DOI QR코드

DOI QR Code

Effect of Sampling Frequency for the Storm Runoff on BOD, T-P Loads Estimation of the Mixed Landuse Watershed

강우-유출 채수간격이 복합지목 유역의 BOD, T-P 부하량 산정에 미치는 영향

  • Park, Hyunkyu (Department of Rural & Bio-systems Engineering Chonnam National University) ;
  • Beom, Jina (Department of Rural & Bio-systems Engineering Chonnam National University) ;
  • Choi, Dongho (National institute of Agricultural Sciences) ;
  • Jung, Jaewoon (Jeollanamdo Environmental Industries Promotion Institute) ;
  • Jeung, Minhyuk (Department of Rural & Bio-systems Engineering Chonnam National University) ;
  • Kim, Youngsuk (Yeongsan River Environment Research Center) ;
  • Choi, Yujin (National Institute of Environmental Research) ;
  • Jo, Youngjun (Korea Rural Community Corporation) ;
  • Yoon, Kwangsik (Department of Rural & Bio-systems Engineering Chonnam National University)
  • 박현규 (전남대학교 지역바이오시스템공학과) ;
  • 범진아 (전남대학교 지역바이오시스템공학과) ;
  • 최동호 (국립농업과학원 기후변화생태과) ;
  • 정재운 (전라남도 환경산업진흥원) ;
  • 정민혁 (전남대학교 지역바이오시스템공학과) ;
  • 김영석 (국립환경과학원 영산강물환경연구소) ;
  • 최유진 (국립환경과학원) ;
  • 조영준 (한국농어촌공사) ;
  • 윤광식 (전남대학교 지역바이오시스템공학과)
  • Received : 2018.06.14
  • Accepted : 2018.10.08
  • Published : 2018.11.30

Abstract

In order to quantify nonpoint source pollution, it was proposed to sample at regular intervals of 1 hour for the first 24 hours of storm runoff process by National Institute of Environmental Research for the mixed landuse watershed. However, high frequency sampling requires intensive laboratory analysis and labor costs. In order to investigate the effect of longer sampling interval on the load estimation compared to the 1 hour sampling method, analysis was conducted using monitoring data from rural subwatershed, urban subwatershed, and outlet of the Pungyeongjeongcheon watershed. Statistical analysis revealed that mean of load estimation was not significantly different up to 4 hour sampling frequency. However, 3 hour sampling interval was found to be appropriate for the BOD and TP when it is judged that 10% or less of the difference in loading amount between the 1 hour and other sampling interval is reasonable. The results of this study can be used to conduct an effective monitoring system.

비점오염원을 정량화하기 위해 국립환경과학원의 강우유출수 조사방법은 복합토지이용 유역 모니터링 방법으로 유출 초기 24시간동안은 1시간간격으로 채수 하는 것을 제안하였다. 그러나 고빈도 샘플링은 현장 및 분석 인력 및 비용이 과다해질 수 있다. 따라서, 본 연구는 1시간 간격 샘플링 방식에 비해 더 긴 샘플링 간격이 부하 추정에 미치는 영향을 조사하기 위해 풍영정천 유역을 토지이용현황에 따라 농촌 소유역, 도시 소유역, 유역말단으로 구분하여 채수 1시간간격과 다른 채수 시간간격에 따른 부하량의 차이를 비교하였다. BOD와 T-P는 4시간 간격까지는 부하량의 차이가 통계적으로 유의하지 않았지만, 1시간 간격 채수에 따른 부하량과 다른 채수간격 부하량의 차이가 10% 이하가 합리적이라고 판단 할 때 BOD와 T-P 모두 3시간 간격의 채수가 적합한 것으로 나타났다. 본 연구 결과는 효과적인 모니터링 체계를 구축하는데 활용될 수 있을 것으로 판단된다.

Keywords

HKSJBV_2018_v20n4_314_f0001.png 이미지

Fig. 1. Layout of study watershed and sampling points.

HKSJBV_2018_v20n4_314_f0002.png 이미지

Fig. 2. Load estimation method according to sampling by (a) 1hr interval, (b) 2hr interval, (c) 3hr interval.

HKSJBV_2018_v20n4_314_f0003.png 이미지

Fig. 3. Rainfall amounts and load estimations by different sampling frequency.

HKSJBV_2018_v20n4_314_f0004.png 이미지

Fig. 4. Total load(sum of 13 events) difference(%) of 1hr sampling interval vs. 2hr, 3hr, 4hr and 6hr interval sampling.

Table 1. Landuse of Pungyeongjeongcheon watershed.

HKSJBV_2018_v20n4_314_t0001.png 이미지

Table 2. Observed rainfall, runoff amounts and BOD, T-P concentrations of the rainfall event.

HKSJBV_2018_v20n4_314_t0002.png 이미지

Table 3. Median and standard deviation of runoff, BOD and T-P concentrations of different landuse watersheds.

HKSJBV_2018_v20n4_314_t0003.png 이미지

Table 4. Significance analysis of the difference between the load of 1 hour interval and the load of 2,3,4,6 hour sampling intervals.

HKSJBV_2018_v20n4_314_t0004.png 이미지

Table 5. Median and standard deviation of load estimation difference among 1hour vs 2hour, 3hr, 4hr, 6hr sampling interval of storm runoff events.

HKSJBV_2018_v20n4_314_t0005.png 이미지

References

  1. Ahn, T. W., Kim, T. H., Oh. J. M., (2012). Analysis of first Flushing Effects and EMCs of Non-point Pollutants from Impervious Area during Rainfall. Korean J Limnol, 45(4), PP.459-473, doi:10.11614/KSL.2012.45.4.459
  2. Beman, J. M., Arrigo, K. R., and Matson, P. A. (2005). Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean, Nature, 434, pp. 211-214, doi:10.1038/nature03370
  3. Bowes, M. J., Smith, J. T., and Neal, C. (2009). The value of high resolution nutrient monitoring: a case study of the River Frome, Dorset, UK. J. of Hydrology 378, pp.82-96, doi.org/10.1016/j.jhydrol.2009.09.015
  4. Choi, J. H., N, E.H (2017). Determination of the number of storm events monitoring considering urban stormwater runoff characteristics, J. of Wetlands Research. pp.515-522, doi:10.17663/JWR.2017.19.4.515
  5. Defew L. H., L. May, and K. V. Heal. (2013). Uncertainties in estimated phosphorus loads as a function of different sampling frequencies and common calculation methods, J. of Marine and Freshwater Research. pp.373-386. doi: 10.1071/MF12097
  6. Han, K. H., Kim, J, H., (2005). Effect of Sampling Frequency During Storm Period on Estimation of Pollutant Load from Paddy Field. J. Korean of Environmental Agriculture Vol. 24, No. 1, pp.17-23. DOI: 10.5338/KJEA.2005.24.1.017
  7. Halliday, S. J., Wade, A. J., Skeffington, R. A., Neal, C., Reynolds, B., Rowland, P., Neal, M., and Norris, D. (2012). An analysis of long term trends, seasonality and short-term dynamics in water quality data from Plynlimon, Wales, Sci. Total Environ., 434, pp. 186-200. doi:10.1016/j.scitotenv.2011.10.052
  8. Jang, I. H., Lee, H. J., Kim, H. K., Park, J. H., Kim, J. H., Rhew, D. H. (2010). Improvement of Water Quality and Streamflow Monitoring to Quantify Point and Nonpoint Source Pollutant Loads. J. of Korean Society on Water Quality, 26(3), pp. 860-870.
  9. Jeon, J. C., Jung, J. H., Kim, Y. S., Kim, L. H., (2018). A Review of Research Trend Related to NPS and Suggestion for Research. J. of Wetlands Research, Vol. 20, No. 1, February 2018, pp.80-93 Doi : 10.17663/JWR.2018.20.1.080. Direction in the Future
  10. Jordan, P., Melland, A. R., Mellander, P.-E., Shortle, G., and Wall, D. (2012). The seasonality of phosphorus transfers from land to water: implications for trophic impacts and policy evaluation. The Science of the Total Environment 434, pp.101-109. doi:10.1016/j.scitotenv.2011.12.070
  11. Kal, B. S., Park, J. B., Kwon. H, K., Im, T. H., Lee, J. H. (2017). A study on the Management of Non-point Source Using Peak Water Quality Concentration. J. of Wetlands Research Vol. 19, No. 3, August 2017, pp. 287-295, doi : 10.17663/JWR.2017.19.3.287
  12. Kim, J. S., S. Y., and Kim, K. S. (1999). Characteristics of concentration and load of nitrogen and phosphorus in paddy field areas, J. of Korean Society of Agricultural Engineering. 41(4), pp. 47-56.
  13. King, K. W., and Harmel, R. D. (2003). Considerations in selecting a water quality sampling strategy. Transactions of the American Society of Agricultural Engineers 46, pp. 63-73.
  14. Kirchner, J.W., Feng, X. H., and Neal, C. (2000). Fractal stream chemistry and its implications for contaminant transport in catchments, Nature, 403, pp. 524-527, doi:10.1038/35000537
  15. Kirchner, J. W., Feng, X. H., Neal, C., and Robson, A. J. (2004). The fine structure of water-quality dynamics: the (highfrequency) wave of the future, Hydrol. Process., 18, pp.1353-1359. doi:10.1002/hyp.5537
  16. Ministry of Environment (MOE). (2017). Monitoring of demonstration facilities of nonpoint source pollution monitoring network and optimization of network.
  17. National Institute of Environmental Research (NIER). (2007), Evaluation of Non-Point Sources Pollution - Stormwater Monitoring, 11-1480523-000219-01, National Institute of Environmental Research (NIER).
  18. Thompson, J., Cassidy, R., Doody, D. G., Flynn, R. (2014). Assessing suspended sediment dynamics in relation to ecological thresholds and sampling strategies in two Irish headwater catchment. Science of the Total Environment, 468-469(15), pp. 345-357. doi:10.1016/j.scitotenv.2013.08.069
  19. USEPA (1993). NPDES Storm Water Sampling Guidance Manual.800B93001. Office of Water, Washington DC, USA.