DOI QR코드

DOI QR Code

Development of optimal cross-section design methods for bored utility tunnels: case study of overseas typical cross-sections and design criteria

터널식 공동구 최적단면 설계기술 개발: 해외 표준단면 사례 및 설계기준 분석

  • 박광준 ((주)대정컨설턴트) ;
  • 윤경렬 ((주)대정컨설턴트 지반터널부)
  • Received : 2018.09.27
  • Accepted : 2018.10.17
  • Published : 2018.11.30

Abstract

Since the domestic utility tunnels were built mainly in the development project of the new city, they are all in the form of cut-and-cover box tunnel. But, in the case of overseas construction of utility tunnels for existing urban areas, the bored tunnel types are mainly adopted. It is reasonable to install bored tunnels in a downtown area because it is difficult to block the roads or install bypass roads due to heavy traffic and civil complaints. In order to activate the utility tunnels in bored type, it is necessary to secure optimized cross-sectional design technology considering the optimal supplying capacity and mutual influencing factors (Thermal Interference, electrolytic corrosion, efficiency of the maintenance, etc.) of utilities (power cables, telecommunication cables, water pipes, etc.). The optimal cross-section design method for bored utility tunnels is ultimately to derive the optimal arrangement technique for the utilities. In order to develop the design methods, firstly, the cases of tunnel cross-section (Shield TBM, Conventional Tunneling) in overseas shall be investigated to analyze the characteristics of the installation of utilities in the section and installation of auxiliary facilities, It is necessary to sort out and analyze the criteria related to the inner cross-section design (arrangement) presented in the standards and guidelines.

국내 공동구는 주로 신도시 개발사업에 포함되어 건설되었기 때문에 모두 개착 BOX 형태를 이루고 있으나 기존 시가지를 대상으로 독자적 공동구를 건설 중인 해외의 경우 터널식 공동구 형태를 주로 채택하고 있다. 공동구의 사회적 요구가 큰 중심가 도심지는 교통량이 많아 장기적으로 차로를 차단하거나 우회 차로 설치가 곤란한 것이 일반적이므로 터널식 공동구 설치가 합리적이라 하겠다. 이러한 터널식 공동구 활성화를 위해 공동구 최적 설계용량 및 수용시설(전력, 통신, 상수도 등)별 상호 영향인자(열간섭 및 전식, 유지관리 효율성 등)를 고려한 최적화된 단면설계 기술력을 확보할 필요가 있다. 터널식 공동구의 최적단면 설계기술이란 결국 공동구내 수용시설의 최적 배치기법을 도출하는 것이라 할 수 있다. 이러한 설계기법 도출을 위해 우선적으로 해외의 터널식 공동구(Shield TBM, Conventional Tunneling) 내공단면 적용 사례를 조사하여, 단면 내 수용시설의 배치현황, 부대시설 설치 등의 특징을 분석하고, 또한 국내 외의 공동구 설계기준 및 지침서에서 제시하고 있는 내공단면 설계(배치)와 관련한 기준사항들을 정리 분석할 필요가 있다.

Keywords

TNTNB3_2018_v20n6_1073_f0001.png 이미지

Fig. 1. Yashio utility tunnel (Tokyo National Highway Office)

TNTNB3_2018_v20n6_1073_f0002.png 이미지

Fig. 2. Hibiya utility tunnel (Maeda Construction Industry Co., Ltd., 2005)

TNTNB3_2018_v20n6_1073_f0003.png 이미지

Fig. 3. Prague utility tunnel (SMG, 2013)

TNTNB3_2018_v20n6_1073_f0004.png 이미지

Fig. 4. Index for criteria of water pipe installation

TNTNB3_2018_v20n6_1073_f0005.png 이미지

Fig. 5. Preliminary cross-section in Case 1

TNTNB3_2018_v20n6_1073_f0006.png 이미지

Fig. 6. Preliminary cross-section in Case 2

Table 1. Characteristics of utility tunnels in Japan

TNTNB3_2018_v20n6_1073_t0001.png 이미지

Table 2. Characteristics of utility tunnels in Taiwan (MAA Engineering Consultants International, Ltd, 2009)

TNTNB3_2018_v20n6_1073_t0002.png 이미지

Table 3. Characteristics of utility tunnels in China (Dai, 2016)

TNTNB3_2018_v20n6_1073_t0003.png 이미지

Table 4. Characteristics of utility tunnels in Czech and France (SMG, 2013)

TNTNB3_2018_v20n6_1073_t0004.png 이미지

Table 5. Characteristics of utility tunnels in Germany and Finland

TNTNB3_2018_v20n6_1073_t0005.png 이미지

Table 6. Characteristics of utility tunnels in USA and Israel

TNTNB3_2018_v20n6_1073_t0006.png 이미지

Table 7. Size of power cable tray

TNTNB3_2018_v20n6_1073_t0007.png 이미지

Table 8. Size of telecommunication cable tray

TNTNB3_2018_v20n6_1073_t0008.png 이미지

Table 9. A1 (with of passage)

TNTNB3_2018_v20n6_1073_t0009.png 이미지

Table 10. A2 (distance from the wall)

TNTNB3_2018_v20n6_1073_t0010.png 이미지

Table 11. B1 (height of concrete foundation)

TNTNB3_2018_v20n6_1073_t0011.png 이미지

Table 12. W (with of concrete foundation)

TNTNB3_2018_v20n6_1073_t0012.png 이미지

Table 13. B2 (distance between pipe and ceiling)

TNTNB3_2018_v20n6_1073_t0013.png 이미지

References

  1. Bi-Medien Co., Ltd. (2013), "Pipe jacking infrastructure channel under the Rhine", Bi-Environmental Construction, Vol. 11, No. 4.
  2. CHRED (2014), "Technical services and utility tunnels in Helsinki", City of Helsinki's Real Estate Department.
  3. CPAMI (2013), "Standard for utility tunnel design", Construction and Planning Agency Ministry of the Interior.
  4. Dai, S. (2016), "A study on the planning and construction of integrated urban underground common ducts".
  5. DSSOPT (2012), "Study of establishment for urban utility tunnel", Land, Public Works and Transport Bureau of the Macao Special Administrative Region of the People's Republic of China, pp. 34-44.
  6. Feuerstein-Gazit Engineers Co., Ltd., "Haifa utility tunnel", http://www.f-gazit.co.il/.
  7. JRA (1986), "Design manual for common utility ducts", Japan Road Association.
  8. Kajima Corporation Co., Ltd. (2009), Kajima CSR report, pp. 12-13.
  9. KEPCO (2004), "Design criteria for underground power distribution: Underground structure (5300)", Korea Electric Power Corporation.
  10. KEPCO (2009), "Design criteria for underground power transmission: DS-6100, DS-6240", Korea Electric Power Corporation.
  11. KWRC (2010), "Design manual for civil engineering works: Water pipe construction", Korea Water Resources Corporation, pp. 101-103.
  12. KWWA (2010), "Standard for water facility", Korea Water and Wastewater Association, pp. 799.
  13. MAA Engineering Consultants International Ltd. (2009), "Cooperate with the MRT xinyi line common pipeline project, planning and design briefing".
  14. Maeda Construction Industry Co., Ltd. (2005), "Hibiya utility tunnel", https://www.maeda.co.jp/.
  15. MLIT (2005), "Design guide for power cable duct: Special division & ancillary", Ministry of Land, Infrastructure, Transport and Tourism, pp. 11-20.
  16. MLIT (2014), "Guidelines of road design: Common utility duct", Ministry of Land, Infrastructure, Transport and Tourism, pp. 4-10.
  17. MOHURD (2015), "Technical code for urban utility tunnel engineering_GB50838", Ministry of Housing and Urban-Rural Development of the People's Republic of China, pp. 6-27.
  18. MOLIT (2010), "Design criteria for common utility tunnels", Ministry of Land, Infrastructure and Transport, pp. 17-33.
  19. MOLIT (2010), "Standard specifications for common utility tunnels", Ministry of Land, Infrastructure and Transport.
  20. MOLIT (2014), "Guidelines of installation and administration for common utility tunnels", Ministry of Land, Infrastructure and Transport, pp. 2-3.
  21. SMG (2013), "A report of the feasibility and basic planning establishment for urban utility tunnel in Seoul: Status of utility tunnels in domestic and overseas", Seoul Metropolitan Government, pp. 76-94.
  22. SMG (2014), "A report of the basic planning establishment for urban utility tunnel in Seoul", Seoul Metropolitan Government, pp. 17-20.
  23. Tokyo National Highway Office, "Yashio utility tunnel", http://www.ktr.mlit.go.jp/toukoku/.
  24. UW (2017), "Civil facilities services design guide: Utility tunnels and trenches", University of Washington, pp. 4.