DOI QR코드

DOI QR Code

Targeting Glutamine Metabolism for Cancer Treatment

  • Choi, Yeon-Kyung (Department of Internal Medicine, Kyungpook National University School of Medicine) ;
  • Park, Keun-Gyu (Department of Internal Medicine, Kyungpook National University School of Medicine)
  • Received : 2017.09.10
  • Accepted : 2017.11.09
  • Published : 2018.01.01

Abstract

Rapidly proliferating cancer cells require energy and cellular building blocks for their growth and ability to maintain redox balance. Many studies have focused on understanding how cancer cells adapt their nutrient metabolism to meet the high demand of anabolism required for proliferation and maintaining redox balance. Glutamine, the most abundant amino acid in plasma, is a well-known nutrient used by cancer cells to increase proliferation as well as survival under metabolic stress conditions. In this review, we provide an overview of the role of glutamine metabolism in cancer cell survival and growth and highlight the mechanisms by which glutamine metabolism affects cancer cell signaling. Furthermore, we summarize the potential therapeutic approaches of targeting glutamine metabolism for the treatment of numerous types of cancer.

Keywords

References

  1. Alberghina, L. and Gaglio, D. (2014) Redox control of glutamine utilization in cancer. Cell Death Dis. 5, e1561. https://doi.org/10.1038/cddis.2014.513
  2. Altman, B. J., Stine, Z. E. and Dang, C. V. (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16, 773.
  3. Baenke, F., Chaneton, B., Smith, M., Van Den Broek, N., Hogan, K., Tang, H., Viros, A., Martin, M., Galbraith, L., Girotti, M. R., Dhomen, N., Gottlieb, E. and Marais, R. (2016) Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells. Mol. Oncol. 10, 73-84. https://doi.org/10.1016/j.molonc.2015.08.003
  4. Bhaskar, P. T. and Hay, N. (2007) The two TORCs and Akt. Dev. Cell 12, 487-502. https://doi.org/10.1016/j.devcel.2007.03.020
  5. Bhutia, Y. D., Babu, E., Ramachandran, S. and Ganapathy, V. (2015) Amino Acid transporters in cancer and their relevance to "glutamine addiction": novel targets for the design of a new class of anticancer drugs. Cancer Res. 75, 1782-1788. https://doi.org/10.1158/0008-5472.CAN-14-3745
  6. Boroughs, L. K. and DeBerardinis, R. J. (2015) Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17, 351-359. https://doi.org/10.1038/ncb3124
  7. Bryant, K. L., Mancias, J. D., Kimmelman, A. C. and Der, C. J. (2014) KRAS: feeding pancreatic cancer proliferation. Trends Biochem. Sci. 39, 91-100. https://doi.org/10.1016/j.tibs.2013.12.004
  8. Bunpo, P., Murray, B., Cundiff, J., Brizius, E., Aldrich, C. J. and Anthony, T. G. (2008) Alanyl-glutamine consumption modifies the suppressive effect of L-asparaginase on lymphocyte populations in mice. J. Nutr. 138, 338-343.
  9. Byun, J. K., Choi, Y. K., Kim, J. H., Jeong, J. Y., Jeon, H. J., Kim, M. K., Hwang, I., Lee, S. Y., Lee, Y. M., Lee, I. K. and Park, K. G. (2017) A positive feedback loop between sestrin2 and mTORC2 is required for the survival of glutamine-depleted lung cancer cells. Cell Rep. 20, 586-599. https://doi.org/10.1016/j.celrep.2017.06.066
  10. Chen, L. and Cui, H. (2015) Targeting glutamine induces apoptosis: a cancer therapy approach. Int. J. Mol. Sci. 16, 22830-22855. https://doi.org/10.3390/ijms160922830
  11. Cheong, H., Lindsten, T. and Thompson, C. B. (2012) Autophagy and ammonia. Autophagy 8, 122-123. https://doi.org/10.4161/auto.8.1.18078
  12. Curthoys, N. P. and Watford, M. (1995) Regulation of glutaminase activity and glutamine metabolism. Annu. Rev. Nutr. 15, 133-159. https://doi.org/10.1146/annurev.nu.15.070195.001025
  13. Davidson, S. M., Papagiannakopoulos, T., Olenchock, B. A., Heyman, J. E., Keibler, M. A., Luengo, A., Bauer, M. R., Jha, A. K., O'Brien, J. P., Pierce, K. A., Gui, D. Y., Sullivan, L. B., Wasylenko, T. M., Subbaraj, L., Chin, C. R., Stephanopolous, G., Mott, B. T., Jacks, T., Clish, C. B. and Vander Heiden, M. G. (2016) Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab. 23, 517-528. https://doi.org/10.1016/j.cmet.2016.01.007
  14. Daye, D. and Wellen, K. E. (2012) Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin. Cell Dev. Biol. 23, 362-369. https://doi.org/10.1016/j.semcdb.2012.02.002
  15. DeBerardinis, R. J. and Cheng, T. (2010) Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29, 313-324. https://doi.org/10.1038/onc.2009.358
  16. DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. and Thompson, C. B. (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11-20. https://doi.org/10.1016/j.cmet.2007.10.002
  17. DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S. and Thompson, C. B. (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U.S.A. 104, 19345-19350. https://doi.org/10.1073/pnas.0709747104
  18. Dewaele, M., Maes, H. and Agostinis, P. (2010) ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy 6, 838-854. https://doi.org/10.4161/auto.6.7.12113
  19. Duran, R. V., Oppliger, W., Robitaille, A. M., Heiserich, L., Skendaj, R., Gottlieb, E. and Hall, M. N. (2012) Glutaminolysis activates RagmTORC1 signaling. Mol. Cell 47, 349-358.
  20. Eagle, H. (1955) Nutrition needs of mammalian cells in tissue culture. Science 122, 501-514. https://doi.org/10.1126/science.122.3168.501
  21. Eng, C. H., Yu, K., Lucas, J., White, E. and Abraham, R. T. (2010) Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci. Signal. 3, ra31.
  22. Erickson, J. W. and Cerione, R. A. (2010) Glutaminase: a hot spot for regulation of cancer cell metabolism? Oncotarget 1, 734-740.
  23. Fernandez-Medarde, A. and Santos, E. (2011) Ras in cancer and developmental diseases. Genes Cancer 2, 344-358. https://doi.org/10.1177/1947601911411084
  24. Gaglio, D., Metallo, C. M., Gameiro, P. A., Hiller, K., Danna, L. S., Balestrieri, C., Alberghina, L., Stephanopoulos, G. and Chiaradonna, F. (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol. Syst. Biol. 7, 523.
  25. Gaglio, D., Soldati, C., Vanoni, M., Alberghina, L. and Chiaradonna, F. (2009) Glutamine deprivation induces abortive s-phase rescued by deoxyribonucleotides in k-ras transformed fibroblasts. PLoS ONE 4, e4715. https://doi.org/10.1371/journal.pone.0004715
  26. Gao, P., Tchernyshyov, I., Chang, T. C., Lee, Y. S., Kita, K., Ochi, T., Zeller, K. I., De Marzo, A. M., Van Eyk, J. E., Mendell, J. T. and Dang, C. V. (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458, 762-765.
  27. Giacobbe, A., Bongiorno-Borbone, L., Bernassola, F., Terrinoni, A., Markert, E. K., Levine, A. J., Feng, Z., Agostini, M., Zolla, L., Agro, A. F., Notterman, D. A., Melino, G. and Peschiaroli, A. (2013) p63 regulates glutaminase 2 expression. Cell Cycle 12, 1395-1405. https://doi.org/10.4161/cc.24478
  28. Gorrini, C., Harris, I. S. and Mak, T. W. (2013) Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931-947. https://doi.org/10.1038/nrd4002
  29. Gross, M. I., Demo, S. D., Dennison, J. B., Chen, L., Chernov-Rogan, T., Goyal, B., Janes, J. R., Laidig, G. J., Lewis, E. R., Li, J., Mackinnon, A. L., Parlati, F., Rodriguez, M. L., Shwonek, P. J., Sjogren, E. B., Stanton, T. F., Wang, T., Yang, J., Zhao, F. and Bennett, M. K. (2014) Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13, 890-901. https://doi.org/10.1158/1535-7163.MCT-13-0870
  30. Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  31. Hassanein, M., Qian, J., Hoeksema, M. D., Wang, J., Jacobovitz, M., Ji, X., Harris, F. T., Harris, B. K., Boyd, K. L., Chen, H., Eisenberg, R. and Massion, P. P. (2015) Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer. Int. J. Cancer 137, 1587-1597. https://doi.org/10.1002/ijc.29535
  32. He, C. and Klionsky, D. J. (2009) Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67-93. https://doi.org/10.1146/annurev-genet-102808-114910
  33. Hensley, C. T., Wasti, A. T. and DeBerardinis, R. J. (2013) Glutamine and cancer: cell biology, physiology, and clinical opportunities. J. Clin. Invest. 123, 3678-3684. https://doi.org/10.1172/JCI69600
  34. Hernandez-Davies, J. E., Tran, T. Q., Reid, M. A., Rosales, K. R., Lowman, X. H., Pan, M., Moriceau, G., Yang, Y., Wu, J., Lo, R. S. and Kong, M. (2015) Vemurafenib resistance reprograms melanoma cells towards glutamine dependence. J. Transl. Med. 13, 210. https://doi.org/10.1186/s12967-015-0581-2
  35. Hosokawa, N., Sasaki, T., Iemura, S., Natsume, T., Hara, T. and Mizushima, N. (2009) Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5, 973-979. https://doi.org/10.4161/auto.5.7.9296
  36. Hu, W., Zhang, C., Wu, R., Sun, Y., Levine, A. and Feng, Z. (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl. Acad. Sci. U.S.A. 107, 7455-7460. https://doi.org/10.1073/pnas.1001006107
  37. Jacque, N., Ronchetti, A. M., Larrue, C., Meunier, G., Birsen, R., Willems, L., Saland, E., Decroocq, J., Maciel, T. T., Lambert, M., Poulain, L., Hospital, M. A., Sujobert, P., Joseph, L., Chapuis, N., Lacombe, C., Moura, I. C., Demo, S., Sarry, J. E., Recher, C., Mayeux, P., Tamburini, J. and Bouscary, D. (2015) Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition. Blood 126, 1346-1356. https://doi.org/10.1182/blood-2015-01-621870
  38. Jiang, L., Shestov, A. A., Swain, P., Yang, C., Parker, S. J., Wang, Q. A., Terada, L. S., Adams, N. D., McCabe, M. T., Pietrak, B., Schmidt, S., Metallo, C. M., Dranka, B. P., Schwartz, B. and DeBerardinis, R. J. (2016) Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 532, 255-258. https://doi.org/10.1038/nature17393
  39. Jung, C. H., Jun, C. B., Ro, S. H., Kim, Y. M., Otto, N. M., Cao, J., Kundu, M. and Kim, D. H. (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992-2003. https://doi.org/10.1091/mbc.e08-12-1249
  40. Katt, W. P., Antonyak, M. A. and Cerione, R. A. (2015) Simultaneously targeting tissue transglutaminase and kidney type glutaminase sensitizes cancer cells to acid toxicity and offers new opportunities for therapeutic intervention. Mol. Pharm. 12, 46-55. https://doi.org/10.1021/mp500405h
  41. Kim, M. J., Choi, Y. K., Park, S. Y., Jang, S. Y., Lee, J. Y., Ham, H. J., Kim, B. G., Jeon, H. J., Kim, J. H., Kim, J. G., Lee, I. K. and Park, K. G. (2017) $PPAR{\delta}$ reprograms glutamine metabolism in sorafenibresistant HCC. Mol. Cancer Res. 15, 1230-1242.
  42. Kim, S. Y. (2015) Cancer metabolism: targeting cancer universality. Arch. Pharm. Res. 38, 299-301.
  43. Korangath, P., Teo, W. W., Sadik, H., Han, L., Mori, N., Huijts, C. M., Wildes, F., Bharti, S., Zhang, Z., Santa-Maria, C. A., Tsai, H., Dang, C. V., Stearns, V., Bhujwalla, Z. M. and Sukumar, S. (2015) Targeting glutamine metabolism in breast cancer with aminooxyacetate. Clin. Cancer Res. 21, 3263-3273. https://doi.org/10.1158/1078-0432.CCR-14-1200
  44. Kuo, T. C., Chen, C. K., Hua, K. T., Yu, P., Lee, W. J., Chen, M. W., Jeng, Y. M., Chien, M. H., Kuo, K. T., Hsiao, M. and Kuo, M. L. (2016) Glutaminase 2 stabilizes Dicer to repress Snail and metastasis in hepatocellular carcinoma cells. Cancer Lett. 383, 282-294. https://doi.org/10.1016/j.canlet.2016.10.012
  45. Le, A., Lane, A. N., Hamaker, M., Bose, S., Gouw, A., Barbi, J., Tsukamoto, T., Rojas, C. J., Slusher, B. S., Zhang, H., Zimmerman, L. J., Liebler, D. C., Slebos, R. J., Lorkiewicz, P. K., Higashi, R. M., Fan, T. W. and Dang, C. V. (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 15, 110-121. https://doi.org/10.1016/j.cmet.2011.12.009
  46. Lee, J. I., Kang, J. and Stipanuk, M. H. (2006) Differential regulation of glutamate-cysteine ligase subunit expression and increased holoenzyme formation in response to cysteine deprivation. Biochem. J. 393, 181-190. https://doi.org/10.1042/BJ20051111
  47. Lee, J. S., Kang, J. H., Lee, S. H., Hong, D., Son, J., Hong, K. M., Song, J. and Kim, S. Y. (2016) Dual targeting of glutaminase 1 and thymidylate synthase elicits death synergistically in NSCLC. Cell Death Dis. 7, e2511.
  48. Li, D., Fu, Z., Chen, R., Zhao, X., Zhou, Y., Zeng, B., Yu, M., Zhou, Q., Lin, Q., Gao, W., Ye, H., Zhou, J., Li, Z., Liu, Y. and Chen, R. (2015) Inhibition of glutamine metabolism counteracts pancreatic cancer stem cell features and sensitizes cells to radiotherapy. Oncotarget 6, 31151-31163.
  49. Locasale, J. W. (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572-583. https://doi.org/10.1038/nrc3557
  50. Lubos, E., Loscalzo, J. and Handy, D. E. (2011) Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 15, 1957-1997.
  51. Lushchak, V. I. (2012) Glutathione homeostasis and functions: potential targets for medical interventions. J. Amino Acids 2012, 736837.
  52. Marin-Valencia, I., Yang, C., Mashimo, T., Cho, S., Baek, H., Yang, X. L., Rajagopalan, K. N., Maddie, M., Vemireddy, V., Zhao, Z., Cai, L., Good, L., Tu, B. P., Hatanpaa, K. J., Mickey, B. E., Mates, J. M., Pascual, J. M., Maher, E. A., Malloy, C. R., Deberardinis, R. J. and Bachoo, R. M. (2012) Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 15, 827-837. https://doi.org/10.1016/j.cmet.2012.05.001
  53. Marquez, J., Alonso, F. J., Mates, J. M., Segura, J. A., Martin-Rufian, M. and Campos-Sandoval, J. A. (2017) Glutamine addiction in gliomas. Neurochem. Res. 42, 1735-1746. https://doi.org/10.1007/s11064-017-2212-1
  54. Masson, J., Darmon, M., Conjard, A., Chuhma, N., Ropert, N., Thoby- Brisson, M., Foutz, A. S., Parrot, S., Miller, G. M., Jorisch, R., Polan, J., Hamon, M., Hen, R. and Rayport, S. (2006) Mice lacking brain/kidney phosphate-activated glutaminase have impaired glutamatergic synaptic transmission, altered breathing, disorganized goal-directed behavior and die shortly after birth. J. Neurosci. 26, 4660-4671. https://doi.org/10.1523/JNEUROSCI.4241-05.2006
  55. Mates, J. M., Segura, J. A., Martin-Rufian, M., Campos-Sandoval, J. A., Alonso, F. J. and Marquez, J. (2013) Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr. Mol. Med. 13, 514-534. https://doi.org/10.2174/1566524011313040005
  56. Metallo, C. M., Gameiro, P. A., Bell, E. L., Mattaini, K. R., Yang, J., Hiller, K., Jewell, C. M., Johnson, Z. R., Irvine, D. J., Guarente, L., Kelleher, J. K., Vander Heiden, M. G., Iliopoulos, O. and Stephanopoulos, G. (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380-384.
  57. Mohamed, A., Deng, X., Khuri, F. R. and Owonikoko, T. K. (2014) Altered glutamine metabolism and therapeutic opportunities for lung cancer. Clin. Lung Cancer 15, 7-15.
  58. Nazio, F., Strappazzon, F., Antonioli, M., Bielli, P., Cianfanelli, V., Bordi, M., Gretzmeier, C., Dengjel, J., Piacentini, M., Fimia, G. M. and Cecconi, F. (2013) mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 15, 406-416. https://doi.org/10.1038/ncb2708
  59. Qing, G., Li, B., Vu, A., Skuli, N., Walton, Z. E., Liu, X., Mayes, P. A., Wise, D. R., Thompson, C. B., Maris, J. M., Hogarty, M. D. and Simon, M. C. (2012) ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell 22, 631-644. https://doi.org/10.1016/j.ccr.2012.09.021
  60. Sancak, Y., Peterson, T. R., Shaul, Y. D., Lindquist, R. A., Thoreen, C. C., Bar-Peled, L. and Sabatini, D. M. (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496-1501. https://doi.org/10.1126/science.1157535
  61. Sanchez, E. L., Carroll, P. A., Thalhofer, A. B. and Lagunoff, M. (2015) Latent KSHV Infected Endothelial Cells Are Glutamine Addicted and Require Glutaminolysis for Survival. PLoS Pathog. 11, e1005052. https://doi.org/10.1371/journal.ppat.1005052
  62. Saxton, R. A., Knockenhauer, K. E., Wolfson, R. L., Chantranupong, L., Pacold, M. E., Wang, T., Schwartz, T. U. and Sabatini, D. M. (2016) Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science 351, 53-58. https://doi.org/10.1126/science.aad2087
  63. Son, J., Lyssiotis, C. A., Ying, H., Wang, X., Hua, S., Ligorio, M., Perera, R. M., Ferrone, C. R., Mullarky, E., Shyh-Chang, N., Kang, Y., Fleming, J. B., Bardeesy, N., Asara, J. M., Haigis, M. C., DePinho, R. A., Cantley, L. C. and Kimmelman, A. C. (2013) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101-105.
  64. Suzuki, S., Tanaka, T., Poyurovsky, M. V., Nagano, H., Mayama, T., Ohkubo, S., Lokshin, M., Hosokawa, H., Nakayama, T., Suzuki, Y., Sugano, S., Sato, E., Nagao, T., Yokote, K., Tatsuno, I. and Prives, C. (2010) Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl. Acad. Sci. U.S.A. 107, 7461-7466. https://doi.org/10.1073/pnas.1002459107
  65. Szeliga, M., Bogacinska-Karas, M., Kuzmicz, K., Rola, R. and Albrecht, J. (2016) Downregulation of GLS2 in glioblastoma cells is related to DNA hypermethylation but not to the p53 status. Mol. Carcinog. 55, 1309-1316. https://doi.org/10.1002/mc.22372
  66. Tanaka, K., Sasayama, T., Irino, Y., Takata, K., Nagashima, H., Satoh, N., Kyotani, K., Mizowaki, T., Imahori, T., Ejima, Y., Masui, K., Gini, B., Yang, H., Hosoda, K., Sasaki, R., Mischel, P. S. and Kohmura, E. (2015) Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J. Clin. Invest. 125, 1591-1602.
  67. Thai, M., Thaker, S. K., Feng, J., Du, Y., Hu, H., Ting Wu, T., Graeber, T. G., Braas, D. and Christofk, H. R. (2015) MYC-induced reprogramming of glutamine catabolism supports optimal virus replication. Nat. Commun. 6, 8873. https://doi.org/10.1038/ncomms9873
  68. van Geldermalsen, M., Wang, Q., Nagarajah, R., Marshall, A. D., Thoeng, A., Gao, D., Ritchie, W., Feng, Y., Bailey, C. G., Deng, N., Harvey, K., Beith, J. M., Selinger, C. I., O'Toole, S. A., Rasko, J. E. and Holst, J. (2016) ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene 35, 3201-3208. https://doi.org/10.1038/onc.2015.381
  69. Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033. https://doi.org/10.1126/science.1160809
  70. Velletri, T., Romeo, F., Tucci, P., Peschiaroli, A., Annicchiarico-Petruzzelli, M., Niklison-Chirou, M. V., Amelio, I., Knight, R. A., Mak, T. W., Melino, G. and Agostini, M. (2013) GLS2 is transcriptionally regulated by p73 and contributes to neuronal differentiation. Cell Cycle 12, 3564-3573. https://doi.org/10.4161/cc.26771
  71. White, E. (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer 12, 401-410. https://doi.org/10.1038/nrc3262
  72. Windmueller, H. G. and Spaeth, A. E. (1974) Uptake and metabolism of plasma glutamine by the small intestine. J. Biol. Chem. 249, 5070-5079.
  73. Wise, D. R., DeBerardinis, R. J., Mancuso, A., Sayed, N., Zhang, X. Y., Pfeiffer, H. K., Nissim, I., Daikhin, E., Yudkoff, M., McMahon, S. B. and Thompson, C. B. (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. U.S.A. 105, 18782-18787. https://doi.org/10.1073/pnas.0810199105
  74. Wolfson, R. L., Chantranupong, L., Saxton, R. A., Shen, K., Scaria, S. M., Cantor, J. R. and Sabatini, D. M. (2016) Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43-48. https://doi.org/10.1126/science.aab2674
  75. Xiang, L., Xie, G., Liu, C., Zhou, J., Chen, J., Yu, S., Li, J., Pang, X., Shi, H. and Liang, H. (2013) Knock-down of glutaminase 2 expression decreases glutathione, NADH, and sensitizes cervical cancer to ionizing radiation. Biochim. Biophys. Acta 1833, 2996-3005. https://doi.org/10.1016/j.bbamcr.2013.08.003
  76. Xiang, Y., Stine, Z. E., Xia, J., Lu, Y., O'Connor, R. S., Altman, B. J., Hsieh, A. L., Gouw, A. M., Thomas, A. G., Gao, P., Sun, L., Song, L., Yan, B., Slusher, B. S., Zhuo, J., Ooi, L. L., Lee, C. G., Mancuso, A., McCallion, A. S., Le, A., Milone, M. C., Rayport, S., Felsher, D. W. and Dang, C. V. (2015) Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J. Clin. Invest. 125, 2293-2306. https://doi.org/10.1172/JCI75836
  77. Yang, L., Achreja, A., Yeung, T. L., Mangala, L. S., Jiang, D., Han, C., Baddour, J., Marini, J. C., Ni, J., Nakahara, R., Wahlig, S., Chiba, L., Kim, S. H., Morse, J., Pradeep, S., Nagaraja, A. S., Haemmerle, M., Kyunghee, N., Derichsweiler, M., Plackemeier, T., Mercado- Uribe, I., Lopez-Berestein, G., Moss, T., Ram, P. T., Liu, J., Lu, X., Mok, S. C., Sood, A. K. and Nagrath, D. (2016) Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironmentregulated cancer cell growth. Cell Metab. 24, 685-700. https://doi.org/10.1016/j.cmet.2016.10.011
  78. Yang, L., Moss, T., Mangala, L. S., Marini, J., Zhao, H., Wahlig, S., Armaiz-Pena, G., Jiang, D., Achreja, A., Win, J., Roopaimoole, R., Rodriguez-Aguayo, C., Mercado-Uribe, I., Lopez-Berestein, G., Liu, J., Tsukamoto, T., Sood, A. K., Ram, P. T. and Nagrath, D. (2014) Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer. Mol. Syst. Biol. 10, 728. https://doi.org/10.1002/msb.20134892
  79. Yang, L., Venneti, S. and Nagrath, D. (2017) Glutaminolysis: A Hallmark of Cancer Metabolism. Annu. Rev. Biomed. Eng. 19, 163-194. https://doi.org/10.1146/annurev-bioeng-071516-044546
  80. Yoshida, G. J. (2015) Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J. Exp. Clin. Cancer Res. 34, 111. https://doi.org/10.1186/s13046-015-0221-y
  81. Yu, D., Shi, X., Meng, G., Chen, J., Yan, C., Jiang, Y., Wei, J. and Ding, Y. (2015) Kidney-type glutaminase (GLS1) is a biomarker for pathologic diagnosis and prognosis of hepatocellular carcinoma. Oncotarget 6, 7619-7631.
  82. Yuneva, M., Zamboni, N., Oefner, P., Sachidanandam, R. and Lazebnik, Y. (2007) Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J. Cell Biol. 178, 93-105.
  83. Yuneva, M. O., Fan, T. W., Allen, T. D., Higashi, R. M., Ferraris, D. V., Tsukamoto, T., Mates, J. M., Alonso, F. J., Wang, C., Seo, Y., Chen, X. and Bishop, J. M. (2012) The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15, 157-170. https://doi.org/10.1016/j.cmet.2011.12.015
  84. Zhang, C., Liu, J., Zhao, Y., Yue, X., Zhu, Y., Wang, X., Wu, H., Blanco, F., Li, S., Bhanot, G., Haffty, B. G., Hu, W. and Feng, Z. (2016) Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis. Elife 5, e10727.
  85. Zhang, J., Wang, C., Chen, M., Cao, J., Zhong, Y., Chen, L., Shen, H. M. and Xia, D. (2013) Epigenetic silencing of glutaminase 2 in human liver and colon cancers. BMC Cancer 13, 601. https://doi.org/10.1186/1471-2407-13-601
  86. Zoncu, R., Efeyan, A. and Sabatini, D. M. (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21-35. https://doi.org/10.1038/nrm3025

Cited by

  1. Cancer Metabolism: a Hope for Curing Cancer vol.26, pp.1, 2018, https://doi.org/10.4062/biomolther.2017.300
  2. Overexpression of SLC25A15 is involved in the proliferation of cutaneous melanoma and leads to poor prognosis vol.34, pp.1958-5381, 2018, https://doi.org/10.1051/medsci/201834f113
  3. Evaluation of Aflatoxin M1 Effects on the Metabolomic and Cytokinomic Profiling of a Hepatoblastoma Cell Line vol.10, pp.11, 2018, https://doi.org/10.3390/toxins10110436
  4. Malic enzyme 2 as a potential therapeutic drug target for cancer vol.70, pp.11, 2018, https://doi.org/10.1002/iub.1930
  5. Heme, whence come thy carbon building blocks? vol.132, pp.10, 2018, https://doi.org/10.1182/blood-2018-07-864215
  6. Glutamine Addiction and Therapeutic Strategies in Lung Cancer vol.20, pp.2, 2019, https://doi.org/10.3390/ijms20020252
  7. Gene expression profiling of spontaneously occurring canine mammary tumours: Insight into gene networks and pathways linked to cancer pathogenesis vol.13, pp.12, 2018, https://doi.org/10.1371/journal.pone.0208656
  8. The Human Transient Receptor Potential Melastatin 2 Ion Channel Modulates ROS Through Nrf2 vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-50661-8
  9. Diverse Stakeholders of Tumor Metabolism: An Appraisal of the Emerging Approach of Multifaceted Metabolic Targeting by 3-Bromopyruvate vol.10, pp.None, 2018, https://doi.org/10.3389/fphar.2019.00728
  10. Targeting T Cell Metabolism in Inflammatory Skin Disease vol.10, pp.None, 2018, https://doi.org/10.3389/fimmu.2019.02285
  11. Lung Cancer Heterogeneity in Modulation of Th17/IL17A Responses vol.9, pp.None, 2018, https://doi.org/10.3389/fonc.2019.01384
  12. Novel 1,3,4-Selenadiazole-Containing Kidney-Type Glutaminase Inhibitors Showed Improved Cellular Uptake and Antitumor Activity vol.62, pp.2, 2018, https://doi.org/10.1021/acs.jmedchem.8b01198
  13. The Microenvironment Is a Critical Regulator of Muscle Stem Cell Activation and Proliferation vol.7, pp.None, 2018, https://doi.org/10.3389/fcell.2019.00254
  14. Kidney-Type Glutaminase Inhibitor Hexylselen Selectively Kills Cancer Cells via a Three-Pronged Mechanism vol.2, pp.1, 2019, https://doi.org/10.1021/acsptsci.8b00047
  15. Multiomics Analysis Reveals that GLS and GLS2 Differentially Modulate the Clinical Outcomes of Cancer vol.8, pp.3, 2019, https://doi.org/10.3390/jcm8030355
  16. Role of Metabolic Reprogramming in Epithelial–Mesenchymal Transition (EMT) vol.20, pp.8, 2019, https://doi.org/10.3390/ijms20082042
  17. Clinical Significance of Serum Glutamine Level in Patients with Colorectal Cancer vol.11, pp.4, 2018, https://doi.org/10.3390/nu11040898
  18. Hippo and Hyperplasia : TEAD Promotes mTORC1 Activation Post-Injury vol.124, pp.9, 2018, https://doi.org/10.1161/circresaha.119.314968
  19. The molecular rationale for therapeutic targeting of glutamine metabolism in pulmonary hypertension vol.23, pp.6, 2018, https://doi.org/10.1080/14728222.2019.1615438
  20. Nf1 loss promotes Kras ‐driven lung adenocarcinoma and results in Psat1‐mediated glutamate dependence vol.11, pp.6, 2018, https://doi.org/10.15252/emmm.201809856
  21. Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality vol.11, pp.9, 2018, https://doi.org/10.3390/cancers11091402
  22. Targeting Metabolic Reprogramming in Acute Myeloid Leukemia vol.8, pp.9, 2018, https://doi.org/10.3390/cells8090967
  23. The Emerging Role of l-Glutamine in Cardiovascular Health and Disease vol.11, pp.9, 2018, https://doi.org/10.3390/nu11092092
  24. Unbiased Metabolic Profiling Predicts Sensitivity of High MYC-Expressing Atypical Teratoid/Rhabdoid Tumors to Glutamine Inhibition with 6-Diazo-5-Oxo-L-Norleucine vol.25, pp.19, 2019, https://doi.org/10.1158/1078-0432.ccr-19-0189
  25. Cancer-specific metabolism: Promising approaches for colorectal cancer treatment vol.11, pp.10, 2018, https://doi.org/10.4251/wjgo.v11.i10.768
  26. Effect of cold atmospheric plasma treatment on the metabolites of human leukemia cells vol.19, pp.None, 2019, https://doi.org/10.1186/s12935-019-0856-4
  27. Rescue of TCA Cycle Dysfunction for Cancer Therapy vol.8, pp.12, 2018, https://doi.org/10.3390/jcm8122161
  28. Exploring Dysregulated Signaling Pathways in Cancer vol.26, pp.4, 2020, https://doi.org/10.2174/1381612826666200115095937
  29. Metabolic Plasticity in Chemotherapy Resistance vol.10, pp.None, 2020, https://doi.org/10.3389/fonc.2020.00281
  30. Causes and Consequences of Variable Tumor Cell Metabolism on Heritable Modifications and Tumor Evolution vol.10, pp.None, 2018, https://doi.org/10.3389/fonc.2020.00373
  31. Adenylate Kinase and Metabolic Signaling in Cancer Cells vol.10, pp.None, 2018, https://doi.org/10.3389/fonc.2020.00660
  32. Metabolic Plasticity of Melanoma Cells and Their Crosstalk With Tumor Microenvironment vol.10, pp.None, 2020, https://doi.org/10.3389/fonc.2020.00722
  33. Metabolic Targeting of Cancer Stem Cells vol.10, pp.None, 2018, https://doi.org/10.3389/fonc.2020.537930
  34. The Double-Edge Sword of Autophagy in Cancer: From Tumor Suppression to Pro-tumor Activity vol.10, pp.None, 2018, https://doi.org/10.3389/fonc.2020.578418
  35. Metabolic adaptations in spontaneously immortalized PGC-1α knock-out mouse embryonic fibroblasts increase their oncogenic potential vol.29, pp.None, 2018, https://doi.org/10.1016/j.redox.2019.101396
  36. Modulation of Mitochondrial Metabolic Reprogramming and Oxidative Stress to Overcome Chemoresistance in Cancer vol.10, pp.1, 2018, https://doi.org/10.3390/biom10010135
  37. 1 H-NMR Based Serum Metabolomics Highlights Different Specific Biomarkers between Early and Advanced Hepatocellular Carcinoma Stages vol.12, pp.1, 2018, https://doi.org/10.3390/cancers12010241
  38. Epithelial-Mesenchymal Transition and Metabolic Switching in Cancer: Lessons From Somatic Cell Reprogramming vol.8, pp.None, 2018, https://doi.org/10.3389/fcell.2020.00760
  39. Competitive glucose metabolism as a target to boost bladder cancer immunotherapy vol.17, pp.2, 2018, https://doi.org/10.1038/s41585-019-0263-6
  40. Targeting cancer stem cells from a metabolic perspective vol.245, pp.5, 2018, https://doi.org/10.1177/1535370220909309
  41. Metabolic characterization of colorectal cancer cells harbouring different KRAS mutations in codon 12, 13, 61 and 146 using human SW48 isogenic cell lines vol.16, pp.4, 2020, https://doi.org/10.1007/s11306-020-01674-2
  42. Non-Coding RNAs as Key Regulators of Glutaminolysis in Cancer vol.21, pp.8, 2018, https://doi.org/10.3390/ijms21082872
  43. Analysis of low-molecular-weight metabolites in stomach cancer cells by a simplified and inexpensive GC/MS metabolomics method vol.412, pp.12, 2018, https://doi.org/10.1007/s00216-020-02543-6
  44. The metabolic landscape of urological cancers: New therapeutic perspectives vol.477, pp.None, 2018, https://doi.org/10.1016/j.canlet.2020.02.034
  45. Leucine and branched-chain amino acid metabolism contribute to the growth of bone sarcomas by regulating AMPK and mTORC1 signaling vol.477, pp.9, 2018, https://doi.org/10.1042/bcj20190754
  46. Antimetabolic Agent 3-Bromopyruvate Exerts Myelopotentiating Action in a Murine Host Bearing a Progressively Growing Ascitic Thymoma vol.49, pp.4, 2020, https://doi.org/10.1080/08820139.2019.1627368
  47. Updated Understanding of Cancer as a Metabolic and Telomere-Driven Disease, and Proposal for Complex Personalized Treatment, a Hypothesis vol.21, pp.18, 2020, https://doi.org/10.3390/ijms21186521
  48. An expert overview of emerging therapies for acute myeloid leukemia: novel small molecules targeting apoptosis, p53, transcriptional regulation and metabolism vol.29, pp.9, 2018, https://doi.org/10.1080/13543784.2020.1804856
  49. Synthesis of α-Ketoglutaramic acid vol.607, pp.None, 2020, https://doi.org/10.1016/j.ab.2020.113862
  50. Metabolic Plasticity Is an Essential Requirement of Acquired Tyrosine Kinase Inhibitor Resistance in Chronic Myeloid Leukemia vol.12, pp.11, 2018, https://doi.org/10.3390/cancers12113443
  51. The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer vol.19, pp.2, 2018, https://doi.org/10.1007/s40200-020-00566-5
  52. Metabolic rewiring in drug resistant cells exhibit higher OXPHOS and fatty acids as preferred major source to cellular energetics vol.1861, pp.12, 2018, https://doi.org/10.1016/j.bbabio.2020.148300
  53. Role of tyrosine phosphorylation in modulating cancer cell metabolism vol.1874, pp.2, 2018, https://doi.org/10.1016/j.bbcan.2020.188442
  54. UGCG overexpression leads to increased glycolysis and increased oxidative phosphorylation of breast cancer cells vol.10, pp.None, 2018, https://doi.org/10.1038/s41598-020-65182-y
  55. Characterization of dysregulated glutamine metabolism in human glioma tissue with 1 H NMR vol.10, pp.1, 2018, https://doi.org/10.1038/s41598-020-76982-7
  56. Inhibition of glutaminase to reverse fibrosis in iatrogenic laryngotracheal stenosis vol.130, pp.12, 2020, https://doi.org/10.1002/lary.28493
  57. Revealing the Potential Application of EC-Synthetic Retinoid Analogues in Anticancer Therapy vol.26, pp.2, 2018, https://doi.org/10.3390/molecules26020506
  58. Immunometabolism at the Nexus of Cancer Therapeutic Efficacy and Resistance vol.12, pp.None, 2021, https://doi.org/10.3389/fimmu.2021.657293
  59. Optimization of the isolation procedure and culturing conditions for hepatic stellate cells obtained from mouse vol.41, pp.1, 2018, https://doi.org/10.1042/bsr20202514
  60. Volatile Anesthetics Regulate Anti-Cancer Relevant Signaling vol.11, pp.None, 2018, https://doi.org/10.3389/fonc.2021.610514
  61. Cancer Stem Cells: Metabolic Characterization for Targeted Cancer Therapy vol.11, pp.None, 2021, https://doi.org/10.3389/fonc.2021.756888
  62. Therapeutic targeting of the mitochondrial one-carbon pathway: perspectives, pitfalls, and potential vol.40, pp.13, 2018, https://doi.org/10.1038/s41388-021-01695-8
  63. Glutamine deficiency promotes stemness and chemoresistance in tumor cells through DRP1-induced mitochondrial fragmentation vol.78, pp.10, 2018, https://doi.org/10.1007/s00018-021-03818-6
  64. DDIT3 Directs a Dual Mechanism to Balance Glycolysis and Oxidative Phosphorylation during Glutamine Deprivation vol.8, pp.11, 2021, https://doi.org/10.1002/advs.202003732
  65. Phytocompounds Targeting Metabolic Reprogramming in Cancer: An Assessment of Role, Mechanisms, Pathways, and Therapeutic Relevance vol.69, pp.25, 2021, https://doi.org/10.1021/acs.jafc.1c01173
  66. Effect of Protoberberine-Rich Fraction of Chelidonium majus L. on Endometriosis Regression vol.13, pp.7, 2018, https://doi.org/10.3390/pharmaceutics13070931
  67. Signaling, metabolism, and cancer: An important relationship for therapeutic intervention vol.236, pp.8, 2021, https://doi.org/10.1002/jcp.30276
  68. Nuclear Pyruvate Kinase M2 (PKM2) Contributes to Phosphoserine Aminotransferase 1 (PSAT1)-Mediated Cell Migration in EGFR-Activated Lung Cancer Cells vol.13, pp.16, 2021, https://doi.org/10.3390/cancers13163938
  69. Theanine and cancer: A systematic review of the literature vol.35, pp.9, 2018, https://doi.org/10.1002/ptr.7110
  70. Glutamine Modulates Expression and Function of Glucose 6-Phosphate Dehydrogenase via NRF2 in Colon Cancer Cells vol.10, pp.9, 2018, https://doi.org/10.3390/antiox10091349
  71. Antitumor effects of the multi-target tyrosine kinase inhibitor cabozantinib: a comprehensive review of the preclinical evidence vol.21, pp.9, 2021, https://doi.org/10.1080/14737140.2021.1919090
  72. GLS1 depletion inhibited colorectal cancer proliferation and migration via redox/Nrf2/autophagy-dependent pathway vol.708, pp.None, 2018, https://doi.org/10.1016/j.abb.2021.108964
  73. Metabolomic analysis of untargeted bovine uterine secretions in dairy cows with endometritis using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry vol.139, pp.None, 2018, https://doi.org/10.1016/j.rvsc.2021.07.006
  74. MicroRNAs and Metabolism: Revisiting the Warburg Effect with Emphasis on Epigenetic Background and Clinical Applications vol.11, pp.10, 2021, https://doi.org/10.3390/biom11101531
  75. Glutamine and Cholesterol Plasma Levels and Clinical Outcomes of Patients with Metastatic Castration-Resistant Prostate Cancer Treated with Taxanes vol.13, pp.19, 2018, https://doi.org/10.3390/cancers13194960
  76. Unravelling the Anticancer Mechanisms of Traditional Herbal Medicines with Metabolomics vol.26, pp.21, 2021, https://doi.org/10.3390/molecules26216541
  77. Use of oral glutamine in radiation‑induced adverse effects in patients with thoracic and upper aerodigestive malignancies: Results of a prospective observational study vol.23, pp.1, 2018, https://doi.org/10.3892/ol.2021.13137
  78. Structure, biochemistry, and gene expression patterns of the proline biosynthetic enzyme pyrroline-5-carboxylate reductase (PYCR), an emerging cancer therapy target vol.53, pp.12, 2021, https://doi.org/10.1007/s00726-021-02999-5
  79. Targeting the metabolism of cancer stem cells by energy disruptor molecules vol.169, pp.None, 2018, https://doi.org/10.1016/j.critrevonc.2021.103545
  80. Synthesis, biological activity, structure activity relationship study and liposomal formulation development of some arylsulfonyl pyroglutamic acid derivatives vol.1248, pp.None, 2022, https://doi.org/10.1016/j.molstruc.2021.131512
  81. Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? vol.23, pp.1, 2018, https://doi.org/10.3390/ijms23010048