초록
본 논문에서는 최적의 스마트 홈 제어 시스템의 설계 및 구현 방법에 대해 설명한다. 최근 센서와 통신과 같은 기술들을 발전으로 사물인터넷은 전구, 콘센트, 옷과 같은 다양한 사물을 제어할 수 있게 되었으며, 다양한 기업에서는 사물간의 협업을 통해 사용자의 삶을 향상 시킬 수 있는 서비스들을 출시되고 있다. 하지만, 기존 사물인터넷 시스템에서는 엔드 투 엔드 디바이스인 경우 다양한 프로토콜을 통해 데이터를 전송하지만 서버 및 게이트웨이는 단일 프로토콜을 지원하는 경우가 빈번하다. 또한, 사물인터넷 시스템의 제조사에 따라서 전용 어플리케이션이 존재하며, 여러 사물인터넷 디바이스들을 등록하고 제어하는데 있어서 높은 복잡성을 가지고 있다. 증강현실 사물인터넷 시스템인 경우 사물들을 검출하기 위해 OpenCV 또는 OpenGL을 사용하여 특징점 및 엣지 추출 기술을 사용 하지만 사물의 인식률이 샘플링 데이터에 따라서 편차가 크게 존재하며, 비교적 낮은 문제점이 존재한다. 제안하는 최적의 스마트 홈 시스템에서는 기존의 문제점을 보완하기 위해 OneM2M을 기반으로 사물인터넷 게이트웨이를 구현하여 엔드 투 엔드 디바이스의 다양한 프로토콜들을 지원하고, 단일 어플리케이션을 통해 다양한 사물을 제어 등 사용자의 접근성을 향상시켰다. 또한, 인공지능 분야의 딥러닝을 사용하여 디바이스들을 학습시키고 추론 및 검출을 통해 기존 시스템의 사물 인식률 향상과 인식률의 편차를 낮추었다.
In this paper, we describe design and implementation of optimal smart home control system. Recent developments in technologies such as sensors and communication have enabled the Internet of Things to control a wide range of objects, such as light bulbs, socket-outlet, or clothing. Many businesses rely on the launch of collaborative services between them. However, traditional IoT systems often support a single protocol, although data is transmitted across multiple protocols for end-to-end devices. In addition, depending on the manufacturer of the Internet of things, there is a dedicated application and it has a high degree of complexity in registering and controlling different IoT devices for the internet of things. ARIoT system, special marking points and edge extraction techniques are used to detect objects, but there are relatively low deviations depending on the sampling data. The proposed system implements an IoT gateway of object based on OneM2M to compensate for existing problems. It supports diverse protocols of end to end devices and supported them with a single application. In addition, devices were learned by using deep learning in the artificial intelligence field and improved object recognition of existing systems by inference and detection, reducing the deviation of recognition rates.