References
- Alberghina, L. and Gaglio, D. (2014) Redox control of glutamine utilization in cancer. Cell Death Dis. 5, e1561. https://doi.org/10.1038/cddis.2014.513
- Altman, B. J., Stine, Z. E. and Dang, C. V. (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer 16, 773.
- Baenke, F., Chaneton, B., Smith, M., Van Den Broek, N., Hogan, K., Tang, H., Viros, A., Martin, M., Galbraith, L., Girotti, M. R., Dhomen, N., Gottlieb, E. and Marais, R. (2016) Resistance to BRAF inhibitors induces glutamine dependency in melanoma cells. Mol. Oncol. 10, 73-84. https://doi.org/10.1016/j.molonc.2015.08.003
- Bhaskar, P. T. and Hay, N. (2007) The two TORCs and Akt. Dev. Cell 12, 487-502. https://doi.org/10.1016/j.devcel.2007.03.020
- Bhutia, Y. D., Babu, E., Ramachandran, S. and Ganapathy, V. (2015) Amino Acid transporters in cancer and their relevance to "glutamine addiction": novel targets for the design of a new class of anticancer drugs. Cancer Res. 75, 1782-1788. https://doi.org/10.1158/0008-5472.CAN-14-3745
- Boroughs, L. K. and DeBerardinis, R. J. (2015) Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17, 351-359. https://doi.org/10.1038/ncb3124
- Bryant, K. L., Mancias, J. D., Kimmelman, A. C. and Der, C. J. (2014) KRAS: feeding pancreatic cancer proliferation. Trends Biochem. Sci. 39, 91-100. https://doi.org/10.1016/j.tibs.2013.12.004
- Bunpo, P., Murray, B., Cundiff, J., Brizius, E., Aldrich, C. J. and Anthony, T. G. (2008) Alanyl-glutamine consumption modifies the suppressive effect of L-asparaginase on lymphocyte populations in mice. J. Nutr. 138, 338-343.
- Byun, J. K., Choi, Y. K., Kim, J. H., Jeong, J. Y., Jeon, H. J., Kim, M. K., Hwang, I., Lee, S. Y., Lee, Y. M., Lee, I. K. and Park, K. G. (2017) A positive feedback loop between sestrin2 and mTORC2 is required for the survival of glutamine-depleted lung cancer cells. Cell Rep. 20, 586-599. https://doi.org/10.1016/j.celrep.2017.06.066
- Chen, L. and Cui, H. (2015) Targeting glutamine induces apoptosis: a cancer therapy approach. Int. J. Mol. Sci. 16, 22830-22855. https://doi.org/10.3390/ijms160922830
- Cheong, H., Lindsten, T. and Thompson, C. B. (2012) Autophagy and ammonia. Autophagy 8, 122-123. https://doi.org/10.4161/auto.8.1.18078
- Curthoys, N. P. and Watford, M. (1995) Regulation of glutaminase activity and glutamine metabolism. Annu. Rev. Nutr. 15, 133-159. https://doi.org/10.1146/annurev.nu.15.070195.001025
- Davidson, S. M., Papagiannakopoulos, T., Olenchock, B. A., Heyman, J. E., Keibler, M. A., Luengo, A., Bauer, M. R., Jha, A. K., O'Brien, J. P., Pierce, K. A., Gui, D. Y., Sullivan, L. B., Wasylenko, T. M., Subbaraj, L., Chin, C. R., Stephanopolous, G., Mott, B. T., Jacks, T., Clish, C. B. and Vander Heiden, M. G. (2016) Environment impacts the metabolic dependencies of ras-driven non-small cell lung cancer. Cell Metab. 23, 517-528. https://doi.org/10.1016/j.cmet.2016.01.007
- Daye, D. and Wellen, K. E. (2012) Metabolic reprogramming in cancer: unraveling the role of glutamine in tumorigenesis. Semin. Cell Dev. Biol. 23, 362-369. https://doi.org/10.1016/j.semcdb.2012.02.002
- DeBerardinis, R. J. and Cheng, T. (2010) Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29, 313-324. https://doi.org/10.1038/onc.2009.358
- DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. and Thompson, C. B. (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11-20. https://doi.org/10.1016/j.cmet.2007.10.002
- DeBerardinis, R. J., Mancuso, A., Daikhin, E., Nissim, I., Yudkoff, M., Wehrli, S. and Thompson, C. B. (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U.S.A. 104, 19345-19350. https://doi.org/10.1073/pnas.0709747104
- Dewaele, M., Maes, H. and Agostinis, P. (2010) ROS-mediated mechanisms of autophagy stimulation and their relevance in cancer therapy. Autophagy 6, 838-854. https://doi.org/10.4161/auto.6.7.12113
- Duran, R. V., Oppliger, W., Robitaille, A. M., Heiserich, L., Skendaj, R., Gottlieb, E. and Hall, M. N. (2012) Glutaminolysis activates RagmTORC1 signaling. Mol. Cell 47, 349-358.
- Eagle, H. (1955) Nutrition needs of mammalian cells in tissue culture. Science 122, 501-514. https://doi.org/10.1126/science.122.3168.501
- Eng, C. H., Yu, K., Lucas, J., White, E. and Abraham, R. T. (2010) Ammonia derived from glutaminolysis is a diffusible regulator of autophagy. Sci. Signal. 3, ra31.
- Erickson, J. W. and Cerione, R. A. (2010) Glutaminase: a hot spot for regulation of cancer cell metabolism? Oncotarget 1, 734-740.
- Fernandez-Medarde, A. and Santos, E. (2011) Ras in cancer and developmental diseases. Genes Cancer 2, 344-358. https://doi.org/10.1177/1947601911411084
- Gaglio, D., Metallo, C. M., Gameiro, P. A., Hiller, K., Danna, L. S., Balestrieri, C., Alberghina, L., Stephanopoulos, G. and Chiaradonna, F. (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol. Syst. Biol. 7, 523.
- Gaglio, D., Soldati, C., Vanoni, M., Alberghina, L. and Chiaradonna, F. (2009) Glutamine deprivation induces abortive s-phase rescued by deoxyribonucleotides in k-ras transformed fibroblasts. PLoS ONE 4, e4715. https://doi.org/10.1371/journal.pone.0004715
- Gao, P., Tchernyshyov, I., Chang, T. C., Lee, Y. S., Kita, K., Ochi, T., Zeller, K. I., De Marzo, A. M., Van Eyk, J. E., Mendell, J. T. and Dang, C. V. (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458, 762-765.
- Giacobbe, A., Bongiorno-Borbone, L., Bernassola, F., Terrinoni, A., Markert, E. K., Levine, A. J., Feng, Z., Agostini, M., Zolla, L., Agro, A. F., Notterman, D. A., Melino, G. and Peschiaroli, A. (2013) p63 regulates glutaminase 2 expression. Cell Cycle 12, 1395-1405. https://doi.org/10.4161/cc.24478
- Gorrini, C., Harris, I. S. and Mak, T. W. (2013) Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931-947. https://doi.org/10.1038/nrd4002
- Gross, M. I., Demo, S. D., Dennison, J. B., Chen, L., Chernov-Rogan, T., Goyal, B., Janes, J. R., Laidig, G. J., Lewis, E. R., Li, J., Mackinnon, A. L., Parlati, F., Rodriguez, M. L., Shwonek, P. J., Sjogren, E. B., Stanton, T. F., Wang, T., Yang, J., Zhao, F. and Bennett, M. K. (2014) Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol. Cancer Ther. 13, 890-901. https://doi.org/10.1158/1535-7163.MCT-13-0870
- Hanahan, D. and Weinberg, R. A. (2011) Hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
- Hassanein, M., Qian, J., Hoeksema, M. D., Wang, J., Jacobovitz, M., Ji, X., Harris, F. T., Harris, B. K., Boyd, K. L., Chen, H., Eisenberg, R. and Massion, P. P. (2015) Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer. Int. J. Cancer 137, 1587-1597. https://doi.org/10.1002/ijc.29535
- He, C. and Klionsky, D. J. (2009) Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43, 67-93. https://doi.org/10.1146/annurev-genet-102808-114910
- Hensley, C. T., Wasti, A. T. and DeBerardinis, R. J. (2013) Glutamine and cancer: cell biology, physiology, and clinical opportunities. J. Clin. Invest. 123, 3678-3684. https://doi.org/10.1172/JCI69600
- Hernandez-Davies, J. E., Tran, T. Q., Reid, M. A., Rosales, K. R., Lowman, X. H., Pan, M., Moriceau, G., Yang, Y., Wu, J., Lo, R. S. and Kong, M. (2015) Vemurafenib resistance reprograms melanoma cells towards glutamine dependence. J. Transl. Med. 13, 210. https://doi.org/10.1186/s12967-015-0581-2
- Hosokawa, N., Sasaki, T., Iemura, S., Natsume, T., Hara, T. and Mizushima, N. (2009) Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5, 973-979. https://doi.org/10.4161/auto.5.7.9296
- Hu, W., Zhang, C., Wu, R., Sun, Y., Levine, A. and Feng, Z. (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl. Acad. Sci. U.S.A. 107, 7455-7460. https://doi.org/10.1073/pnas.1001006107
- Jacque, N., Ronchetti, A. M., Larrue, C., Meunier, G., Birsen, R., Willems, L., Saland, E., Decroocq, J., Maciel, T. T., Lambert, M., Poulain, L., Hospital, M. A., Sujobert, P., Joseph, L., Chapuis, N., Lacombe, C., Moura, I. C., Demo, S., Sarry, J. E., Recher, C., Mayeux, P., Tamburini, J. and Bouscary, D. (2015) Targeting glutaminolysis has antileukemic activity in acute myeloid leukemia and synergizes with BCL-2 inhibition. Blood 126, 1346-1356. https://doi.org/10.1182/blood-2015-01-621870
- Jiang, L., Shestov, A. A., Swain, P., Yang, C., Parker, S. J., Wang, Q. A., Terada, L. S., Adams, N. D., McCabe, M. T., Pietrak, B., Schmidt, S., Metallo, C. M., Dranka, B. P., Schwartz, B. and DeBerardinis, R. J. (2016) Reductive carboxylation supports redox homeostasis during anchorage-independent growth. Nature 532, 255-258. https://doi.org/10.1038/nature17393
- Jung, C. H., Jun, C. B., Ro, S. H., Kim, Y. M., Otto, N. M., Cao, J., Kundu, M. and Kim, D. H. (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992-2003. https://doi.org/10.1091/mbc.e08-12-1249
- Katt, W. P., Antonyak, M. A. and Cerione, R. A. (2015) Simultaneously targeting tissue transglutaminase and kidney type glutaminase sensitizes cancer cells to acid toxicity and offers new opportunities for therapeutic intervention. Mol. Pharm. 12, 46-55. https://doi.org/10.1021/mp500405h
-
Kim, M. J., Choi, Y. K., Park, S. Y., Jang, S. Y., Lee, J. Y., Ham, H. J., Kim, B. G., Jeon, H. J., Kim, J. H., Kim, J. G., Lee, I. K. and Park, K. G. (2017)
$PPAR{\delta}$ reprograms glutamine metabolism in sorafenibresistant HCC. Mol. Cancer Res. 15, 1230-1242. - Kim, S. Y. (2015) Cancer metabolism: targeting cancer universality. Arch. Pharm. Res. 38, 299-301.
- Korangath, P., Teo, W. W., Sadik, H., Han, L., Mori, N., Huijts, C. M., Wildes, F., Bharti, S., Zhang, Z., Santa-Maria, C. A., Tsai, H., Dang, C. V., Stearns, V., Bhujwalla, Z. M. and Sukumar, S. (2015) Targeting glutamine metabolism in breast cancer with aminooxyacetate. Clin. Cancer Res. 21, 3263-3273. https://doi.org/10.1158/1078-0432.CCR-14-1200
- Kuo, T. C., Chen, C. K., Hua, K. T., Yu, P., Lee, W. J., Chen, M. W., Jeng, Y. M., Chien, M. H., Kuo, K. T., Hsiao, M. and Kuo, M. L. (2016) Glutaminase 2 stabilizes Dicer to repress Snail and metastasis in hepatocellular carcinoma cells. Cancer Lett. 383, 282-294. https://doi.org/10.1016/j.canlet.2016.10.012
- Le, A., Lane, A. N., Hamaker, M., Bose, S., Gouw, A., Barbi, J., Tsukamoto, T., Rojas, C. J., Slusher, B. S., Zhang, H., Zimmerman, L. J., Liebler, D. C., Slebos, R. J., Lorkiewicz, P. K., Higashi, R. M., Fan, T. W. and Dang, C. V. (2012) Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 15, 110-121. https://doi.org/10.1016/j.cmet.2011.12.009
- Lee, J. I., Kang, J. and Stipanuk, M. H. (2006) Differential regulation of glutamate-cysteine ligase subunit expression and increased holoenzyme formation in response to cysteine deprivation. Biochem. J. 393, 181-190. https://doi.org/10.1042/BJ20051111
- Lee, J. S., Kang, J. H., Lee, S. H., Hong, D., Son, J., Hong, K. M., Song, J. and Kim, S. Y. (2016) Dual targeting of glutaminase 1 and thymidylate synthase elicits death synergistically in NSCLC. Cell Death Dis. 7, e2511.
- Li, D., Fu, Z., Chen, R., Zhao, X., Zhou, Y., Zeng, B., Yu, M., Zhou, Q., Lin, Q., Gao, W., Ye, H., Zhou, J., Li, Z., Liu, Y. and Chen, R. (2015) Inhibition of glutamine metabolism counteracts pancreatic cancer stem cell features and sensitizes cells to radiotherapy. Oncotarget 6, 31151-31163.
- Locasale, J. W. (2013) Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572-583. https://doi.org/10.1038/nrc3557
- Lubos, E., Loscalzo, J. and Handy, D. E. (2011) Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 15, 1957-1997.
- Lushchak, V. I. (2012) Glutathione homeostasis and functions: potential targets for medical interventions. J. Amino Acids 2012, 736837.
- Marin-Valencia, I., Yang, C., Mashimo, T., Cho, S., Baek, H., Yang, X. L., Rajagopalan, K. N., Maddie, M., Vemireddy, V., Zhao, Z., Cai, L., Good, L., Tu, B. P., Hatanpaa, K. J., Mickey, B. E., Mates, J. M., Pascual, J. M., Maher, E. A., Malloy, C. R., Deberardinis, R. J. and Bachoo, R. M. (2012) Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 15, 827-837. https://doi.org/10.1016/j.cmet.2012.05.001
- Marquez, J., Alonso, F. J., Mates, J. M., Segura, J. A., Martin-Rufian, M. and Campos-Sandoval, J. A. (2017) Glutamine addiction in gliomas. Neurochem. Res. 42, 1735-1746. https://doi.org/10.1007/s11064-017-2212-1
- Masson, J., Darmon, M., Conjard, A., Chuhma, N., Ropert, N., Thoby- Brisson, M., Foutz, A. S., Parrot, S., Miller, G. M., Jorisch, R., Polan, J., Hamon, M., Hen, R. and Rayport, S. (2006) Mice lacking brain/kidney phosphate-activated glutaminase have impaired glutamatergic synaptic transmission, altered breathing, disorganized goal-directed behavior and die shortly after birth. J. Neurosci. 26, 4660-4671. https://doi.org/10.1523/JNEUROSCI.4241-05.2006
- Mates, J. M., Segura, J. A., Martin-Rufian, M., Campos-Sandoval, J. A., Alonso, F. J. and Marquez, J. (2013) Glutaminase isoenzymes as key regulators in metabolic and oxidative stress against cancer. Curr. Mol. Med. 13, 514-534. https://doi.org/10.2174/1566524011313040005
- Metallo, C. M., Gameiro, P. A., Bell, E. L., Mattaini, K. R., Yang, J., Hiller, K., Jewell, C. M., Johnson, Z. R., Irvine, D. J., Guarente, L., Kelleher, J. K., Vander Heiden, M. G., Iliopoulos, O. and Stephanopoulos, G. (2011) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380-384.
- Mohamed, A., Deng, X., Khuri, F. R. and Owonikoko, T. K. (2014) Altered glutamine metabolism and therapeutic opportunities for lung cancer. Clin. Lung Cancer 15, 7-15.
- Nazio, F., Strappazzon, F., Antonioli, M., Bielli, P., Cianfanelli, V., Bordi, M., Gretzmeier, C., Dengjel, J., Piacentini, M., Fimia, G. M. and Cecconi, F. (2013) mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat. Cell Biol. 15, 406-416. https://doi.org/10.1038/ncb2708
- Qing, G., Li, B., Vu, A., Skuli, N., Walton, Z. E., Liu, X., Mayes, P. A., Wise, D. R., Thompson, C. B., Maris, J. M., Hogarty, M. D. and Simon, M. C. (2012) ATF4 regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell 22, 631-644. https://doi.org/10.1016/j.ccr.2012.09.021
- Sancak, Y., Peterson, T. R., Shaul, Y. D., Lindquist, R. A., Thoreen, C. C., Bar-Peled, L. and Sabatini, D. M. (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496-1501. https://doi.org/10.1126/science.1157535
- Sanchez, E. L., Carroll, P. A., Thalhofer, A. B. and Lagunoff, M. (2015) Latent KSHV Infected Endothelial Cells Are Glutamine Addicted and Require Glutaminolysis for Survival. PLoS Pathog. 11, e1005052. https://doi.org/10.1371/journal.ppat.1005052
- Saxton, R. A., Knockenhauer, K. E., Wolfson, R. L., Chantranupong, L., Pacold, M. E., Wang, T., Schwartz, T. U. and Sabatini, D. M. (2016) Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science 351, 53-58. https://doi.org/10.1126/science.aad2087
- Son, J., Lyssiotis, C. A., Ying, H., Wang, X., Hua, S., Ligorio, M., Perera, R. M., Ferrone, C. R., Mullarky, E., Shyh-Chang, N., Kang, Y., Fleming, J. B., Bardeesy, N., Asara, J. M., Haigis, M. C., DePinho, R. A., Cantley, L. C. and Kimmelman, A. C. (2013) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101-105.
- Suzuki, S., Tanaka, T., Poyurovsky, M. V., Nagano, H., Mayama, T., Ohkubo, S., Lokshin, M., Hosokawa, H., Nakayama, T., Suzuki, Y., Sugano, S., Sato, E., Nagao, T., Yokote, K., Tatsuno, I. and Prives, C. (2010) Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl. Acad. Sci. U.S.A. 107, 7461-7466. https://doi.org/10.1073/pnas.1002459107
- Szeliga, M., Bogacinska-Karas, M., Kuzmicz, K., Rola, R. and Albrecht, J. (2016) Downregulation of GLS2 in glioblastoma cells is related to DNA hypermethylation but not to the p53 status. Mol. Carcinog. 55, 1309-1316. https://doi.org/10.1002/mc.22372
- Tanaka, K., Sasayama, T., Irino, Y., Takata, K., Nagashima, H., Satoh, N., Kyotani, K., Mizowaki, T., Imahori, T., Ejima, Y., Masui, K., Gini, B., Yang, H., Hosoda, K., Sasaki, R., Mischel, P. S. and Kohmura, E. (2015) Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J. Clin. Invest. 125, 1591-1602.
- Thai, M., Thaker, S. K., Feng, J., Du, Y., Hu, H., Ting Wu, T., Graeber, T. G., Braas, D. and Christofk, H. R. (2015) MYC-induced reprogramming of glutamine catabolism supports optimal virus replication. Nat. Commun. 6, 8873. https://doi.org/10.1038/ncomms9873
- van Geldermalsen, M., Wang, Q., Nagarajah, R., Marshall, A. D., Thoeng, A., Gao, D., Ritchie, W., Feng, Y., Bailey, C. G., Deng, N., Harvey, K., Beith, J. M., Selinger, C. I., O'Toole, S. A., Rasko, J. E. and Holst, J. (2016) ASCT2/SLC1A5 controls glutamine uptake and tumour growth in triple-negative basal-like breast cancer. Oncogene 35, 3201-3208. https://doi.org/10.1038/onc.2015.381
- Vander Heiden, M. G., Cantley, L. C. and Thompson, C. B. (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029-1033. https://doi.org/10.1126/science.1160809
- Velletri, T., Romeo, F., Tucci, P., Peschiaroli, A., Annicchiarico-Petruzzelli, M., Niklison-Chirou, M. V., Amelio, I., Knight, R. A., Mak, T. W., Melino, G. and Agostini, M. (2013) GLS2 is transcriptionally regulated by p73 and contributes to neuronal differentiation. Cell Cycle 12, 3564-3573. https://doi.org/10.4161/cc.26771
- White, E. (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer 12, 401-410. https://doi.org/10.1038/nrc3262
- Windmueller, H. G. and Spaeth, A. E. (1974) Uptake and metabolism of plasma glutamine by the small intestine. J. Biol. Chem. 249, 5070-5079.
- Wise, D. R., DeBerardinis, R. J., Mancuso, A., Sayed, N., Zhang, X. Y., Pfeiffer, H. K., Nissim, I., Daikhin, E., Yudkoff, M., McMahon, S. B. and Thompson, C. B. (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. U.S.A. 105, 18782-18787. https://doi.org/10.1073/pnas.0810199105
- Wolfson, R. L., Chantranupong, L., Saxton, R. A., Shen, K., Scaria, S. M., Cantor, J. R. and Sabatini, D. M. (2016) Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351, 43-48. https://doi.org/10.1126/science.aab2674
- Xiang, L., Xie, G., Liu, C., Zhou, J., Chen, J., Yu, S., Li, J., Pang, X., Shi, H. and Liang, H. (2013) Knock-down of glutaminase 2 expression decreases glutathione, NADH, and sensitizes cervical cancer to ionizing radiation. Biochim. Biophys. Acta 1833, 2996-3005. https://doi.org/10.1016/j.bbamcr.2013.08.003
- Xiang, Y., Stine, Z. E., Xia, J., Lu, Y., O'Connor, R. S., Altman, B. J., Hsieh, A. L., Gouw, A. M., Thomas, A. G., Gao, P., Sun, L., Song, L., Yan, B., Slusher, B. S., Zhuo, J., Ooi, L. L., Lee, C. G., Mancuso, A., McCallion, A. S., Le, A., Milone, M. C., Rayport, S., Felsher, D. W. and Dang, C. V. (2015) Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J. Clin. Invest. 125, 2293-2306. https://doi.org/10.1172/JCI75836
- Yang, L., Achreja, A., Yeung, T. L., Mangala, L. S., Jiang, D., Han, C., Baddour, J., Marini, J. C., Ni, J., Nakahara, R., Wahlig, S., Chiba, L., Kim, S. H., Morse, J., Pradeep, S., Nagaraja, A. S., Haemmerle, M., Kyunghee, N., Derichsweiler, M., Plackemeier, T., Mercado- Uribe, I., Lopez-Berestein, G., Moss, T., Ram, P. T., Liu, J., Lu, X., Mok, S. C., Sood, A. K. and Nagrath, D. (2016) Targeting stromal glutamine synthetase in tumors disrupts tumor microenvironmentregulated cancer cell growth. Cell Metab. 24, 685-700. https://doi.org/10.1016/j.cmet.2016.10.011
- Yang, L., Moss, T., Mangala, L. S., Marini, J., Zhao, H., Wahlig, S., Armaiz-Pena, G., Jiang, D., Achreja, A., Win, J., Roopaimoole, R., Rodriguez-Aguayo, C., Mercado-Uribe, I., Lopez-Berestein, G., Liu, J., Tsukamoto, T., Sood, A. K., Ram, P. T. and Nagrath, D. (2014) Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer. Mol. Syst. Biol. 10, 728. https://doi.org/10.1002/msb.20134892
- Yang, L., Venneti, S. and Nagrath, D. (2017) Glutaminolysis: A Hallmark of Cancer Metabolism. Annu. Rev. Biomed. Eng. 19, 163-194. https://doi.org/10.1146/annurev-bioeng-071516-044546
- Yoshida, G. J. (2015) Metabolic reprogramming: the emerging concept and associated therapeutic strategies. J. Exp. Clin. Cancer Res. 34, 111. https://doi.org/10.1186/s13046-015-0221-y
- Yu, D., Shi, X., Meng, G., Chen, J., Yan, C., Jiang, Y., Wei, J. and Ding, Y. (2015) Kidney-type glutaminase (GLS1) is a biomarker for pathologic diagnosis and prognosis of hepatocellular carcinoma. Oncotarget 6, 7619-7631.
- Yuneva, M., Zamboni, N., Oefner, P., Sachidanandam, R. and Lazebnik, Y. (2007) Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J. Cell Biol. 178, 93-105.
- Yuneva, M. O., Fan, T. W., Allen, T. D., Higashi, R. M., Ferraris, D. V., Tsukamoto, T., Mates, J. M., Alonso, F. J., Wang, C., Seo, Y., Chen, X. and Bishop, J. M. (2012) The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab. 15, 157-170. https://doi.org/10.1016/j.cmet.2011.12.015
- Zhang, C., Liu, J., Zhao, Y., Yue, X., Zhu, Y., Wang, X., Wu, H., Blanco, F., Li, S., Bhanot, G., Haffty, B. G., Hu, W. and Feng, Z. (2016) Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis. Elife 5, e10727.
- Zhang, J., Wang, C., Chen, M., Cao, J., Zhong, Y., Chen, L., Shen, H. M. and Xia, D. (2013) Epigenetic silencing of glutaminase 2 in human liver and colon cancers. BMC Cancer 13, 601. https://doi.org/10.1186/1471-2407-13-601
- Zoncu, R., Efeyan, A. and Sabatini, D. M. (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21-35. https://doi.org/10.1038/nrm3025
Cited by
- Cancer Metabolism: a Hope for Curing Cancer vol.26, pp.1, 2018, https://doi.org/10.4062/biomolther.2017.300
- Overexpression of SLC25A15 is involved in the proliferation of cutaneous melanoma and leads to poor prognosis vol.34, pp.1958-5381, 2018, https://doi.org/10.1051/medsci/201834f113
- Evaluation of Aflatoxin M1 Effects on the Metabolomic and Cytokinomic Profiling of a Hepatoblastoma Cell Line vol.10, pp.11, 2018, https://doi.org/10.3390/toxins10110436
- Malic enzyme 2 as a potential therapeutic drug target for cancer vol.70, pp.11, 2018, https://doi.org/10.1002/iub.1930
- Heme, whence come thy carbon building blocks? vol.132, pp.10, 2018, https://doi.org/10.1182/blood-2018-07-864215
- Glutamine Addiction and Therapeutic Strategies in Lung Cancer vol.20, pp.2, 2019, https://doi.org/10.3390/ijms20020252
- Gene expression profiling of spontaneously occurring canine mammary tumours: Insight into gene networks and pathways linked to cancer pathogenesis vol.13, pp.12, 2018, https://doi.org/10.1371/journal.pone.0208656
- The Human Transient Receptor Potential Melastatin 2 Ion Channel Modulates ROS Through Nrf2 vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-50661-8
- Diverse Stakeholders of Tumor Metabolism: An Appraisal of the Emerging Approach of Multifaceted Metabolic Targeting by 3-Bromopyruvate vol.10, pp.None, 2018, https://doi.org/10.3389/fphar.2019.00728
- Targeting T Cell Metabolism in Inflammatory Skin Disease vol.10, pp.None, 2018, https://doi.org/10.3389/fimmu.2019.02285
- Lung Cancer Heterogeneity in Modulation of Th17/IL17A Responses vol.9, pp.None, 2018, https://doi.org/10.3389/fonc.2019.01384
- Novel 1,3,4-Selenadiazole-Containing Kidney-Type Glutaminase Inhibitors Showed Improved Cellular Uptake and Antitumor Activity vol.62, pp.2, 2018, https://doi.org/10.1021/acs.jmedchem.8b01198
- The Microenvironment Is a Critical Regulator of Muscle Stem Cell Activation and Proliferation vol.7, pp.None, 2018, https://doi.org/10.3389/fcell.2019.00254
- Kidney-Type Glutaminase Inhibitor Hexylselen Selectively Kills Cancer Cells via a Three-Pronged Mechanism vol.2, pp.1, 2019, https://doi.org/10.1021/acsptsci.8b00047
- Multiomics Analysis Reveals that GLS and GLS2 Differentially Modulate the Clinical Outcomes of Cancer vol.8, pp.3, 2019, https://doi.org/10.3390/jcm8030355
- Role of Metabolic Reprogramming in Epithelial–Mesenchymal Transition (EMT) vol.20, pp.8, 2019, https://doi.org/10.3390/ijms20082042
- Clinical Significance of Serum Glutamine Level in Patients with Colorectal Cancer vol.11, pp.4, 2018, https://doi.org/10.3390/nu11040898
- Hippo and Hyperplasia : TEAD Promotes mTORC1 Activation Post-Injury vol.124, pp.9, 2018, https://doi.org/10.1161/circresaha.119.314968
- The molecular rationale for therapeutic targeting of glutamine metabolism in pulmonary hypertension vol.23, pp.6, 2018, https://doi.org/10.1080/14728222.2019.1615438
- Nf1 loss promotes Kras ‐driven lung adenocarcinoma and results in Psat1‐mediated glutamate dependence vol.11, pp.6, 2018, https://doi.org/10.15252/emmm.201809856
- Hyperglycemia Associated Metabolic and Molecular Alterations in Cancer Risk, Progression, Treatment, and Mortality vol.11, pp.9, 2018, https://doi.org/10.3390/cancers11091402
- Targeting Metabolic Reprogramming in Acute Myeloid Leukemia vol.8, pp.9, 2018, https://doi.org/10.3390/cells8090967
- The Emerging Role of l-Glutamine in Cardiovascular Health and Disease vol.11, pp.9, 2018, https://doi.org/10.3390/nu11092092
- Unbiased Metabolic Profiling Predicts Sensitivity of High MYC-Expressing Atypical Teratoid/Rhabdoid Tumors to Glutamine Inhibition with 6-Diazo-5-Oxo-L-Norleucine vol.25, pp.19, 2019, https://doi.org/10.1158/1078-0432.ccr-19-0189
- Cancer-specific metabolism: Promising approaches for colorectal cancer treatment vol.11, pp.10, 2018, https://doi.org/10.4251/wjgo.v11.i10.768
- Effect of cold atmospheric plasma treatment on the metabolites of human leukemia cells vol.19, pp.None, 2019, https://doi.org/10.1186/s12935-019-0856-4
- Rescue of TCA Cycle Dysfunction for Cancer Therapy vol.8, pp.12, 2018, https://doi.org/10.3390/jcm8122161
- Exploring Dysregulated Signaling Pathways in Cancer vol.26, pp.4, 2020, https://doi.org/10.2174/1381612826666200115095937
- Metabolic Plasticity in Chemotherapy Resistance vol.10, pp.None, 2020, https://doi.org/10.3389/fonc.2020.00281
- Causes and Consequences of Variable Tumor Cell Metabolism on Heritable Modifications and Tumor Evolution vol.10, pp.None, 2018, https://doi.org/10.3389/fonc.2020.00373
- Adenylate Kinase and Metabolic Signaling in Cancer Cells vol.10, pp.None, 2018, https://doi.org/10.3389/fonc.2020.00660
- Metabolic Plasticity of Melanoma Cells and Their Crosstalk With Tumor Microenvironment vol.10, pp.None, 2020, https://doi.org/10.3389/fonc.2020.00722
- Metabolic Targeting of Cancer Stem Cells vol.10, pp.None, 2018, https://doi.org/10.3389/fonc.2020.537930
- The Double-Edge Sword of Autophagy in Cancer: From Tumor Suppression to Pro-tumor Activity vol.10, pp.None, 2018, https://doi.org/10.3389/fonc.2020.578418
- Metabolic adaptations in spontaneously immortalized PGC-1α knock-out mouse embryonic fibroblasts increase their oncogenic potential vol.29, pp.None, 2018, https://doi.org/10.1016/j.redox.2019.101396
- Modulation of Mitochondrial Metabolic Reprogramming and Oxidative Stress to Overcome Chemoresistance in Cancer vol.10, pp.1, 2018, https://doi.org/10.3390/biom10010135
- 1 H-NMR Based Serum Metabolomics Highlights Different Specific Biomarkers between Early and Advanced Hepatocellular Carcinoma Stages vol.12, pp.1, 2018, https://doi.org/10.3390/cancers12010241
- Epithelial-Mesenchymal Transition and Metabolic Switching in Cancer: Lessons From Somatic Cell Reprogramming vol.8, pp.None, 2018, https://doi.org/10.3389/fcell.2020.00760
- Competitive glucose metabolism as a target to boost bladder cancer immunotherapy vol.17, pp.2, 2018, https://doi.org/10.1038/s41585-019-0263-6
- Targeting cancer stem cells from a metabolic perspective vol.245, pp.5, 2018, https://doi.org/10.1177/1535370220909309
- Metabolic characterization of colorectal cancer cells harbouring different KRAS mutations in codon 12, 13, 61 and 146 using human SW48 isogenic cell lines vol.16, pp.4, 2020, https://doi.org/10.1007/s11306-020-01674-2
- Non-Coding RNAs as Key Regulators of Glutaminolysis in Cancer vol.21, pp.8, 2018, https://doi.org/10.3390/ijms21082872
- Analysis of low-molecular-weight metabolites in stomach cancer cells by a simplified and inexpensive GC/MS metabolomics method vol.412, pp.12, 2018, https://doi.org/10.1007/s00216-020-02543-6
- The metabolic landscape of urological cancers: New therapeutic perspectives vol.477, pp.None, 2018, https://doi.org/10.1016/j.canlet.2020.02.034
- Leucine and branched-chain amino acid metabolism contribute to the growth of bone sarcomas by regulating AMPK and mTORC1 signaling vol.477, pp.9, 2018, https://doi.org/10.1042/bcj20190754
- Antimetabolic Agent 3-Bromopyruvate Exerts Myelopotentiating Action in a Murine Host Bearing a Progressively Growing Ascitic Thymoma vol.49, pp.4, 2020, https://doi.org/10.1080/08820139.2019.1627368
- Updated Understanding of Cancer as a Metabolic and Telomere-Driven Disease, and Proposal for Complex Personalized Treatment, a Hypothesis vol.21, pp.18, 2020, https://doi.org/10.3390/ijms21186521
- An expert overview of emerging therapies for acute myeloid leukemia: novel small molecules targeting apoptosis, p53, transcriptional regulation and metabolism vol.29, pp.9, 2018, https://doi.org/10.1080/13543784.2020.1804856
- Synthesis of α-Ketoglutaramic acid vol.607, pp.None, 2020, https://doi.org/10.1016/j.ab.2020.113862
- Metabolic Plasticity Is an Essential Requirement of Acquired Tyrosine Kinase Inhibitor Resistance in Chronic Myeloid Leukemia vol.12, pp.11, 2018, https://doi.org/10.3390/cancers12113443
- The Role of Pi, Glutamine and the Essential Amino Acids in Modulating the Metabolism in Diabetes and Cancer vol.19, pp.2, 2018, https://doi.org/10.1007/s40200-020-00566-5
- Metabolic rewiring in drug resistant cells exhibit higher OXPHOS and fatty acids as preferred major source to cellular energetics vol.1861, pp.12, 2018, https://doi.org/10.1016/j.bbabio.2020.148300
- Role of tyrosine phosphorylation in modulating cancer cell metabolism vol.1874, pp.2, 2018, https://doi.org/10.1016/j.bbcan.2020.188442
- UGCG overexpression leads to increased glycolysis and increased oxidative phosphorylation of breast cancer cells vol.10, pp.None, 2018, https://doi.org/10.1038/s41598-020-65182-y
- Characterization of dysregulated glutamine metabolism in human glioma tissue with 1 H NMR vol.10, pp.1, 2018, https://doi.org/10.1038/s41598-020-76982-7
- Inhibition of glutaminase to reverse fibrosis in iatrogenic laryngotracheal stenosis vol.130, pp.12, 2020, https://doi.org/10.1002/lary.28493
- Revealing the Potential Application of EC-Synthetic Retinoid Analogues in Anticancer Therapy vol.26, pp.2, 2018, https://doi.org/10.3390/molecules26020506
- Immunometabolism at the Nexus of Cancer Therapeutic Efficacy and Resistance vol.12, pp.None, 2021, https://doi.org/10.3389/fimmu.2021.657293
- Optimization of the isolation procedure and culturing conditions for hepatic stellate cells obtained from mouse vol.41, pp.1, 2018, https://doi.org/10.1042/bsr20202514
- Volatile Anesthetics Regulate Anti-Cancer Relevant Signaling vol.11, pp.None, 2018, https://doi.org/10.3389/fonc.2021.610514
- Cancer Stem Cells: Metabolic Characterization for Targeted Cancer Therapy vol.11, pp.None, 2021, https://doi.org/10.3389/fonc.2021.756888
- Therapeutic targeting of the mitochondrial one-carbon pathway: perspectives, pitfalls, and potential vol.40, pp.13, 2018, https://doi.org/10.1038/s41388-021-01695-8
- Glutamine deficiency promotes stemness and chemoresistance in tumor cells through DRP1-induced mitochondrial fragmentation vol.78, pp.10, 2018, https://doi.org/10.1007/s00018-021-03818-6
- DDIT3 Directs a Dual Mechanism to Balance Glycolysis and Oxidative Phosphorylation during Glutamine Deprivation vol.8, pp.11, 2021, https://doi.org/10.1002/advs.202003732
- Phytocompounds Targeting Metabolic Reprogramming in Cancer: An Assessment of Role, Mechanisms, Pathways, and Therapeutic Relevance vol.69, pp.25, 2021, https://doi.org/10.1021/acs.jafc.1c01173
- Effect of Protoberberine-Rich Fraction of Chelidonium majus L. on Endometriosis Regression vol.13, pp.7, 2018, https://doi.org/10.3390/pharmaceutics13070931
- Signaling, metabolism, and cancer: An important relationship for therapeutic intervention vol.236, pp.8, 2021, https://doi.org/10.1002/jcp.30276
- Nuclear Pyruvate Kinase M2 (PKM2) Contributes to Phosphoserine Aminotransferase 1 (PSAT1)-Mediated Cell Migration in EGFR-Activated Lung Cancer Cells vol.13, pp.16, 2021, https://doi.org/10.3390/cancers13163938
- Theanine and cancer: A systematic review of the literature vol.35, pp.9, 2018, https://doi.org/10.1002/ptr.7110
- Glutamine Modulates Expression and Function of Glucose 6-Phosphate Dehydrogenase via NRF2 in Colon Cancer Cells vol.10, pp.9, 2018, https://doi.org/10.3390/antiox10091349
- Antitumor effects of the multi-target tyrosine kinase inhibitor cabozantinib: a comprehensive review of the preclinical evidence vol.21, pp.9, 2021, https://doi.org/10.1080/14737140.2021.1919090
- GLS1 depletion inhibited colorectal cancer proliferation and migration via redox/Nrf2/autophagy-dependent pathway vol.708, pp.None, 2018, https://doi.org/10.1016/j.abb.2021.108964
- Metabolomic analysis of untargeted bovine uterine secretions in dairy cows with endometritis using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry vol.139, pp.None, 2018, https://doi.org/10.1016/j.rvsc.2021.07.006
- MicroRNAs and Metabolism: Revisiting the Warburg Effect with Emphasis on Epigenetic Background and Clinical Applications vol.11, pp.10, 2021, https://doi.org/10.3390/biom11101531
- Glutamine and Cholesterol Plasma Levels and Clinical Outcomes of Patients with Metastatic Castration-Resistant Prostate Cancer Treated with Taxanes vol.13, pp.19, 2018, https://doi.org/10.3390/cancers13194960
- Unravelling the Anticancer Mechanisms of Traditional Herbal Medicines with Metabolomics vol.26, pp.21, 2021, https://doi.org/10.3390/molecules26216541
- Use of oral glutamine in radiation‑induced adverse effects in patients with thoracic and upper aerodigestive malignancies: Results of a prospective observational study vol.23, pp.1, 2018, https://doi.org/10.3892/ol.2021.13137
- Structure, biochemistry, and gene expression patterns of the proline biosynthetic enzyme pyrroline-5-carboxylate reductase (PYCR), an emerging cancer therapy target vol.53, pp.12, 2021, https://doi.org/10.1007/s00726-021-02999-5
- Targeting the metabolism of cancer stem cells by energy disruptor molecules vol.169, pp.None, 2018, https://doi.org/10.1016/j.critrevonc.2021.103545
- Synthesis, biological activity, structure activity relationship study and liposomal formulation development of some arylsulfonyl pyroglutamic acid derivatives vol.1248, pp.None, 2022, https://doi.org/10.1016/j.molstruc.2021.131512
- Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? vol.23, pp.1, 2018, https://doi.org/10.3390/ijms23010048