DOI QR코드

DOI QR Code

A study on Design of Capacity for Landing and Floating Solar Power Plant : The Case of Chonnam Province in Korea

육상 및 수상태양광 용량설계에 관한 연구 : 전남사례를 중심으로

  • 이숙희 (그린정보시스템) ;
  • 문채주 (국립목포대학교스마트그리드연구소) ;
  • 장영학 (국립목포대학교스마트그리드연구소) ;
  • 정문선 (한전 전력연구원 에너지밸리연구센터)
  • Received : 2017.11.08
  • Accepted : 2018.02.15
  • Published : 2018.02.28

Abstract

Korea government aims to generate 20 percent of its electricity with clean, renewable energy by 2030, while reducing its reliance on fossil fuel and nuclear power plants. Technically, solar energy has resource potential that far exceeds the entire global energy demand. Solar energy industry has experienced phenomenal growth in recent years due to both technological improvements resulting in cost reductions and government policies for renewable energy development and utilization. Even though solar power generation has several advantages over other forms of electricity generation, the major problem is the requirement of land which is scarcely available in the local site and its cost. This study analyzes the available capacity of landing and floating solar plants for the case of chonnam province in korea. The results of design capacity show about 7.5GW for landing and 1.5GW for floating solar power plant. Also, with a purpose to comprehend intention-behaviour gap about acceptance of solar community, the solutions are suggested.

우리나라 정부는 화력과 원자력발전소를 줄이고 2030년까지 깨끗한 재생에너지 전기를 20% 생산하는 목표를 갖고 있다. 태양에너지는 기술적으로 전 세계 에너지수요를 초과하는 잠재자원이다. 비용절감을 가져오는 기술적인 진보 및 재생에너지 개발과 활용을 위한 정부정책에 힘입어 태양에너지산업은 최근 괄목할만한 성장을 가져오고 있다. 비록 태양광발전은 다른 전력생산 방식보다 많은 장점을 가지고 있음에도 불구하고 주요 문제는 이용할 수 있는 현장과 적절한 비용을 갖춘 부지가 많지 않다는 것이다. 본 연구에서는 전라남도 지역을 대상으로 설치 가능한 육상 및 수상태양광 용량을 분석하고자 한다. 연구결과 설계용량은 육상풍력 약 7.5GW와 수상태양광 약 1.5GW를 갖는다. 또한, 지역주민과 이해간격을 줄이기 위한 목적으로 설득에 필요한 여러 가지 해결방법을 제시하였다.

Keywords

References

  1. Ministry of Commerce, Industry and Energy, "Discussion on how to achieve 20% renewable power generation rate by 2030," Press Releases, June 2017
  2. N. Yoo, "Development of Smart Farm System for Minimizing Carbon Emissions," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 12, Dec. 2016, pp. 1231-1236. https://doi.org/10.13067/JKIECS.2016.11.12.1231
  3. Y. Ko, S. Oh, H. Kim and I. Kim, "A Study on the Fault Analysis for a Micro Smart Grid Simulator Design Using MEMS' Miniaturization Technology," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 2, 2017, pp. 315-324. https://doi.org/10.13067/JKIECS.2017.12.2.315
  4. T. Kwon, "Policy Effects of Domestic Photovoltaic Subsidy System: Focused on Supply Mandatory System," J. of the Korean Solar Energy Society, vol 37, no. 1, 2017, pp.59-69. https://doi.org/10.7836/KSES.2017.37.1.059
  5. KEPCO Research Institute, "Study on Establishment of Optimal Development Scenario in Korea," Research Report, Apr. 2017, pp52-53.
  6. I. Joo, "Overview and Status of Water Conditioning Technology," Electrical J., vol. 454, issue 3, Oct. 2014, pp37-41.
  7. C. Won, "Technology Trends of Water-Pumped Power Generation System," J. of the Korean Solar Energy Society, vol. 13, no. 1, Jan. 2015, pp18-23.
  8. H. Lee, H. Han, S. Lee and D. Im, "Commercialization of water condition lighting system," Summer Conf. of Korean Institute of Electrical Engineers, Gangwon-do Pyeongchang, Korea, July 2011, pp1398-1399.
  9. S. Lee , N. Lee , H. Choi and J. Kim, "A Study on the Land Survey for Development of a Water-Pumped Power Generation System," J. of the Korean Institute of Electrical Lighting Engineers, vol.26 no.7, July 2012, pp30-38.