DOI QR코드

DOI QR Code

불확도를 고려한 Class I 부정교합 환자의 측방두부방사선영상 계측값

Lateral Cephalometric Measurements of Class I Malocclusion Patients with Uncertainty

  • 이지민 (서울대학교 치의학대학원 소아치과학교실) ;
  • 송지수 (서울대학교 치의학대학원 소아치과학교실) ;
  • 현홍근 (서울대학교 치의학대학원 소아치과학교실) ;
  • 김영재 (서울대학교 치의학대학원 소아치과학교실) ;
  • 김정욱 (서울대학교 치의학대학원 소아치과학교실) ;
  • 장기택 (서울대학교 치의학대학원 소아치과학교실) ;
  • 이상훈 (서울대학교 치의학대학원 소아치과학교실) ;
  • 김호재 (연세대학교 방사선융합공학과) ;
  • 조효민 (한국표준과학연구원) ;
  • 신터전 (서울대학교 치의학대학원 소아치과학교실)
  • Lee, Ji Min (Department of Pediatric Dentistry, School of Dentistry, Seoul National University) ;
  • Song, Ji-Soo (Department of Pediatric Dentistry, School of Dentistry, Seoul National University) ;
  • Hyun, Hong-Keun (Department of Pediatric Dentistry, School of Dentistry, Seoul National University) ;
  • Kim, Young-Jae (Department of Pediatric Dentistry, School of Dentistry, Seoul National University) ;
  • Kim, Jung-Wook (Department of Pediatric Dentistry, School of Dentistry, Seoul National University) ;
  • Jang, Ki-Taeg (Department of Pediatric Dentistry, School of Dentistry, Seoul National University) ;
  • Lee, Sang-Hoon (Department of Pediatric Dentistry, School of Dentistry, Seoul National University) ;
  • Kim, Hojae (Department of Radiation Convergence Engineering, Yonsei University) ;
  • Cho, Hyo-Min (Korea Research Institute of Standards and Science) ;
  • Shin, Teo Jeon (Department of Pediatric Dentistry, School of Dentistry, Seoul National University)
  • 투고 : 2017.06.03
  • 심사 : 2017.09.04
  • 발행 : 2018.02.28

초록

본 연구의 목표는 측방 두부계측방사선 사진의 분석에 이용되는 소프트웨어의 소급성 확보와 측정값의 불확도를 계산하는 것이다. 또한 이를 이용해 소아에서 교정치료를 위한 계측값의 참고 표준을 얻기 위한 기반을 마련하고자 하였다. 교정치료를 위해 서울대학교 치과병원 소아치과에 내원한 6세에서 13세 사이 환아 중 1급 부정교합으로 진단 받은 환아 100명의 데이터를 수집하였다. 소급성 확보를 위해 방사선 촬영이 가능한 phantom 장비를 제작하였으며, 현재 사용중인 계측 소프트웨어를 이용하여 phantom 장비의 길이와 각도를 측정하여 소프트웨어의 교정값을 계산하였다. 불확도 계산을 위해 100명의 측방두부방사선영상 계측값과 반복측정에 의한 불확도와(A형 불확도) 최소분해능과 두부의 위치에 의한 불확도를(B형 불확도) 계산하였다. 이를 통해 합성표준불확도를 얻었으며 최종적으로 확장불확도를 계산하였다. 본 연구 결과 현재 사용중인 측방두부방사선사진 계측 프로그램이 높은 정확성과 신뢰도를 가지는 것을 확인하였다. 또한 교정값을 이용하여 계측값을 교정하였으며, 6 - 13세 한국인 소아에서의 교정계측치의 불확도를 계산하여 1급 부정교합 환아의 교정계측값의 95% 신뢰도를 가지는 분포범위를 제시하였다.

The aim of this study was to obtain the traceability of the software used to analyze lateral cephalometry and to calculate the uncertainty of the measurements. Furthermore, this study aimed to provide a basis for obtaining standard references for measurement values for orthodontic treatment in children. Cephalometric data were collected from 100 children diagnosed with class I malocclusion between the ages 6 to 13 years who visited the pediatric dentist at Seoul National University Dental Hospital. To ensure traceability, a phantom device was created. Correction values were calculated by measuring the length and angle of the phantom device using the software. Type A uncertainty was calculated by obtaining the standard deviation of cephalometric measurements of 100 persons and the standard error of repeated measurements. Determination of the type B uncertainty was induced by minimum resolution and the position of the head. Using these, the combined standard uncertainty was obtained and the expanded uncertainty was calculated. The results of this study confirm that the currently used software has high accuracy and reliability. Furthermore, the uncertainty of orthodontic measurements in Korean children aged 6 to 13 years was calculated, and distribution range for class I malocclusion with 95% confidence interval was suggested.

키워드

참고문헌

  1. Bureau international des Poids et Mesures : Evaluation of measurement data - Guide to the Expression of Uncertainty in Measurement JCGM 100:2008 (GUM 1995 with minor corrections). Available from URL: http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf (Accessed on June 28, 2017)
  2. Woon CS : Model Classification and Evaluation of Measurement Uncertainty. J Korea Saf Manag Sci , 9:145-156, 2007.
  3. Taverniers I, De Loose M, Van Bockstaele E : Trends in quality in the analytical laboratory. I. Traceability and measurement uncertainty of analytical results. Trends Analyt Chem , 23:480-490, 2004. https://doi.org/10.1016/S0165-9936(04)00733-2
  4. Squara P, Imhoff M, Cecconi M : Metrology in Medicine: From Measurements to Decision, with Specific Reference to Anesthesia and Intensive Care. Anesth Analg , 120:66-75, 2015. https://doi.org/10.1213/ANE.0000000000000477
  5. Broadbent BH : A new X-ray technique and its application to orthodontia: the introduction of cephalometric radiography. Angle Orthod , 51:93-114, 1931.
  6. Downs WB : Variations in facial relationships: Their significance in treatment and prognosis. Am J Orthod Dentofacial Orthop , 34:812-840, 1948. https://doi.org/10.1016/0002-9416(48)90015-3
  7. Chen YJ, Chen SK, Yao JC, Chang HF : The effects of differences in landmark identification on the cephalometric measurements in traditional versus digitized cephalometry. Angle Orthod , 74:155-161, 2004.
  8. Baskin H, Cisneros G : A comparison of two computer cephalometric programs. J Clin Orthod , 31:231-233, 1997.
  9. Gotfredsen E, Kragskov J, Wenzel A : Development of a system for craniofacial analysis from monitor-displayed digital images. Dentomaxillofac Radiol , 28:123-126, 1999. https://doi.org/10.1038/sj.dmfr.4600420
  10. Yu SH, Nahm DS, Baek SH : Reliability of landmark identification on monitor-displayed lateral cephalometric images. Am J Orthod Dentofacial Orthop , 133:7901-7906, 2008.
  11. Power G, Breckon J, Sherriff M, McDonald F : Dolphin Imaging Software: an analysis of the accuracy of cephalometric digitization and orthognathic prediction. Int J Oral Maxillofac Surg , 34:619-626, 2005. https://doi.org/10.1016/j.ijom.2005.04.003
  12. Park CY, Park KT : Facemask Effects in Two Types of Intraoral Appliances : Bonded Expander vs. Hyrax. J Korean Acad Pediatr Dent , 42:45-52, 2015. https://doi.org/10.5933/JKAPD.2015.42.1.45
  13. Park SH, Kim YJ, Jang KT, et al . : The Simple Regression Model of Gonial Angles : Comparison between Panoramic Radiographs and Lateral Cephalograms. J Korean Acad Pediatr Dent , 44:129-137, 2017. https://doi.org/10.5933/JKAPD.2017.44.2.129
  14. Sandler PJ : Reproducibility of Cephalometric Measurements. Br J Orthod , 15:105-110, 1988. https://doi.org/10.1179/bjo.15.2.105
  15. AlBarakati S, Kula K, Ghoneima A : The reliability and reproducibility of cephalometric measurements: a comparison of conventional and digital methods. Dentomaxillofac Radiol, 41:11-17, 2012. https://doi.org/10.1259/dmfr/37010910
  16. Santoro M, Jarjoura K, Cangialosi TJ : Accuracy of digital and analogue cephalometric measurements assessed with the sandwich technique. Am J Orthod Dentofacial Orthop, 129:345-351, 2006. https://doi.org/10.1016/j.ajodo.2005.12.010
  17. Farooq MU, Khan MA, Rahman MA, et al . : Assessing the Reliability of Digitalized Cephalometric Analysis in Comparison with Manual Cephalometric Analysis. J Clin Diagn Res , 10:20-23, 2016.
  18. Leonardi R, Giordano D, Maiorana F, Spampinato C : Automatic cephalometric analysis: a systematic review. Angle Orthod , 78:145-151, 2008. https://doi.org/10.2319/120506-491.1
  19. Cohen A : Uncertainty in cephalometrics. Br J Orthod , 11:44-48, 1984. https://doi.org/10.1179/bjo.11.1.44
  20. Ahlqvist J, Eliasson S, Welander U : The effect of projection errors on cephalometric length measurements. Eur J Orthod , 8:141-148, 1986. https://doi.org/10.1093/ejo/8.3.141
  21. Hiroshi N, Kenji N, Yoshida Y, Kikuuchi M : Orthodontic diagnosis in bioprogressive therapy, 1st ed., Rocky Mountain Morita Co., 45-54, 1984.