DOI QR코드

DOI QR Code

Optimal Design of Flow Measurement System Using Turbine Flowmeter

터빈유량계를 이용한 유량 측정 시스템의 최적 설계

  • 김홍탁 (부경대학교 무기체계공학과) ;
  • 김부일 (부경대학교 전기전자소프트웨어공학과)
  • Received : 2018.01.13
  • Accepted : 2018.02.15
  • Published : 2018.02.28

Abstract

The turbine flowmeter is selected for high precision and reproducibility at the time of flow rate measurement but causes various uncertainty factors of measurement in the difference between the standard environmental condition at calibration and the environmental condition at the site. Also, a reliable interpolation method is required for use in sections other than calibrated measurement values. Therefore, in this paper, in order to improve the reliability of the flow rate measurement, we designed and manufactured a device that accurately measures the output signal of the turbine flowmeter, interpolates the value of the calibrated result value, and corrects the temperature change in real time We confirmed the reliability of the measurement at the site to carry out the performance verification.

터빈유량계(Turbine flowmeter)는 유량 측정시 높은 정확도와 반복성을 위해 선택되지만 교정시의 표준 환경 조건과 현장에서의 환경 조건 차이로 다양한 측정 불확도 요인을 발생시킨다. 또한 교정된 측정값 외의 구간에서의 사용을 위해 신뢰성 높은 보간 기법(Interpolation method)이 필요하다. 따라서 본 논문에서는 유량 측정(Flow measurement) 신뢰성 향상을 위해 터빈유량계의 출력 신호의 정확한 측정과 교정된 결과값의 보간, 온도변화를 실시간 보정(correction)하는 장비를 설계 및 제작하고 성능 검증을 수행함으로 현장에서의 측정 신뢰도를 확보하였다.

Keywords

References

  1. American Petroleum Institute, API Manual of Petroleum Measurement Standards Chapter 5, Washington DC, Sept. 2005.
  2. D. Zijad, B. Sirok and B. Bizjan, "Turbine flowmeter response to transitional flow regimes." J. of Flow Measurement and Instrumentation, vol. 59, no. 3, Mar. 2018, pp. 18-22. https://doi.org/10.1016/j.flowmeasinst.2017.11.006
  3. M. Shafer, "Performance Characteristics of Turbine Flowmeters," J. of Basic Engineering, vol. 84, no. 4, Dec. 1962, 471-479. https://doi.org/10.1115/1.3658675
  4. R. Cheesewright, D. Bisset and C. Clark, "Factors which influence the variability of turbine flowmeter signal characteristics," J. of Flow Measurement and Instrumentation, vol. 9, no. 3, June 1998, pp. 88-89.
  5. B. Lee, R. Cheesewright and C. Clark, "The dynamic response of small turbine flowmeters in liquid flows," J. of Flow Measurement and Instrumentation, vol. 15, no. 1, 2004. pp. 239-248. https://doi.org/10.1016/j.flowmeasinst.2004.07.002
  6. Y. Yuan and T. Zhang, "Research on the dynamic characteristics of a turbine flow meter," J. of Flow Measurement and Instrumentation, vol. 55, no. 7, June 2017, pp. 59-66. https://doi.org/10.1016/j.flowmeasinst.2017.05.002
  7. W. Cao, L. Jie and L. Hui, "Simulation and Experimental Design of the Locking Amplifier Based on Multisim," Conf. Instrumentation and Measurement, Computer, Communication and Control, Qinhuangdao, China, Sept. 2015, pp. 230-233.
  8. T. Cho, S. Yeo, S. Cho and S. Kim, "Design of OP-AMP using MOSFET of Sub-threshold Region," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 7, July. 2016, pp. 665-670. https://doi.org/10.13067/JKIECS.2016.11.7.665
  9. M. Schwartz and O. Manickum, Programming Arduino with LabVIEW, Birmingham, UK: Packt, 2015.
  10. T. Kim, H. Jang and W. Lee, "An Inter-floor Noise Prevention System using an Open-source Controller," J. of the Journal of The Korea Institute of Electronic Communication Sciences, vol. 12, no. 5, Oct. 2017, pp. 899-906.