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ON SEQUENTIAL TOPOLOGICAL GROUPS

İbrahim İnce a and Soley Ersoy b, ∗

Abstract. In this paper, we study the sequentially open and closed subsets of
sequential topological groups determined by sequentially continuous group homo-
morphism. In particular, we investigate the sequentially openness (closedness) and
sequentially compactness of subsets of sequential topological groups by the aid of
sequentially continuity, sequentially interior or closure operators. Moreover, we ex-
plore subgroup and sequential quotient group of a sequential topological group.

1. Introduction

A topological space is a sequential space if it is determined by all its compact

metric subsets [7]. The first countable spaces and metric spaces are the examples of

sequential spaces [8].

The compact metric subsets can be replaced by convergent sequences. A con-

vergent sequence means the union of the sequence and its limit point [6, 11]. The

sequential topological spaces are worth to consider since sequences may advantage

over nets. A considerable number of studies regarding convergent sequences in topo-

logical spaces were introduced during the 1960s as [1, 5, 7, 8, 21].

A subset S of a topological spaceX is said to be sequentially open if each sequence

converging to a point in S is eventually in S. A space X is said to be sequential if

each sequentially open subset of X is open. Closed and open subspaces of sequential

spaces are sequential too, but in general, sequentiality is not hereditary (See Example

1.8 of [7]).

Sequentiality in topological groups was studied in several papers [14, 16, 18, 19,

20]. We refer the reader to [2] for notations and terminology of topological groups.
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From different a point of view, it is also possible to use sequential continuity to

define a sequential group. It is well known that any continuous map is sequentially

continuous, i.e., sequential continuity is a weaker condition than ordinary continuity.

A sequential group is a group G provided with a topology, such that multiplication

G × G → G and inversion G → G are sequentially continuous (G × G is provided

with the product topology). A homomorphism of sequential groups is a sequentially

continuous group homomorphism [4].

In these regards, we investigate the sequential topological groups determined by

sequentially continuous group homomorphism.

2. Preliminaries

Throughout this paper, X and Y denote topological spaces.

Definition 2.1 ([7, 8]). A subset S of X is sequentially open if each sequence (xn)

in X converging to a point of S is eventually in S.

Definition 2.2 ([7, 8, 23]). A subset F is sequentially closed if, whenever (xn) is a

sequence in F converging to x, then x must also be in F .

Definition 2.3 ([23]). A sequential closure of a subset A of X is,

[A]seq = {x ∈ X | there exist a sequence (xn) from A such that xn → x}

that is,

[A]seq = {x ∈ X | x← (xn) ⊆ A} .

Definition 2.4 ([12]). A sequential neighborhood of a point x is an arbitrary set

W such that x /∈ [X\W ]seq.

Lemma 2.5 ([12]). Any sequential neighborhood of a point almost contains any

sequence converging to this point.

Definition 2.6 ([12]). A sequential interior of a subset A of X is,

(A)seq = {x ∈ X | there is a seq. neighborhood U such that x ∈ U ⊆ A} .

Lemma 2.7 ([12]). A ⊆ [A]seq ⊆ A and A◦ ⊆ (A)seq ⊆ A.

Recall that a topological space X is called a sequential space if a set A ⊆ X is

closed if and only if together with any sequence it contains all its limits [7].
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Lemma 2.8 ([7]). A space is a sequential space if and only if every sequentially

open (closed) set is open (closed).

Definition 2.9 ([22]). A topological space X is said to be sequentially compact if

every sequence in X has a convergent subsequence.

Definition 2.10 ([11]). Let f : X → Y be a function and x ∈ X. We say that f

is sequentially continuous at the point x0 if, for any sequence (xn) converging to x0,

(f (xn))→ f (x0).

Lemma 2.11 ([11]). f : X → Y is sequentially continuous if and only if for every

subset A ⊆ X, f
(
[A]seq

)
⊆ [f (A)]seq.

Lemma 2.12 ([11]). f : X → Y is sequentially continuous if and only if for every

subset B ⊆ Y , f−1
(
(B)seq

)
⊆

(
f−1 (B)

)
seq

.

Definition 2.13 ([17]). Let (G, ·) be a group endowed with a topology τ . (G, ·, τ)
(or simply G) is a topological group if the product · : G × G → G and the inverse

G→ G are continuous maps.

Definition 2.14 ([17]). Let (G, ·, τ) be a topological group. A−1 ≡
{
a

∣∣ a−1 ∈ A
}

and A ·B ≡ {a · b | a ∈ A, b ∈ B } for A,B ⊆ G.

3. Sequential Topological Groups

In this section, our aim is to define and study sequential topological groups by

using the concepts of sequentially open (closed, compact) sets and sequentially con-

tinuous mappings.

Definition 3.1. Let G be a topological space and group. Then G is said to be a

sequential topological group if the mappings

m : G×G
(x,y)

→
→

G
m(x,y)=x◦y

and

i : G
x
→
→

G
i(x)=x−1

are sequentially continuous.

The sequential groups are not required to be sequential topological spaces.
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Example 3.2. The Sorgenfrey line is a sequential space but not a sequential topo-

logical group with addition of real numbers because the inverse operation i fails to

be sequential continuous. For example, the sequence (1/n )n∈N converges to 0, while

(−1/n )n∈N does not.

Every topological group is a sequential topological group but the converse is not

always valid.

Example 3.3. Let τ = {∅,Z/4, {0, 1} , {3} , {0, 1, 3}} be a topology on set Z/4 =

{0, 1, 2, 3}. Also, (Z/4,+) is a group for the mappings

m : Z/4 × Z/4
(x,y)

→
→

Z/4
m(x,y)=x+y

and

i : Z/4
x
→
→

Z/4
i(x)=x−1

.

Now, let’s investigate the continuity of mappings m and i as to whether triple

(Z/4,+, τ) is a topological group. Then,

τ × τ =


∅,Z/4 × Z/4,Z/4 × {0, 1} ,Z/4 × {3} ,Z/4 × {0, 1, 3} ,
{0, 1} × Z/4, {0, 1} × {0, 1} , {0, 1} × {3} , {0, 1} × {0, 1, 3} ,
{3} × Z/4, {3} × {0, 1} , {3} × {3} , {3} × {0, 1, 3} ,
{0, 1, 3} × Z/4, {0, 1, 3} × {0, 1} , {0, 1, 3} × {3} ,
{0, 1, 3} × {0, 1, 3}


If the preimage of every open subset of (Z/4, τ) is open in (Z/4 × Z/4, τ × τ) then

the function m is continuous. However

m−1 ({3}) = {(0, 3) , (3, 0) , (1, 2) , (2, 1)} /∈ τ × τ

and so m isn’t continuous, on the other hand, the function i isn’t also continuous

since i−1 ({3}) = {1} /∈ τ . Hence (Z/4,+, τ) isn’t a topological group.

In the meantime, it is well known that if (xn)→ x and (yn)→ y,

(xn) + (yn) → x + y and if (xn) → x, λ (xn) → λx for every λ ∈ R and any

sequences (xn), (yn). So, from the fact that

m ((xn) , (yn)) = (xn) + (yn)→ x+ y

and

i ((xn)) = − (xn)→ −x,

the functions m and i are sequentially continuous. Finally, the triple (Z/4,+, τ) is

a sequential topological group.
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Lemma 3.4. A subgroup of a sequential topological group is also a sequential topo-

logical group.

Proof. Let G be a sequential topological group and H be a subgroup of G. Because

of m and i are sequential continuous functions, then restrictions of these functions

mH : H ×H
(x,y)

→
→

H
mH(x,y)=x◦y

and

iH : H
x
→
→

H
iH(x)=x−1

are sequential continuous. Thus, H is a sequential topological subgroup of G. �

Lemma 3.5. Any sequential topological group is sequentially homogenous.

Proof. Let G be a sequential topological group. Then the maps x → x ◦ g and

y → y ◦ g are sequentially homeomorphisms. Because

x ◦ g := G
x

(I,c)−→
→

G×G
(x,g)

m−→
→

G
x◦g

and

g ◦ y := G
y

(c,I)−→
→

G×G
(g,y)

m−→
→

G
g◦y

are sequentially continuous mappings where c and I are, respectively, constant and

identity mappings. Also, the inverse mappings exist and sequentially continuous,

too. Then for given a, b ∈ G the map x → a−1bx is a sequentially homeomorphism

from G→ G which maps x to y. This means that G is sequential homogenous. �

Theorem 3.6. Let G be a sequential topological group and A be a subset of G. Then[
A−1

]
seq

= [A]−1
seq.

Proof. Let a ∈
[
A−1

]
seq

. Then there exists a sequence (xn) from A−1 such that

(xn) → a, i.e., a ← (xn) ⊆ A−1. Since the function i is the sequential continuous,

i (a) ← i ((xn)) ⊆ i
(
A−1

)
. Thus a−1 ← (xn)

−1 ⊆ A, i.e., there exists a sequence

(xn)
−1 from A such that (xn)

−1 → a−1. Then, a−1 ∈ [A]seq ⇒ a ∈ [A]−1
seq. So,

(3.1)
[
A−1

]
seq
⊆ [A]−1

seq .

Now, let a ∈ [A]−1
seq ⇒ a−1 ∈ [A]seq. Then there exist a sequence (xn) from A such

that (xn) → a−1, i.e., a−1 ← (xn) ⊆ A. Since the function i is the sequentially
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continuous, i
(
a−1

)
← i ((xn)) ⊆ i (A). Thus a ← (xn)

−1 ⊆ A−1, i.e., there exist a

sequence (xn)
−1 from A−1 such that (xn)

−1 → a. Then, a ∈ [A]−1
seq. Hence,

(3.2) [A]−1
seq ⊆

[
A−1

]
seq

.

The proof is completed from (3.1) and (3.2). �

Lemma 3.7. Let G be a sequential topological group, if U is a sequential neighbor-

hood of x, U−1 is a sequential neighborhood of x−1.

Proof. Let U be a sequential neighborhood of x. Then x /∈ [G\U ]seq. (xn) 9 x

for each sequence (xn) of G\U , i.e., x 8 (xn) ⊆ G\U . Since the function i is

sequentially continuous,

i (x) 8 i ((xn)) ⊆ i (G\U)⇒ x−1 8
(
xn

−1
)
⊆ (G\U)−1.

Then G\U−1 = (G\U)−1 because of

x /∈ (G\U)−1 ⇔ x−1 /∈ G\U ⇔ x−1 ∈ U ⇔ x ∈ U−1 ⇔ x /∈ G\U−1.

Thus x 8 (xn) ⊆ G\U , i.e., for each sequence
(
xn

−1
)
of G\U−1 there is (xn) 9 x.

Therefore x−1 /∈
[
G\U−1

]
seq

, i.e., U−1 is a sequential neighborhood of x−1. �

Theorem 3.8. Let G be a sequential topological group and A be a subset of G. Then(
A−1

)
seq

= (A)−1
seq.

Proof. Let a ∈
(
A−1

)
seq

. Then there exist a sequential neighborhood U such that

a ∈ U ⊆ A−1. Since the function i is sequentially continuous and from Lemma 3.7,

there exists a sequential neighborhood i (U) = U−1 of a−1 such that i (a) ∈ i (U) ⊆
i
(
A−1

)
⇒ a−1 ∈ U−1 ⊆ A. So, a−1 ∈ (A)seq ⇒ a ∈ (A)−1

seq. From this,

(3.3)
(
A−1

)
seq
⊆ A−1

seq.

On the contrary, assume a ∈ (A)−1
seq ⇒ a−1 ∈ (A)seq. There exists a sequential

neighborhood V such that a−1 ∈ V ⊆ A. Since the function i is sequentially

continuous and from Lemma 3.7, there exists a sequential neighborhood i (V ) = V −1

of a such that i
(
a−1

)
∈ i (V ) ⊆ i (A) ⇒ a ∈ V −1 ⊆ A−1. So, a ∈

(
A−1

)
seq

. From

this,

(3.4) A−1
seq ⊆

(
A−1

)
seq

.

The proof is completed from (3.3) and (3.4). �

Theorem 3.9. Let G be a sequential topological group and A be a subset of G. A

is sequentially open if and only if A−1 is sequentially open.
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Proof. Let A be sequentially open. Then each sequence (xn) in G converging to

a point of A is eventually in A. Let any (xn) → x. Because of the function i is

sequentially continuous

i ((xn))→ i (x)⇒
(
xn

−1
)
→ x−1

and

i (x) ∈ i (A)⇒ x−1 ∈ A−1.

Thus each sequence
(
xn

−1
)
in G converging to x−1 ∈ A−1 is eventually in A−1, i.e.,

A−1 is sequentially open.

The sufficiency is trivial. �

Theorem 3.10. Let G be a sequential topological group, A be a sequentially open

subset of G and g be any element of G. So, A ◦ g is sequentially open.

Proof. If A is sequentially open then each sequence (xn) in G converging to point x

of A is eventually in A. Since

m : G×G
(A,g)

→
→

G
m(A,g)=A◦g

and m is sequentially continuous, then

m ((xn) , g) = (xn) ◦ g → x ◦ g.

Then each sequence (xn) ◦ g in G converging to point x ◦ g of A ◦ g is eventually in

A ◦ g. So, A ◦ g is sequentially open. �

The following theorem is a direct consequence of Theorem 3.10.

Theorem 3.11. Let G be a sequential topological group, A and B be subsets of G.

If A and B are sequentially open then A ◦B is sequentially open.

Proof. Let g be any element of B. Then from the Theorem 3.10, A◦g is sequentially

open. So, A ◦ B is sequentially open set since A ◦ g is sequentially open for every

element g. �

Recall that a sequentially continuous onto mapping f : X → Y is called sequen-

tially quotient mapping if V is sequentially open in Y whenever f−1 (V ) is open in

X [3].

Lemma 3.12. Let G be a sequential topological group and N be a normal subgroup

of G. If ρ : G → G/N is a sequential quotient mapping, then G/N is a sequential

topological group.



250 İbrahim İnce & Soley Ersoy

Proof. Let U ⊆ G be a sequential open subset. We have to show ρ (U) is sequentially

open in G/N . Thus we need to show ρ−1 (ρ (U)) is sequentially open with respect

to the sequential quotient topology. ρ−1 (ρ (U)) = ∪
g∈U

N ◦ g and ∪
g∈U

N ◦ g = N ◦ U
is a sequentially open from Theorem 3.11. �

Theorem 3.13. Let G be a sequential topological group, A and B be subsets of G.

If A and B are sequentially compact then A ◦B is sequentially compact.

Proof. Let A and B be sequentially compact. Then, every sequence in A and B has

a convergent subsequence, that is, (xnk
)→ x and (ynk

)→ y for every sequence (xn)

in A and (yn) in B, respectively. Since G is a sequential topological group,

m : G×G
((xnk),(ynk))

→
→

G
m((xnk),(ynk))=(xnk)◦(ynk)

and since m is the sequentially continuous,

(xnk
) ◦ (ynk

)→ x ◦ y.

Hence it is explicitly seen that A ◦B is sequentially compact. �

Example 3.14. Let G be a topological group and let A,B ⊂ G. In
(
R2,+

)
let A

be the y−axis and B the set {(x, y) : x > 0, y > 0, xy = 1} . A ◦B is not closed even

whenever A, B are both closed subsets [10].

It is seen that A ◦B need not to be compact in the topological groups whenever

A is closed and B is compact subsets in the topological group. However, it will be

observed that A ◦ B is sequentially compact in the sequential topological groups if

A is sequentially closed and B is sequentially compact subsets.

Lemma 3.15. Let G be a sequential topological group, A and B be subsets of G.

[A ◦B]seq = [A]seq ◦ [B]seq.

Proof. Let x ∈ [A ◦B]seq. There exists a sequence (xn) converging to x in A ◦ B
such that x = a ◦ b for a ∈ A and b ∈ B. Hence a ∈ [A]seq and b ∈ [B]seq since

A ⊆ [A]seq and B ⊆ [B]seq. Then a ◦ b ∈ [A]seq ◦ [B]seq. Finally

(3.5) [A ◦B]seq ⊆ [A]seq ◦ [B]seq.

On the contrary, assume that x ∈ [A]seq ◦ [B]seq. Then x = a ◦ b such that

a ∈ [A]seq and b ∈ [B]seq. There exist sequences (an) ∈ A and (bn) ∈ B converging

to a and b, respectively. m ((an) , (bn)) = (an) ◦ (bn)→ a ◦ b since m : G×G→ G is
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sequentially continuous. Thus there exists a sequence (an) ◦ (bn) converging to a ◦ b,
i.e., a ◦ b ∈ [A ◦B]seq. Finally

(3.6) [A]seq ◦ [B]seq ⊆ [A ◦B]seq.

So, the proof is completed from (3.5) and (3.6). �

Next theorem is a consequence of Lemma 3.15.

Theorem 3.16. Let G be a sequential topological group, A and B be subsets of G.

If A and B are sequentially closed then A ◦B is sequentially closed.

Proof. Let A and B are sequentially closed subsets of G. So, A = [A]seq and B =

[B]seq. According to Lemma 3.15,

[A]seq ◦ [B]seq = [A ◦B]seq ⇒ A ◦B = [A ◦B]seq

that is desired. �
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