 a b c d 1
0 0 a b c d 1
a a a c c 1 1
b b c d 1 d 1
c c c 1 1 1 1
d d 1 d 1 d 1
1 1 1 1 1 1 1

It is easy to see that B(A) = {0, a, d, 1}. If c ∈ A, i.e., c is not Boolean and d ∈ B(A),

then the Fibonacci sequence [c, d] can be denoted as follows:

[c, d] := {c, d, u0, u1, u2, ...} = {c, d, 1, 1, 1, ...} and [d, c] := {d, c, 1, 1, 1, ...}.
If {a, d, 0, 1} ∈ B(A), then we have:

[a, d] := {a, d, 1, 1, 1, ...} and [0, d] := {0, d, d, d, ...}, [d, 0] := {d, 0, d, d, ...}.

Example 3.8. Consider the MV -algebra C from Example 3.6, then

Id(A)={I1 = {0}, I2 = {0, c, 2c, 3c, ...}, I3 = C}. For c ∈ I2, we have: [c, 2c] :=

{c, 2c, u0, u1, u2, ...}, then we have:

[c, 2c] := {c, 2c, 3c, 5c, 8c, ...} and [2c, c] := {2c, c, 3c, 4c, 7c, 11c, ...}.

Remark 3.9. In Example 3.8, consider I = I1 and a, b ∈ C, then the Fibonacci

sequence [a/I, b/I] can denoted as follows:

[a/I, b/I] := {a/I, b/I, u0, u1, u2, ...}. Thus [a/{0}, b/{0}] :={a/{0}, b/{0}, (a ⊕
b)/{0}, (b⊕ (a⊕ b))/{0}, ((a⊕ b)⊕ (b⊕ (a⊕ b)))/{0}, ...} = {a, b, (a⊕ b), (b⊕ (a⊕
b)), ((a ⊕ b) ⊕ (b ⊕ (a ⊕ b))), ...} = [a, b] and [a, b]/{0} := {a, b, (a ⊕ b), (b ⊕ (a ⊕
b)), ((a⊕ b)⊕ (b⊕ (a⊕ b))), ...}/{0} = [a, b]. Hence [a, b]/I = [a/I, b/I].

If I ∈ Id(A) and I ̸= I1, then the Fibonacci sequence [a/I, b/I] can denoted as

follows: [a/I, b/I] := {a/I, b/I, (a⊕ b)/I, (a⊕ 2b)/I, (2a⊕ 3b)/I, ...} and [a, b]/I :=

{a, b, (a⊕ b), (a⊕ 2b), (2a⊕ 3b), ...}/I. Hence [a, b]/I ̸= [a/I, b/I].

4. On Derivation of Fibonacci Sequences

In this section, using the Boolean algebra, power-associative and periodic notions,

we obtain several relations on MV -algebras, which are derived from the Fibonacci

sequences.

An element a of an MV -algebra A is called an idempotent or Boolean if a⊕ a = a,

if a and b are idempotents, then a⊕ b and a⊙ b are also idempotents.
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Remark 4.1. For 1 ̸= a, 0 ∈ A we have:

[a, 0] := {a, 0, u0, u1, u2, ..., uk, ...}, then [a, 0] := {a, 0, a, a, 2a, 3a, ..., ka, ...} and

[0, a] := {0, a, a, 2a, 3a, 4a, ..., (k + 1)a, ...}.

Recall that an element a in A is said to be infinitesimal if for each integer n ≥ 0,

na ≤ ¬a, equivalently, if and only if na ⊖ ¬a = na ⊙ a = 0. An element a in A is

said to be archimedean if there is an integer n ≥ 0, such that (n + 1)a ⊖ na = 0,

equivalently, if and only if the sequence (a ≤ 2a ≤ 3a ≤ ... ≤ na ≤ ...) is stationary.

Note that the only archimedean infinitesimal element is 0.

From Remark 4.1 and Remark 2.6 we deduce that:

Corollary 4.2. For any element 1 ̸= a, the Fibonacci sequences [a, 0] and [0, a] are

strictly increasing.

Proposition 4.3. For 1 ̸= a, 0 ∈ A, the following are equivalent:

(i) A is Boolean algebra,

(ii) Fibonacci sequences [a, 0] and [0, a] are stationary,

(iii) a is archimedean.

Proof. (i) ⇒ (ii) and (ii) ⇒ (iii) are trivial.

(iii) ⇒ (i). Since a is archimedean, there is an integer n ≥ 0 such that (n+1)a⊖na =

0, hence na ∈ B(A). Thus A is Boolean algebra. �

Definition 4.4. A is said to be power-associative if, for any a, b ∈ A there exists

k ∈ Z such that the Fibonacci sequence [a, b] has uk−2 = uk−1 for some u ∈ A.

Example 4.5. Example 3.2 and Example 3.3 are power-associative.

Remark 4.6. If A is a Boolean algebra, then for any a, b ∈ A, the MV -algebra A

is power-associative. Since for any a, b ∈ A, a⊕ a = a. Hence we have:

[a, b] := {a, b, u0, u1, u2, ..., uk, ...}, so u0 = a⊕b, u1 = b⊕(a⊕b) = (b⊕b)⊕a = b⊕a =

a⊕ b, u2 = (a⊕ b)⊕ (a⊕ b) = a⊕ b, ... . Hence [a, b] := {a, b, a⊕ b, a⊕ b, a⊕ b, ...}.

Theorem 4.7. Let A be power-associative and a, b ∈ A. Then [a, b] contains a

subsequence {uk} such that uk+n = (Fn+3)u for some u ∈ A, where Fn is the usual

Fibonacci number.

Proof. Given a, b ∈ A, since A is power-associative, [a, b] contains an element u such

that uk−2 = uk−1 = u. It follows that uk = uk−1 ⊕ uk−2 = u ⊕ u = 2u. This
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shows that uk+1 = uk ⊕ uk−1 = 2u ⊕ u = 3u . In this fashion, we have uk+2 = 5u,

uk+3 = 8u = (F6)u, ..., uk+n = (Fn+3)u. �

Corollary 4.8. Every power-associative MV -algebra A is not a Boolean algebra.

Proof. Since A is power-associative, [a,b] contains an element u such that uk−2 =

uk−1 = u. It follows that uk = uk−1 ⊕ uk−2 = u ⊕ u = 2u. This shows that

uk+1 = uk ⊕ uk−1 = 2u⊕ u = 3u . In the sequel, we have uk+2 = 5u, uk+3 = 8u, ....

Hence [a, b] := {a, b, u0, u1, ..., uk−2, uk−1, uk, uk+1, uk+2, ...} = {a, b, a ⊕ b, b ⊕ (a ⊕
b), ..., u, u, 2u, 3u, 5u, ...}, that is, a and b are not Boolean. Thus A is not Boolean

algebra. �

Remark 4.9. Let a, b ∈ A be archimedean elements of A. Then the Fibonacci

sequence [a, b] is of the form [a, b] := {a, b, a⊕ b, a⊕ b, a⊕ b, ...}. Hence A is power-

associative.

We recall that a lattice -ordered group (l-group) is a structure (G,+, 0,≤) such

that (G,+, 0) is a group, (G,≤) is a lattice and the following property is satisfied:

for any x, y, a,b ∈ G, x ≤ y ⇒ a+ x+ b ≤ a+ y + b.

In the sequel, an lu-group will be a pair (G, u) where G is an l-group and u is a strong

unit of G. u > 0 is a strong unit for G (that is, for all x ∈ G there is some natural

number n ≥ 1 such that −nu ≤ x ≤ nu). A strong unit u of G is an archimedean

element of G, i.e., an element u ∈ G such that for each x ∈ G there is an integer

n ≥ 0 with −nu ≤ x ≤ nu.

Let G = (G,+, 0,−,∨,∧) be an abelian l-group and 0 ∈ G. For any x, y ∈
[0, u] = {x ∈ G; 0 ≤ x ≤ u} set x ⊕ y = (x + y) ∧ u and x∗ = u − x. Put

Γ(G, u) = ([0, u],⊕, ∗, 0). Then Γ(G, u) is an MV -algebra.

Proposition 4.10. Let Γ(G, u) = ([0, u],⊕, ∗, 0) be an MV -algebra. Then for any

a, b ∈ Γ(G, u) the Fibonacci sequence [a, b] is of the form [a, b] := {a, b, u, u, u, ...}.

Proof. If (G, u) is an abelian lu-group, then for any x ≥ 0 inG there are x1, x2, ..., xn ∈
[0, u] such that x = x1+x2+ ...+xn. Hence, any abelian lu-group is generated by its

unit interval [0, u]. Then [a, b] := {a, b, u0, u1, u2, ..., uk, ...}, so using x⊕y = (x+y)∧u
we have:

u0 = a ⊕ b = (a + b) ∧ u = (x) ∧ u = u, u1 = b ⊕ u = (b + u) ∧ u = u,

u2 = u⊕ u = (u+ u) ∧ u = u, .... Hence [a, b] := {a, b, u, u, u, ...}. �
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Remark 4.11. A sequence a = (a1, a2, ...) of elements of A is said to be good if and

only if for each i={1, 2, ...}, ai⊕ai+1 = ai and there is an integer n such that ar = 0

for all r > n. Then for a1, a2 ∈ A, we have: [a1, a2] := {a1, a2, a1, a2, ...}.

Proposition 4.12. If I is an ideal of A and a, b ∈ I such that a ≤ b, then a Fibonacci

sequence [a, b] is of the form {a, b, b, b, ...} and hence A is power-associative.

Proof. By Remark 2.4 and Definition 4.4 we have: a⊕ b = a ∨ b and because a ≤ b,

a ∨ b = b. Thus u0 = a ⊕ b = b and u1 = b ⊕ b = b ∨ b = b, ... . Hence

[a, b] := {a, b, b, b, ...}. �

An MV -algebra A is locally finite if every non-zero element of A has finite order.

Proposition 4.13. Let A be a locally finite MV -algebra and a, b ∈ A. Then a

Fibonacci sequence [a, b] is of the form {a, b, a ⊕ b, 1, 1, 1, ...} and the converse is

true.

Proof. Since the MV -algebra A is locally finite, there is a natural number m such

that ma=1. It follows that [a, b] = {a, b, a ⊕ b, b ⊕ (a ⊕ b) = 2b ⊕ a = 1 ⊕ a =

1, (a⊕ b)⊕ 1 = 1, 1⊕ 1 = 1, ...}.
Conversely, suppose that [a, b] = {a, b, a ⊕ b, 1, 1, 1, ...}, by Definition 3.1 we have:

[a, b] := {a, b, u0, u1, u2, ..., uk, ...} = {a, b, a⊕ b, b⊕ (a⊕ b), (a⊕ b)⊕ (b⊕ (a⊕ b)), ...},
hence b⊕ (a⊕ b) = 1, (a⊕ b)⊕ (b⊕ (a⊕ b)) = 1, i.e., 2b⊕ a = 1 and 2a⊕ 3b = 1, ....

It follows that A is a locally finite MV -algebra. �

Definition 4.14. A Fibonacci sequence [a, b] is said to be periodic sequence if, for

any a, b ∈ A we have [a, b] := {a, b, u0, u1, u0, u1, ...}.

Example 4.15. The Fibonacci sequence [a1, a2] in Remark 4.11 is periodic sequence

[a1, a2] := {a1, a2, a1, a2, ...}.

Theorem 4.16. For a, b ∈ A, the followings are equivalent:

(i) A is a Boolean algebra,

(ii) Fibonacci sequence [a, b] is periodic.

Proof. (i) ⇒ (ii). The proof is similar to Remark 4.6.

(ii) ⇒ (i). For a Fibonacci sequence [a,b] we have:

[a, b] = [a, b, a⊕b, b⊕(a⊕b), (a⊕b)⊕(b⊕(a⊕b)), (b⊕(a⊕b))⊕((a⊕b)⊕(b⊕(a⊕b))), ...].

Since the Fibonacci sequence [a, b] is periodic, for k ∈ {0, 1, 2, ...}, we have:

{u0 = u2, u1 = u3, u2 = u4, ..., uk = uk+2, ...}.
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Because u0 = u2 and u2 = u4, we have a⊕ b = (a⊕ b)⊕ (b⊕ (a⊕ b)) and (a⊕ b)⊕
(b⊕ (a⊕ b))=((a⊕ b)⊕ (b⊕ (a⊕ b)))⊕ ((b⊕ (a⊕ b))⊕ ((a⊕ b)⊕ (b⊕ (a⊕ b)))). It

follows that a ⊕ b = (a ⊕ b) ⊕ (a ⊕ b). In particular by taking b=0 in u0 = u2 and

u2 = u4 we obtain a = a⊕ a, that is, A is a Boolean algebra. �

An MV -algebra A is said to be pre-idempotent if x ⊕ y is an idempotent in A

for any x, y ∈ A. Note that if A is an idempotent MV -algebra, then it is a pre-

idempotent MV -algebra as well.

Proposition 4.17. Let A be an pre-idempotent MV -algebra. Then the Fibonacci

sequence [a, b] is of the form [a, b] := {a, b, a⊕ b, a⊕ b, a⊕ b, ...} and the converse is

true.

Proof. If A is a pre-idempotent MV -algebra, then for a Fibonacci sequence [a,b] we

have:

[a, b] := {a, b, u0, u1, u2, u3, ...} = {a, b, a ⊕ b, b ⊕ (a ⊕ b), (a ⊕ b) ⊕ (b ⊕ (a ⊕ b)), ...},
hence u0 = a⊕ b, u1 = b⊕ (a⊕ b) = a⊕ 2b = a⊕ b, u2 = (a⊕ b)⊕ (b⊕ (a⊕ b)) =

((a⊕ b)⊕ (a⊕ b))⊕ b = (a⊕ b)⊕ b = a⊕2b = a⊕ b, u3 = (a⊕ b)⊕ (a⊕ b) = a⊕ b, ....

So [a, b] := {a, b, a⊕ b, a⊕ b, a⊕ b, ...}.
Conversely, suppose that [a, b] = {a, b, a⊕b, a⊕b, a⊕b, a⊕b, ...}, by Definition 3.1 we

have: [a, b] := {a, b, u0, u1, u2, u3...} = {a, b, a⊕b, b⊕(a⊕b), (a⊕b)⊕(b⊕(a⊕b)), (b⊕
(a⊕b))⊕((a⊕b)⊕(b⊕(a⊕b))), ...}, hence b⊕(a⊕b) = a⊕b, (a⊕b)⊕(b⊕(a⊕b)) =

a⊕b, (b⊕(a⊕b))⊕((a⊕b)⊕(b⊕(a⊕b))) = a⊕b, i.e., 2b⊕a = a⊕b, 3b⊕2a = a⊕b,

5b ⊕ 3a = a ⊕ b .... Since 3b ⊕ 2a = a ⊕ b and 2b ⊕ a = a ⊕ b we deduce that

(2b⊕ a)⊕ (a⊕ b) = a⊕ b, so (a⊕ b)⊕ (a⊕ b) = (a⊕ b). Since 5b⊕ 3a = a⊕ b and

3b⊕2a = a⊕ b we obtain (3b⊕2a)⊕ (2b⊕a) = a⊕ b, thus (a⊕ b)⊕ (a⊕ b) = (a⊕ b).

It follows that A is a pre-idempotent MV -algebra. �

Theorem 4.18. Let u ∈ A be such that [a, b] := {a, b, u, u, u, ...} for any a, b ∈ A.

Then A is a Boolean algebra.

Theorem 4.19. Let u, q ∈ A be such that [a, b] := {a, b, u, u, u, ...} and [b, a] :=

{b, a, q, q, q, ...} for any a, b ∈ A. Then

(i) if u = q = 1, then A is a standard MV -algebra,

(ii) if u = q = a⊕ b, then A is a Boolean algebra,

(iii) if u = q = a or b, then I is an ideal in MV -algebra (A/I,⊕, ∗, 0/I) for a, b ∈
A/I.
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Proof. By Remark 4.6 and Proposition 4.12 it is trivial. �

By Theorem 4.19 and Proposition 4.10 we have the following corollary:

Corollary 4.20. (i) Let A = (A,⊕, ∗, 0) be an linearly ordered MV -algebra and

a, b ∈ A. Then the Fibonacci sequence [a, b] is of the form [a, b] := {a, b, u, u, u, ...},
(ii) Let A = ([0, 1],⊕, ∗, 0) be an MV -algebra and a, b ∈ A. Then the Fibonacci

sequence [a, b] is of the form [a, b] := {a, b, u, u, u, ...}.

Conclusions

We first introduced the notion of the Fibonacci sequences on MV -algebras, inves-

tigated their properties and proved some relations between the Fibonacci sequences

in the MV -algebra. We observed that the Fibonacci sequences can be used for

the study of the MV -algebras, to provide orders which we can built algebras with

some properties. Moreover, using the notion of ideal and Boolean algebra in the

MV -algebras, we obtained several relations on the MV -algebras which were derived

from the Fibonacci sequences. Furthermore, we obtained the interesting Fibonacci

sequences for the MV -algebras and investigated the special cases of this sequence.
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