DOI QR코드

DOI QR Code

Functional identification of protein phosphatase 1-binding consensus residues in NBCe1-B

  • Lee, Kyu Pil (Laboratory of Physiology, College of Veterinary Medicine, Chungnam National University) ;
  • Kim, Hyun Jin (Department of Physiology, School of Medicine, Sungkyunkwan University) ;
  • Yang, Dongki (Department of Physiology, College of Medicine, Gachon University)
  • Received : 2017.10.10
  • Accepted : 2017.11.19
  • Published : 2018.01.01

Abstract

Protein phosphatase 1 (PP1) is involved in various signal transduction mechanisms as an extensive regulator. The PP1 catalytic subunit (PP1c) recognizes and binds to PP1-binding consensus residues (FxxR/KxR/K) in NBCe1-B. Consequently, we focused on identifying the function of the PP1-binding consensus residue, $^{922}FMDRLK^{927}$, in NBCe1-B. Using site-directed mutagenesis and co-immunoprecipitation assays, we revealed that in cases where the residues were substituted (F922A, R925A, and K927A) or deleted (deletion of amino acids 922-927), NBCe1-B mutants inhibited PP1 binding to NBCe1-B. Additionally, by recording the intracellular pH, we found that PP1-binding consensus residues in NBCe1-B were not only critical for NBCe1-B activity, but also relevant to its surface expression level. Therefore, we reported that NBCe1-B, as a substrate of PP1, contains these residues in the C-terminal region and that the direct interaction between NBCe1-B and PP1 is functionally critical in controlling the regulation of the ${HCO_3}^-$ transport. These results suggested that like IRBIT, PP1 was another novel regulator of ${HCO_3}^-$ secretion in several types of epithelia.

Keywords

References

  1. Williams JA. Regulation of pancreatic acinar cell function. Curr Opin Gastroenterol. 2006;22:498-504. https://doi.org/10.1097/01.mog.0000239863.96833.c0
  2. Choi JY, Muallem D, Kiselyov K, Lee MG, Thomas PJ, Muallem S. Aberrant CFTR-dependent $HCO_3{^-}$ transport in mutations associated with cystic fibrosis. Nature. 2001;410:94-97. https://doi.org/10.1038/35065099
  3. Abuladze N, Lee I, Newman D, Hwang J, Boorer K, Pushkin A, Kurtz I. Molecular cloning, chromosomal localization, tissue distribution, and functional expression of the human pancreatic sodium bicarbonate cotransporter. J Biol Chem. 1998;273:17689-17695. https://doi.org/10.1074/jbc.273.28.17689
  4. Boron WF, Chen L, Parker MD. Modular structure of sodiumcoupled bicarbonate transporters. J Exp Biol. 2009;212:1697-1706. https://doi.org/10.1242/jeb.028563
  5. Pushkin A, Kurtz I. SLC4 base ($HCO_3{^-}$, $CO_3{^{2-}}$) transporters: classification, function, structure, genetic diseases, and knockout models. Am J Physiol Renal Physiol. 2006;290:F580-599. https://doi.org/10.1152/ajprenal.00252.2005
  6. Zhao H, Star RA, Muallem S. Membrane localization of $H^+$ and $HCO_3{^-}$ transporters in the rat pancreatic duct. J Gen Physiol. 1994; 104:57-85. https://doi.org/10.1085/jgp.104.1.57
  7. Ishiguro H, Steward MC, Lindsay AR, Case RM. Accumulation of intracellular $HCO_3{^-}$ by $Na^+$-$HCO_3{^-}$ cotransport in interlobular ducts from guinea-pig pancreas. J Physiol. 1996;495:169-178. https://doi.org/10.1113/jphysiol.1996.sp021582
  8. Ishiguro H, Naruse S, Kitagawa M, Suzuki A, Yamamoto A, Hayakawa T, Case RM, Steward MC. $CO_2$ permeability and bicarbonate transport in microperfused interlobular ducts isolated from guineapig pancreas. J Physiol. 2000;528:305-315. https://doi.org/10.1111/j.1469-7793.2000.00305.x
  9. Gross E, Abuladze N, Pushkin A, Kurtz I, Cotton CU. The stoichiometry of the electrogenic sodium bicarbonate cotransporter pNBC1 in mouse pancreatic duct cells is 2 $HCO_3{^-}$:1 $Na^+$. J Physiol. 2001;531:375-382. https://doi.org/10.1111/j.1469-7793.2001.0375i.x
  10. Steward MC, Ishiguro H, Case RM. Mechanisms of bicarbonate secretion in the pancreatic duct. Annu Rev Physiol. 2005;67:377-409. https://doi.org/10.1146/annurev.physiol.67.031103.153247
  11. Yang D, Li Q, So I, Huang CL, Ando H, Mizutani A, Seki G, Mikoshiba K, Thomas PJ, Muallem S. IRBIT governs epithelial secretion in mice by antagonizing the WNK/SPAK kinase pathway. J Clin Invest. 2011;121:956-965. https://doi.org/10.1172/JCI43475
  12. Lee SK, Boron WF, Parker MD. Relief of autoinhibition of the electrogenic Na-$HCO_3$ [corrected] cotransporter NBCe1-B: role of IRBIT vs.amino-terminal truncation. Am J Physiol Cell Physiol. 2012;302:C518-526. https://doi.org/10.1152/ajpcell.00352.2011
  13. Shirakabe K, Priori G, Yamada H, Ando H, Horita S, Fujita T, Fujimoto I, Mizutani A, Seki G, Mikoshiba K. IRBIT, an inositol 1,4,5-trisphosphate receptor-binding protein, specifically binds to and activates pancreas-type $Na^+$/$HCO_3{^-}$ cotransporter 1 (pNBC1). Proc Natl Acad Sci U S A . 2006;103:9542-9547. https://doi.org/10.1073/pnas.0602250103
  14. Yang D, Shcheynikov N, Zeng W, Ohana E, So I, Ando H, Mizutani A, Mikoshiba K, Muallem S. IRBIT coordinates epithelial fluid and $HCO_3{^-}$ secretion by stimulating the transporters pNBC1 and CFTR in the murine pancreatic duct. J Clin Invest. 2009;119:193-202.
  15. Shenolikar S, Nairn AC. Protein phosphatases: recent progress. Adv Second Messenger Phosphoprotein Res. 1991;23:1-121.
  16. Shenolikar S. Protein serine/threonine phosphatases-new avenues for cell regulation. Annu Rev Cell Biol. 1994;10:55-86. https://doi.org/10.1146/annurev.cb.10.110194.000415
  17. Wera S, Hemmings BA. Serine/threonine protein phosphatases. Biochem J. 1995;311:17-29. https://doi.org/10.1042/bj3110017
  18. Aggen JB, Nairn AC, Chamberlin R. Regulation of protein phosphatase-1. Chem Biol. 2000;7:R13-23. https://doi.org/10.1016/S1074-5521(00)00069-7
  19. Marx SO, Kurokawa J, Reiken S, Motoike H, D'Armiento J, Marks AR, Kass RS. Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science. 2002;295:496-499. https://doi.org/10.1126/science.1066843
  20. Darman RB, Flemmer A, Forbush B. Modulation of ion transport by direct targeting of protein phosphatase type 1 to the Na-K-Cl cotransporter. J Biol Chem. 2001;276:34359-34362. https://doi.org/10.1074/jbc.C100368200
  21. Flores-Hernandez J, Hernandez S, Snyder GL, Yan Z, Fienberg AA, Moss SJ, Greengard P, Surmeier DJ. D1 dopamine receptor activation reduces GABAA receptor currents in neostriatal neurons through a PKA/DARPP-32/PP1 signaling cascade. J Neurophysiol. 2000;83:2996-3004. https://doi.org/10.1152/jn.2000.83.5.2996
  22. Furukawa T, Ogura T, Zheng YJ, Tsuchiya H, Nakaya H, Katayama Y, Inagaki N. Phosphorylation and functional regulation of ClC-2 chloride channels expressed in Xenopus oocytes by M cyclindependent protein kinase. J Physiol. 2002;540:883-893. https://doi.org/10.1113/jphysiol.2001.016188
  23. Rutledge E, Denton J, Strange K. Cell cycle- and swelling-induced activation of a Caenorhabditis elegans ClC channel is mediated by CeGLC-7alpha/beta phosphatases. J Cell Biol. 2002;158:435-444. https://doi.org/10.1083/jcb.200204142
  24. Ayllon V, Cayla X, Garcia A, Fleischer A, Rebollo A. The antiapoptotic molecules Bcl-xL and Bcl-w target protein phosphatase $1{\alpha}$ to Bad. Eur J Immunol. 2002;32:1847-1855. https://doi.org/10.1002/1521-4141(200207)32:7<1847::AID-IMMU1847>3.0.CO;2-7
  25. Lee MG, Ahn W, Choi JY, Luo X, Seo JT, Schultheis PJ, Shull GE, Kim KH, Muallem S. $Na^+$-dependent transporters mediate $HCO_3{^-}$ salvage across the luminal membrane of the main pancreatic duct. J Clin Invest. 2000;105:1651-1658. https://doi.org/10.1172/JCI9207
  26. Gagnon KB, Delpire E. Multiple pathways for protein phosphatase 1 (PP1) regulation of Na-K-2Cl cotransporter (NKCC1) function: the N-terminal tail of the Na-K-2Cl cotransporter serves as a regulatory scaffold for Ste20-related proline/alanine-rich kinase (SPAK) and PP1. J Biol Chem. 2010;285:14115-14121. https://doi.org/10.1074/jbc.M110.112672
  27. Roy J, Cyert MS. Cracking the phosphatase code: docking interactions determine substrate specificity. Sci Signal. 2009;2:re9.
  28. Villa F, Goebel J, Rafiqi FH, Deak M, Thastrup J, Alessi DR, van Aalten DM. Structural insights into the recognition of substrates and activators by the OSR1 kinase. EMBO Rep. 2007;8:839-845. https://doi.org/10.1038/sj.embor.7401048
  29. Gagnon KB, England R, Diehl L, Delpire E. Apoptosis-associated tyrosine kinase scaffolding of protein phosphatase 1 and SPAK reveals a novel pathway for Na-K-2C1 cotransporter regulation. Am J Physiol Cell Physiol. 2007;292:C1809-1815. https://doi.org/10.1152/ajpcell.00580.2006
  30. Bergeron MJ, Frenette-Cotton R, Carpentier GA, Simard MG, Caron L, Isenring P. Phosphoregulation of $K^{+}$-$Cl^{-}$ cotransporter 4 during changes in intracellular $Cl^{-}$ and cell volume. J Cell Physiol. 2009;219:787-796. https://doi.org/10.1002/jcp.21725
  31. Devogelaere B, Nadif Kasri N, Derua R, Waelkens E, Callewaert G, Missiaen L, Parys JB, De Smedt H. Binding of IRBIT to the $IP_3$ receptor: determinants and functional effects. Biochem Biophys Res Commun. 2006;343:49-56. https://doi.org/10.1016/j.bbrc.2006.02.119
  32. Xu B, English JM, Wilsbacher JL, Stippec S, Goldsmith EJ, Cobb MH. WNK1, a novel mammalian serine/threonine protein kinase lacking the catalytic lysine in subdomain II. J Biol Chem. 2000;275:16795-16801. https://doi.org/10.1074/jbc.275.22.16795
  33. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP. Human hypertension caused by mutations in WNK kinases. Science. 2001;293:1107-1112. https://doi.org/10.1126/science.1062844
  34. Vitari AC, Deak M, Morrice NA, Alessi DR. The WNK1 and WNK4 protein kinases that are mutated in Gordon's hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J. 2005;391:17-24. https://doi.org/10.1042/BJ20051180
  35. Gagnon KB, England R, Delpire E. Volume sensitivity of cation-$Cl^{-}$ cotransporters is modulated by the interaction of two kinases: Ste20-related proline-alanine-rich kinase and WNK4. Am J Physiol Cell Physiol. 2006;290:C134-142. https://doi.org/10.1152/ajpcell.00037.2005
  36. He G, Wang HR, Huang SK, Huang CL. Intersectin links WNK kinases to endocytosis of ROMK1. J Clin Invest. 2007;117:1078-1087. https://doi.org/10.1172/JCI30087

Cited by

  1. Expression of the B splice variant of NBCe1 (SLC4A4) in the mouse kidney vol.315, pp.3, 2018, https://doi.org/10.1152/ajprenal.00515.2017