DOI QR코드

DOI QR Code

Real-Time, Simultaneous and Proportional Myoelectric Control for Robotic Rehabilitation Therapy of Stroke Survivors

뇌졸중 환자의 로봇 재활 치료를 위한 실시간, 동시 및 비례형 근전도 제어

  • Jung, YoungJin (Dept. of Radiological Science at Health Science Division, Dongseo University) ;
  • Park, Hae Yean (Dept. of Occupational Therapy, College of Health Science, Yonsei University) ;
  • Maitra, Kinsuk (Dept. of Occupational Therapy, School of Nursing & Health Professions, Georgia State University) ;
  • Prabakar, Nagarajan (School of Computing and Information Sciences, Florida International University) ;
  • Kim, Jong-Hoon (Dept. of Computer Science, Kent State University)
  • 정영진 (동서대학교 방사선학과) ;
  • 박혜연 (연세대학교 보건과학대학 작업치료학과) ;
  • ;
  • ;
  • Received : 2018.01.03
  • Accepted : 2018.02.12
  • Published : 2018.02.28

Abstract

Objective : Conventional therapy approaches for stroke survivors have required considerable demands on therapist's effort and patient's expense. Thus, new robotics rehabilitation therapy technologies have been proposed but they have suffered from less than optimal control algorithms. This article presents a novel technical healthcare solution for the real-time, simultaneous and propositional myoelectric control for stroke survivors' upper limb robotic rehabilitation therapy. Methods : To implement an appropriate computational algorithm for controlling a portable rehabilitative robot, a linear regression model was employed, and a simple game experiment was conducted to identify its potential of clinical utilization. Results : The results suggest that the proposed device and computational algorithm can be used for stroke robot rehabilitation. Conclusion : Moreover, we believe that these techniques will be used as a prominent tool in making a device or finding new therapy approaches in robot-assisted rehabilitation for stroke survivors.

목적 : 본 연구에서는 뇌졸중 환자의 치료 효과를 증진시키기 위한 방법으로, 로봇 기반에 연속적이며, 실시간으로 환자의 의지에 따른 표면 근전도 신호에 비례한 제어가 가능한 최적 알고리즘을 구현 및 재활로봇과 PC소프트웨어에 적용기술을 개발하였다. 연구방법 : 뇌졸중 환자의 치료를 위한 재활로봇 제어 알고리즘 개발을 위해서 본 연구에서는 선형 재귀모델을 이용하였다. 또한, 이를 PC 소프트웨어에 적용하여 실제 근전도 신호에 비례하여 게임을 진행할 수 있도록 환경을 구축하였으며, 이를 활용하여 모의 훈련을 진행하였다. 결과 : 모의실험 결과 실제 움직인 위치와 선형 재귀모델로부터 추정된 위치의 결과가 상당히 유사하게 나타나는 것을 확인할 수 있었다. 또한 3명의 피험자를 대상으로 실험 한 결과, 3번의 각기 다른 시도에 따라 훈련이 진행되면서 그 결과가 좋아짐을 확인할 수 있었다. 결론 : 본 연구에서는 재활로봇에 적용 가능한 실시간으로 동작하는 근전도에 비례한 움직임을 유도해 낼 수 있는 선형 재귀 모델을 개발하였다. 또한, 이를 활용한 소프트웨어도 함께 구축하여 그 활용 가능성이 높음을 확인하였다. 향후 실제 재활로봇에 적용하여 자가-재활 및 원격재활 로봇에 기본 알고리즘으로 널리 활용될 수 있을 것이라 기대된다.

Keywords

References

  1. Brochard, S., Robertson, J., Medee, B., & Remy-Neris, O. (2010). What's new in new technologies for upper extremity rehabilitation? Current opinion in neurology, 23(6), 683-687. https://doi.org/10.1097/WCO.0b013e32833f61ce
  2. Dewald, J. P., Pope, P. S., Given, J. D., Buchanan, T. S., & Rymer, W. Z. (1995). Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain, 118(2), 495-510. https://doi.org/10.1093/brain/118.2.495
  3. Geng, Y., Tao, D., Chen, L., & Li, G. (2011). Recognition of combined arm motions using support vector machine. Informatics in control, automation and robotics(pp. 807-814). Springer, Berlin, Heidelberg.
  4. Genna, C., Dosen, S., Paredes, L., Turolla, A., Graimann, B., & Farina, D. (2014). A novel robot-aided therapy for shoulder rehabilitation after stroke: Active-assisted control of the RehaArm robot Using electromyographic signals. Replace, Repair, Restore, Relieve-Bridging Clinical and Engineering Solutions in Neurorehabilitation(pp. 383-391). Springer, Cham.
  5. Gowland, C., deBruin, H., Basmajian, J. V., Plews, N., & Burcea, I. (1992). Agonist and antagonist activity during voluntary upper-limb movement in patients with stroke. Physical therapy, 72(9), 624-633. https://doi.org/10.1093/ptj/72.9.624
  6. Hahne, J. M., Biessmann, F., Jiang, N., Rehbaum, H., Farina, D., Meinecke, F. C., ... & Parra, L. C. (2014). Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(2), 269-279. https://doi.org/10.1109/TNSRE.2014.2305520
  7. Jiang, N., Dosen, S., Muller, K. R., & Farina, D. (2012). Myoelectric control of artificial limbs-is there a need to change focus? IEEE Signal Processing Magazine, 29(5), 152-150. https://doi.org/10.1109/MSP.2012.2203480
  8. Rosen, J., Brand, M., Fuchs, M. B., & Arcan, M. (2001). A myosignal-based powered exoskeleton system. IEEE Transactions on systems, Man, and Cybernetics-part A: Systems and humans, 31(3), 210-222. https://doi.org/10.1109/3468.925661
  9. Stein, J., Narendran, K., McBean, J., Krebs, K., & Hughes, R. (2007). Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke. American Journal of Physical Medicine & Rehabilitation, 86(4), 255-261. https://doi.org/10.1097/PHM.0b013e3180383cc5
  10. Young, A. J., Smith, L. H., Rouse, E. J., & Hargrove, L. J. (2013). Classification of simultaneous movements using surface EMG pattern recognition. IEEE Transactions on Biomedical Engineering, 60(5), 1250-1258. https://doi.org/10.1109/TBME.2012.2232293