DOI QR코드

DOI QR Code

광신호의 공간 해상도 향상을 위한 초 분해능 알고리즘 연구

A Study on Super Resolution Algorithm to Improve Spatial Resolution of Optical Signals

  • 투고 : 2017.01.03
  • 심사 : 2018.02.09
  • 발행 : 2018.02.28

초록

현재 설치된 광섬유의 문제를 모니터링 하는데 가장 널리 사용되는 방법은 Optical Time Domain Reflectometer(OTDR)이다. OTDR는 FTTx 네트워크를 테스트하기 위해 설계된 계측기이며, 전송 손실 및 접속 손실과 같은 광섬유의 물리적 특성을 평가한다. OTDR을 이용하여 광로상의 문제점을 정확히 파악하기 위해서는 Spatial resolution을 높이는 것이 중요하다. 펄스폭이 두 반사체 사이의 거리 두 배보다 작을 때는 두 반사체에서 반사되는 신호는 상호간에 겹침 없이 반사되므로 반사되는 신호의 구분이 가능하지만 펄스폭이 두 반사체 사이의 거리 두 배보다 클 때에는 두 반사 펄스가 겹쳐져 반사되는 신호가 구분되지 못한다. 이와 같은 한계를 극복하기 위해서 본 논문에서는 초 분해능 알고리즘을 적용하여 Spatial resolution 향상 방법을 제안하였으며, 시뮬레이션 결과, 초 분해능 알고리즘 적용 시에 분해능이 향상 되어 이벤트 구간을 더 정밀하게 분석할 수 있었다.

The optical time domain reflectometer (OTDR) is the most widely used method to monitor problems with currently installed optical fibers. The OTDR is an instrument designed to test the FTTx network and evaluates the physical properties of the fiber, such as transmission loss and connection loss. It is important to improve the spatial resolution in order to accurately grasp the optical path problems by using the OTDR. When the pulse width is less than twice the distance between the two reflectors, the signals reflected from the two reflectors are reflected without overlap, so that the reflected signal can be distinguished. However, when the pulse width is larger than twice the distance between the two reflectors, so that the reflected signal can not be distinguished. In order to overcome these limitations, this paper proposed a method of improving spatial resolution by applying a super resolution algorithm. As a result of the simulation, the resolution is improved when the super resolution algorithm is applied, and the event interval can be analyzed more precisely.

키워드

참고문헌

  1. B. Glisic and D. Inaudi, Fibre Optic Methods for Structural Health Monitoring. West Sussex, U.K.: Wiley, 2007, pp. 27-28. DOI: 10.1002/stc.353
  2. S. Wielandy, M. Fishteyn, and B. Zhu, "Optical performance monitoring using nonlinear detection," J. Lightw. Technol., vol. 22, no. 3, pp. 784-793, Mar. 2004. DOI: 10.1109/JLT.2004.825774
  3. Y. Takushima and Y. C. Chung, "Optical reflectometry based on correlation detection and its application to the in-service monitoring of WDM passive optical network," Opt. Exp., vol. 15, no. 9, pp. 5318-5326, 2007. DOI: 10.1364/OE.15.005318
  4. S. Furukawa, K. Tanaka, Y. Koyamada, and M. Sumida, "Enhanced coherent OTDR for long span optical transmission lines containing optical fiber amplifiers," IEEE Photon. Technol. Lett., vol. 7, no. 5, pp. 540-542, May 1995 DOI: 10.1109/68.384537
  5. Xiao Ai, Richard Nock, John G. Rarity, and Naim Dahnoun, "High-resolution random modulation cw lidar", Applied Optics, Vol. 50, No. 22, 2011. DOI: 10.1364/AO.50.004478
  6. Z. I. Khan, M. MD. Kamal, N. Hamzah, K. Othman, and N. I. Khan, "Analysis of Performance for Multiple Signal Classification (MUSIC) in Estimating Direction of Arrival," Preceeding of RFM, pp. 524-528, 2008. DOI: 10.1109/RFM.2008.4897465
  7. J. Wang, Y. Zhao, and Z. Wang, "A MUSIC like DOA estimation method for signals with low SNR," Global Sym. Millimeter Waves, pp. 321-324, Nanjing, Apr. 2008. DOI: 10.1109/GSMM.2008.4534634
  8. Shujing Su,Wenyi Liu,Wenqiang Zheng. "Estimation of Direction of Arrival for Correlation Signals Based on Modified MUSIC Algorithm", JOURNAL OF INFORMATION &COMPUTATIONAL SCIENCE, 2013, 10(13): 4027-4035 DOI: 10.3724/SP.J.1087.2012.00592
  9. Nering, Evar D. (1970), Linear Algebra and Matrix Theory (2nd ed.), New York: Wiley, LCCN 76091646