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EXAMPLES OF m-ISOMETRIC TUPLES OF OPERATORS

ON A HILBERT SPACE

Caixing Gu

Abstract. The m-isometry of a single operator in Agler and Stankus [3]
was naturally generalized to the m-isometric tuple of several commuting

operators by Gleason and Richter [22]. Some examples of m-isometric

tuples including the recently much studied Arveson-Drury d-shift were
given in [22]. We provide more examples of m-isometric tuples of oper-

ators by using sums of operators or products of operators or functions

of operators. A class of m-isometric tuples of unilateral weighted shifts
parametrized by polynomials are also constructed. The examples in Glea-

son and Richter [22] are then obtained by choosing some specific poly-
nomials. This work extends partially results obtained in several recent

papers on the m-isometry of a single operator.

1. Introduction

We first introduce the tuples of operators to be studied in this paper. Let

z = (z1, . . . , zd), z = (z1, . . . , zd).

Let p(z, z) be a polynomial of multivariables z and z of the form

p(z, z) =

m∑
|α|=0

m∑
|β|=0

cαβz
αzβ , cαβ ∈ C,

where α = (α1, . . . αd) and β = (β1, . . . βd) are multi-indices, |α| = α1+ · · ·+αd
and zα = zα1

1 · · · z
αd

d . Let H be a complex Hilbert space and B(H) be the

algebra of all bounded linear operators on H. Let T = (T1, . . . , Td) ∈ B(H)d be
a tuple of commuting operators and T ∗ = (T ∗1 , . . . , T

∗
d ). As in the hereditary

functional calculus by Agler [1], we define

p(T ) =

m∑
|α|=0

m∑
|β|=0

cαβT
∗αT β , cαβ ∈ C,
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where Tα = Tα1
1 · · ·T

αd

d . An important property of the hereditary functional
calculus is that if H0 is a common invariant subspace of T, then

p(T |H0) = PH0p(T )|H0,

where PH0
is the projection from H to H0. The d-tuple T is an m-isometry for

some positive integer m if

Φm(T ) := (z · z − 1)m(T ) =

m∑
k=0

(−1)m−k
(
m

k

)
(z · z)k (T )

=

m∑
k=0

(−1)m−k
(
m

k

) ∑
|α|=k

(
k

α

)
T ∗αTα = 0,

where

z · z =

d∑
i=1

zi · zi,
(
k

α

)
=

k!

α1! · · ·αd!
.

This notion of an m-isometric d-tuple is a natural generalization of the m-
isometry of a single operator in Agler and Stankus [3]. Basic properties of
m-isometric d-tuples are first obtained by Gleason and Richter [22]. Some
examples including the recently much studied Drury-Arveson d-shifts [7], [19]
are shown to be m-isometric tuples.

Since the seminal papers by Agler and Stankus [3], [4] and [5], the theory of
m-isometries has been well developed. The theory for m-isometries on Hilbert
spaces has rich connections to Toeplitz operators, classical function theory, and
other areas of mathematics. The work of Richter [36] and [37] on analytic 2-
isometries has a connection with the invariant subspaces of the shift operator
on the Dirichlet space. See also related papers [33], [34], [35], [40]. Recently
the class of m-isometric operators have also been introduced on Banach spaces
and metric spaces [9], [10], [14], [24], [25].

The extension of the theory of the m-isometry of a single operator to a tuple
of several commuting operators has been slow, see two recent papers [29], [38].
Motivated by several recent papers on the m-isometry of a single operator,
here we provide more examples of m-isometric tuples of operators, which will
motivate and help the further study of general m-isometric tuples and their
applications. The following notation is useful. Let T = (T1, . . . , Td) ∈ B(H)d.
Then there is an associated elementary operator ΩT : B(H) → B(H) defined
by

(1) ΩT (X) =

d∑
i=1

T ∗i XTi, X ∈ B(H).

We first note a recursive identity which is also (2.1) in [22]. It follows from

(z · z − 1)m =

[
d∑
i=0

zi(z · z − 1)m−1zi

]
− (z · z − 1)m−1
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that

Φm(T ) = (z · z − 1)m(T ) =

[
d∑
i=0

T ∗i Φm−1(T )Ti

]
− Φm−1(T )

= ΩT (Φm−1(T ))− Φm−1(T ).(2)

Therefore if T is an m-isometry, then T is an n-isometry for any n ≥ m.
If T is an m-isometry but not an (m − 1)-isometry, then T is said to be a
strict m-isometry. Throughout the paper, we will study d-tuples of commuting
operators unless otherwise stated. Let Q = (Q1, . . . Qd) ∈ B(H)d. We say T is
a tuple of double commuting operators if for i 6= j, 1 ≤ i, j ≤ d,

TiTj = TjTi, T
∗
i Tj = TjT

∗
i .

We say T and Q are commuting if

TiQj = QjTi, 1 ≤ i, j ≤ d,

and T and Q are double commuting if additionally

T ∗i Qj = QjT
∗
i , 1 ≤ i, j ≤ d.

The outline of this paper is as follows. In Section 2 we show how to com-
pute the hereditary functional calculus for a sum of two commuting tuples of
operators. We then prove that the sum of an m-isometric tuple and a tuple
of nilpotent operators of order n is an (m+ 2n− 2)-isometry. In Section 3 we
show how to compute the hereditary functional calculus for a product of two
double commuting tuples of operators. We then study when such a product
is an m-isometry. In Section 4, we prove that if T ∈ B(H)d is an m-isometry
and ϕ(z) is an automorphism of the unit ball of Cd, then ϕ(T ) ∈ B(H)d is also
an m-isometry. The proofs of most results in Section 2, Section 3 and Section
4 are direct applications of the hereditary functional calculus by using multi-
nomial formulas. In fact, these relatively simple proofs made the discovery
of the results for tuples of operators possible, since the original proofs of the
corresponding results for a single operator using combinatorics are much more
involved [11], [12], [15], [16], [17], [20], [21]. In Section 5, we give examples
of multivariable weighted shifts, which are m-isometries. Our examples are
parametrized by polynomials (subject to some positivity conditions). Those
polynomials appeared in characterizing m-isometric weighted shifts of a sin-
gle variable by the author [24]. We prove a Berger-Shaw type result for such
a tuple of m-isometric weighted shifts T. Namely, we show that Φm−1(T ) is
a positive trace class operator for m > d + 1. In the last section, we refor-
mulate results for unilateral weighted shifts of single variable or multivariable
as theorems for multiplication operators on weighted Hardy spaces of analytic
functions in one variable or several variables. In particular, we immediately
get the examples of Drury-Arveson d-shifts considered in [22] by choosing some
special polynomials.
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2. Sums of m-isometries and nilpotent operators

Lemma 2.1. Let T = (T1, . . . , Td) ∈ B(H)d and Q = (Q1, . . . , Qd) ∈ B(H)d.
Assume T and Q commute. Then the following holds.

Φn(T +Q)

=

n∑
k=0

k∑
j=0

∑
|α|=j

∑
|β|=k−j

(
n

k

)(
k

j

)(
j

α

)(
k − j
β

)
(T ∗ +Q∗)βQ∗αΦn−k(T )TαQβ .

Proof. We first prove an identity for polynomials of multivariables. Let

w = (w1, . . . , wd), w = (w1, . . . , wd),

z + w = (z1 + w1, . . . , zd + wd).

Then

([z + w] · [z + w]− 1)n

= (z · z − 1 + w · z + [z + w] · w)n

=

n∑
k=0

(
n

k

)
(z · z − 1)n−k(w · z + [z + w] · w)k

=

n∑
k=0

(
n

k

)
(z · z − 1)n−k

k∑
j=0

(
k

j

)
(w · z)j ([z + w] · w)

k−j

=

n∑
k=0

k∑
j=0

j∑
|α|=0

j∑
|β|=0

(
n

k

)(
k

j

)(
j

α

)(
k − j
β

)
(z · z − 1)n−kwαzα [z + w]

β
wβ

=

n∑
k=0

k∑
j=0

∑
|α|=j

∑
|β|=k−j

(
n

k

)(
k

j

)(
j

α

)(
k − j
β

)
[z + w]

β
wα(z · z − 1)n−kzαwβ ,

where in the second and third equalities we use binomial formula, in the fourth

equality we use multinomial formula for (w · z)j and ([z + w] · w)
k−j

, and in
the last equality we just rearrange the terms so that the conjugate variables z
and w are on the left. In the above identity, z is replaced by T, z is replaced by
T ∗, w is replaced by Q, w is replaced by Q∗, and we get the desired identity for
operators. The commuting condition of T and Q is needed to put the involved
operators in the desired order. �

When d = 1, the above lemma is proved in Lemma 1 [28].
Let Q ∈ B(H)d. We say Q is a nilpotent tuple of order n if Qβ = 0 for any

multi-index β with |β| = n and Qβ 6= 0 for some multi-index β with |β| = n−1.

Theorem 2.2. Let T = (T1, . . . , Td) ∈ B(H)d and Q = (Q1, . . . , Qd) ∈ B(H)d.
Assume A and Q commute. If T is an m-isometry and Q is a nilpotent tuple
of order n, then T +Q is an (m+ 2n− 2)-isometry.
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Proof. We need to show Φm+2n−2(T +Q) = 0. Set l = m+ 2n− 2. By Lemma
2.1,

Φl(T +Q)

=

l∑
k=0

k∑
j=0

∑
|α|=j

∑
|β|=k−j

(
l

k

)(
k

j

)(
j

α

)(
k − j
β

)
(T ∗ +Q∗)βQ∗αΦl−k(T )TαQβ .

When 0 ≤ k ≤ 2n − 2, we have l − k ≥ m and thus Φl−k(T ) = 0. When
k ≥ 2n − 1, then either |α| ≥ n or |β| ≥ n since |α| + |β| = k. In this case,
either Q∗α = 0 or Qβ = 0. In conclusion, Φl(T + Q) = 0 and T + Q is an
(m+ 2n− 2)-isometry. �

Remark 2.3. By a similar argument, the only possible nonzero term in Φl−1(T+
Q) is when l − 1− k = m− 1. Thus

Φl−1(T +Q)

= δ
∑

|α|=n−1

∑
|β|=n−1

(
n− 1

α

)(
n− 1

β

)
(T ∗ +Q∗)βQ∗αΦm−1(T )TαQβ ,(3)

where

δ =

(
l − 1

2n− 2

)(
2n− 2

n− 1

)
.

Therefore T + Q is a strict (m + 2n − 2)-isometry if and only if Φl−1(T + Q)
as above is a nonzero operator.

If Qi = ciQ0 for some complex numbers {ci} and a nilpotent operator Q0 of
order n, let

c = (c1, . . . , cd).

Then, by (3)

Φl−1(T +Q)(4)

= δ
∑

|α|=n−1

∑
|β|=n−1

(
n− 1

α

)(
n− 1

β

)
(T ∗ +Q∗)βcαQ

∗(n−1)
0 Φm−1(T )TαQβ

= δ
∑

|β|=n−1

(
n− 1

β

)
(T ∗ +Q∗)βQ

∗(n−1)
0 Φm−1(T )

 ∑
|α|=n−1

(
n− 1

α

)
cαTα

Qβ
= δ

∑
|β|=n−1

(
n− 1

β

)
(T ∗ +Q∗)βQ

∗(n−1)
0 Φm−1(T ) (c · T )

n−1
Qβ

= δ
∑

|β|=n−1

(
n− 1

β

)
T ∗βQ

∗(n−1)
0 Φm−1(T ) (c · T )

n−1
cβQn−10

= δQ
∗(n−1)
0 (c · T )

∗(n−1)
Φm−1(T ) (c · T )

n−1
Qn−10 ,

where the fourth equality follows from (T ∗ + Q∗)βQ
∗(n−1)
0 = T ∗βQ

∗(n−1)
0 for

|β| = n− 1 since Q∗n0 = 0.
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When d = 1, the above theorem is first proved in [11] for m = 1; for m ≥ 1,
see also related work in [14], [28], and [32].

A simple example shows that the commuting condition of T and Q can not
be removed from the above theorem.

Example 2.4. Let

T =

[
1 0
0 −1

]
, Q =

[
0 1
0 0

]
.

Then T is an isometry and Q2 = 0. Set A = T +Q. Since A2 = I, by a direct
computation,

Φm(A) = (−2)m−1(A∗A− I) 6= 0.

Therefore A is not an m-isometry for any m ≥ 1.

There are some constructions that give rise to commuting tuples of opera-
tors. We state them as corollaries. The first construction uses block operator
matrices.

Corollary 2.5. Let A = (A1, . . . , Ad) ∈ B(H)d be an m-isometry. Let S =
(S1, . . . , Sd) ∈ B(H(n))d be defined by

(5) Si =


Ai ciI 0 · · ·

0
. . .

. . .
. . .

. . .
. . .

. . . ciI

0
. . . 0 Ai

 on H(n) = H ⊕ · · · ⊕H,

where ci is a complex number for each i = 1, 2, . . . , n and H(n) is the sum of n-
copies of H. Then S is an (m+2n−2)-isometry. Furthermore, S = (S1, . . . , Sd)

is a strict (m+ 2n− 2)-isometry if and only if (c ·A)
∗(n−1)

Φm−1(A) (c ·A)
n−1

is not a zero operator.

Proof. We write Si as the sum of a block diagonal operator and a nilpotent
operator of order n as follows:

Si = Ti + ciJn,

where

Ti =


Ai 0 0 · · ·

0
. . .

. . .
. . .

. . .
. . .

. . . 0

0
. . . 0 Ai

 and Jn =


0 I 0 · · ·

0
. . .

. . .
. . .

. . .
. . .

. . . I

0
. . . 0 0

 .
Then, by (4),

Φm+2n−3(S) = δJ∗n−1n (c · T )
∗(n−1)

Φm−1(T ) (c · T )
n−1

Jn−1n .
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So Φm+2n−3(S) is a block operator matrix with only possible nonzero entry

δ (c ·A)
∗(n−1)

Φm−1(A) (c ·A)
n−1

in the lower right corner. The proof is complete. �

Example 2.6. We use the same notation as in Corollary 2.5. Let A = λ :=
(λ1, . . . , λd), where |λ1|2 + · · · + |λd|2 = 1 and c = (c1, . . . , cd) be such that
c · λ 6= 0. Then the tuple S as in (5) is a strict (2n − 1)-isometry whose joint
point spectrum is the single point λ.

It has been shown by Lemma 3.2 in [22] that the joint approximate point
spectrum of an m-isometry is in the boundary of the unit ball of Cd. By using
an infinite direct sum of examples here, we see that any compact subset of the
boundary of the unit ball of Cd could be the spectrum of a strict (2n − 1)-
isometry for n ≥ 2. When d = 1, it is proved in Lemma 1.21 and Proposition
1.23 of [3] that the spectrum of a strict 2m-isometry is the closed unit disk for
m ≥ 1.

The more general construction uses tensor products of operators. Let K be
another complex Hilbert space. Let H ⊗K denote the tensor product Hilbert
space of H and K.

Corollary 2.7. Let T = (T1, . . . , Td) ∈ B(H)d be an m-isometry. Let Q =
(Q1, . . . , Qd) ∈ B(K)d be a nilpotent tuple of order n. Then T⊗IK+IH⊗Q :=
(T1⊗ IK + IH ⊗Q1, . . . , Td⊗ IK + IH ⊗Qd) ∈ B(H ⊗K)d is an (m+ 2n− 2)-
isometry.

Proof. We note that T ⊗ IK ∈ B(H ⊗ K)d is an m-isometry and IH ⊗ Q ∈
B(H ⊗K)d is a nilpotent tuple of order n. �

The above corollary in the case d = 1 is proved in [23] and it almost has a
converse, see Theorem 12 in [23] for details.

When H is finite dimensional, in the single operator case, it is shown in
[2] that any m-isometry is of the form U + Q, where U is a unitary matrix
and Q is a nilpotent matrix commuting with U. A natural question is to study
the structure of m-isometric tuples of operators on a finite dimensional Hilbert
space.

3. Product of two tuples of operators

For two multivariables z and w and two tuples of operators T and S, set

z ∗ w = (z1w1, . . . , zdwd), T ∗ S = (T1S1, . . . , TdSd).

Lemma 3.1. Assume S ∈ B(H)d is a tuple of double commuting operators.
Assume T, S ∈ B(H)d are double commuting. Then the following holds.

(6) Φn(T ∗ S) =

n∑
k=0

∑
|α|=k

(
n

k

)(
k

α

)
T ∗αΦn−k(T )Tα

d∏
i=1

Φαi
(Si).
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Proof. As in Lemma 2.1, we first prove an identity for polynomials of multi-
variables z and w. Note that

([z ∗ w] · [z ∗ w]− 1)n

=

(
d∑
i=1

ziwiwizi − 1

)n

=

(
d∑
i=1

zi [wiwi − 1] zi +

d∑
i=1

zizi − 1

)n

=

n∑
k=0

(
n

k

)( d∑
i=1

zi [wiwi − 1] zi

)k
(z · z − 1)n−k

=

n∑
k=0

(
n

k

)∑
|α|=k

(
k

α

) d∏
i=1

zi
αi [wiwi − 1]

αi zαi
i

 (z · z − 1)n−k

=

n∑
k=0

∑
|α|=k

(
n

k

)(
k

α

)
zα(z · z − 1)n−kzα

d∏
i=1

[wiwi − 1]
αi ,

where the third equality follows from binomial formula and the fourth equality
follows from multinomial formula. The desired formula follows again by replac-
ing z by T, replacing z by T ∗, replacing wi by Si and replacing wi by S∗i . The
double commuting condition of T and S is needed to put Φαi

(Si) on the right
side of Tα, and the double commuting condition of S is needed to write the

product
d∏
i=1

Φαi(Si). �

Theorem 3.2. Assume T ∈ B(H)d is an m-isometric tuple of commuting
operators. Assume S ∈ B(H)d is a tuple of double commuting operators such
that each Si is an ni-isometry for i = 1, . . . , d. Assume also T and S are double

commuting. Then T ∗ S is an (m+
d∑
i=1

ni − d)-isometric tuple of operators.

Proof. Let n =
d∑
i=1

ni and l = (m+ n− d). By previous lemma,

Φl(T ∗ S) =

l∑
k=0

∑
|α|=k

(
l

k

)(
k

α

)
T ∗αΦl−k(T )Tα

d∏
i=1

Φαi(Si).

We need to show Φl(T ∗ S) = 0. When 0 ≤ k ≤ n− d, we have l − k ≥ m and
thus Φl−k(T ) = 0. When k > n− d, then one of the αi satisfies |αi| ≥ ni since
|α| = k. In this case, Φαi

(Si) = 0. In conclusion Φl(T ∗ S) = 0 and T ∗ S is a
l-isometry. �
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Remark 3.3. By a similar argument, the only nonzero term in Φl−1(T ∗ S) is
when k = n− d and α = (n1 − 1, . . . , nd − 1). Thus

Φl−1(T ∗ S)

=

(
l − 1

n− d

)(
n− d
α

)( d∏
i=1

T ∗ni−1
i

)
Φm−1(T )

(
d∏
i=1

Tni−1
i

)(
d∏
i=1

Φni−1(Si)

)
.

Therefore T ∗ S is a strict l-isometry if and only Φl−1(T ∗ S) as above is a
nonzero operator.

When d = 1, the above theorem is proved in [12]. In fact it is proved on a
Banach space in [12], so only commuting condition of T and S is needed. The
Banach space analogue (without the double commuting conditions of course) of
the above theorem will be presented elsewhere [27]. When d = 1, (6) is proved
in Lemma 7 [28], and it is useful for deriving results for related operators such
as hypercontractions. See Theorem 4.7 in [26]. A simple example shows that
the commuting condition of T and S is needed.

Example 3.4. Let

T =

[
1 0
0 −1

]
, S =

[
1 1
0 1

]
.

Then T is an isometry, S is a strict 3-isometry and TS 6= ST. Note that

TS =

[
1 1
0 −1

]
.

The product TS is not an m-isometry for any m ≥ 1 by Example 2.4.

When each Si is an isometry, we have the following more precise result which
can also be obtained directly from definition.

Corollary 3.5. Assume T ∈ B(H)d is a strict m-isometric tuple of commuting
operators. Assume S ∈ B(H)d is a tuple of double commuting operators such
that each Si is an isometry for i = 1, . . . , d. Assume also T and S are double
commuting. Then T ∗ S is a strict m-isometric tuple of operators.

Proof. We note in this case l = (m+
d∑
i=1

ni − d) = (m+ d− d) = m and

Φl−1(T ∗ S) = Φm−1(T ).

The proof is complete. �

For the tensor product of the two tuples of operators, we have the following
corollary.

Corollary 3.6. Assume T ∈ B(H)d is an m-isometric tuple of commuting
operators. Assume S ∈ B(K)d is a tuple of double commuting operators such
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that each Si is an ni-isometry for i = 1, . . . , d. Then T⊗S := (T1⊗S1, . . . , Td⊗

Sd) ∈ B(H ⊗K)d is a (m+
d∑
i=1

ni − d)-isometric tuple of operators.

Proof. We apply the previous theorem to T ⊗ IK and IH ⊗S in B(H ⊗K)d to
get T ⊗ S = [T ⊗ IK ] ∗ [IH ⊗ S] . �

When d = 1, the above corollary is proved in [20], which in turn confirms the
conjecture in [15] and [16]. This conjecture is formulated in term of elementary
operators acting on Hilbert-Schmidt operator ideals. See also [28] and [32]
for related work. A converse of the above corollary for d = 1 is obtained by
Theorem 7 in [23].

4. Automorphism of the unit ball and m-isometries

For a single operator T ∈ B(H), if T is an m-isometry, then ϕ(T ) is also an
m-isometry where ϕ(z) is an appropriate inner function, see Theorem 2.10 in
[26] for details. In this section we prove that if T ∈ B(H)d is an m-isometric
tuple of commuting operators and ϕ(z) is an automorphism of the unit ball of
Cd, then ϕ(T ) ∈ B(H)d (to be defined precisely below) is also an m-isometry.

We first introduce notation. Let Cd be the d dimensional complex space and

Bd =
{
z = (z1, . . . , zd) ∈ Cd : |z1|2 + · · ·+ |zd|2 < 1

}
be the unit ball of Cd. Then an automorphism of Bd is a biholomorphic map of
Bd onto Bd. Let a = (a1, . . . , ad) ∈ Bd and 〈z, a〉 is the inner product defined
by

〈z, a〉 = z · a =

d∑
i=1

ziai.

The general form of an automorphism ϕ(z) of Bd is

(7) ϕ(z) = U ◦ La(z), z ∈ Bd,

where U is a d×d unitary matrix and La is the automorphism taking the point
a ∈ Bd \ {0} to 0. More precisely,

(8) w = La(z) =
a− Pa(z)− δqa(z)

1− 〈z, a〉
,

where

δ =

√
1− |a|2, Pa(z) = 〈z, a〉 a

|a|2
, qa(z) = z − Pa(z).

Furthermore

(9) |w|2 − 1 =

(
1− |a|2

)(
|z|2 − 1

)
|1− 〈z, a〉|2

.
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Let T ∈ B(H)d be an m-isometry. Then the joint spectral radius r(T ) = 1;

see Proposition 3.1 in [22]. Therefore I −
d∑
i=1

aiTi is invertible. According to

(8), we define S = (S1, . . . , Sd) := La(T ) by

(10) Si =

[
aiI −

ai

|a|2

(
d∑
i=1

aiTi

)
− δ

(
Ti −

ai

|a|2
d∑
i=1

aiTi

)][
I −

d∑
i=1

aiTi

]−1
for i = 1, . . . , d. It is clear the S ∈ B(H)d is a d-tuple of commuting operators.
This definition of La(T ) is standard; see for example [18].

Lemma 4.1. Let T ∈ B(H)d be an m-isometry. Let S be defined by (10).
Then S is also an m-isometry.

Proof. We write (9) as

w · w − 1 =
(

1− |a|2
)(

1−
d∑
i=1

aizi

)−1
(z · z − 1)

(
1−

d∑
i=1

aizi

)−1
.

Then

(w · w − 1)
m

=
(

1− |a|2
)m(

1−
d∑
i=1

aizi

)−m
(z · z − 1)

m

(
1−

d∑
i=1

aizi

)−m
.

Replacing w by S, w by S∗, z by T , z by T ∗, we have the operator identity

Φm(S) =
(

1− |a|2
)m [

I −
d∑
i=1

aiT
∗
i

]−m
Φm(T )

[
I −

d∑
i=1

aiTi

]−m
.

Thus Φm(T ) = 0 if and only if Φm(S) = 0. �

The next lemma takes care of the unitary matrix in formula (7) for the
automorphism ϕ(z).

Lemma 4.2. Let T ∈ B(H)d be an m-isometry. Let U = [uij ] be a d × d
unitary matrix. Let S = (S1, . . . , Sd) be defined by S1

...
Sd

 =

 u11 · · · u1d
...

...
...

ud1 · · · udd


 T1

...
Td

 .
Then S is also an m-isometry.

Proof. We first show that the two elementary operators ΩT and ΩS defined on
B(H) as in (1) are the same. Let X ∈ B(H). Then

ΩS(X) =

d∑
i=1

S∗iXSi =

d∑
i=1

(
d∑
k=1

uikT
∗
k

)
X

 d∑
j=1

uijTj
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=

d∑
i=1

 d∑
k=1

d∑
j=1

uikuijT
∗
kXTj

 =

d∑
k=1

d∑
j=1

(
d∑
i=1

uikuij

)
T ∗kXTj

=

d∑
k=1

d∑
j=1

δkjT
∗
kXTj =

d∑
k=1

T ∗kXTk = ΩT (X),(11)

where the fifth equality follows from the assumption that U is unitary and δkj
are Kronecker notations such that δkj = 0 for k 6= j and δkj = 1 for k = j.

Now we prove Φm(S) = Φm(T ) by using induction. For m = 1, we have

Φ1(S) = ΩS(I)− I = ΩT (I)− I = Φ1(T ).

Assume Φm−1(S) = Φm−1(T ) holds for m− 1. Then by (2) and (11),

Φm(S) = ΩS(Φm−1(S))− Φm−1(S)

= ΩT (Φm−1(T ))− Φm−1(T )

= Φm(T ).

The lemma follows from the above formula. �

Combining the previous two lemmas, we have the following theorem.

Theorem 4.3. Let T ∈ B(H)d be an m-isometry. Let ϕ(z) be an automor-
phism of the unit ball of Cd. Then ϕ(T ) ∈ B(H)d is also an m-isometry. In
particular, (λ1T1, . . . , λdTd) is an m-isometry if each complex number λi satis-
fies |λi| = 1 for i = 1, 2, . . . , d.

5. Multivariable unilateral weighted shifts

In this section, we provide examples of multivariable weighted shifts that
are m-isometries. We first develop some basic properties of m-isometric tuples.
These properties and recent characterizations of m-isometries of one variable
weighted shifts suggest a class of m-isometric tuple of multivariable weighted
shifts.

We first introduce some notations. Let T ∈ B(H)d. Set

Ψk(T ) := (z · z)k (T ) =
∑
|α|=k

(
k

α

)
T ∗αTα.

The following lemma is equivalent to Lemma 2.2 in [22] with different notation.
Here we give a rather trivial proof.

Lemma 5.1. Let T ∈ B(H)d. The following holds.

Ψn(T ) =

n∑
k=0

(
n

k

)
Φk(T ).
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Proof. Note that

(z · z)n = (z · z − 1 + 1)
n

=

n∑
k=0

(
n

k

)
(z · z − 1)

k
.

The lemma follows by applying the hereditary functional calculus. �

In the single operator case, Ψn(T ) = T ∗nTn is called the symbol of T in
[3], and there is a formula for this symbol; see Equation (1.3) in [3]. Here for
T ∈ B(H)d, we also call Ψn(T ) the symbol of T and the formula below for
Ψn(T ) is called the reproducing formula for Ψn(T ). This reproducing formula
follows directly from the above lemma and is used in several proofs in [22].
Here, to emphasize the importance of this formula, we state it as a proposition
and view it as a characterization of m-isometries.

Proposition 5.2. Let T ∈ B(H)d. Then T is an m-isometry if and only if
for n ≥ m,

(12) Ψn(T ) =

m−1∑
k=0

(
n

k

)
Φk(T ).

Proof. Assume T is an m-isometry, that is Φk(T ) = 0 for k ≥ m. Then by
previous lemma

Ψn(T ) =

n∑
k=0

(
n

k

)
Φk(T ) =

m−1∑
k=0

(
n

k

)
Φk(T ).

Assume (12) holds. Then

Ψm(T ) =

m−1∑
k=0

(
m

k

)
Φk(T ).

But by previous lemma

Ψm(T ) =

m∑
k=0

(
m

k

)
Φk(T ).

Subtracting above two formulas, we have

0 =

(
m

m

)
Φm(T ) = Φm(T ).

Therefore T is an m-isometry. �

To use formula (12), it is helpful to evaluate this formula on a vector h ∈ H.
Hence we introduce the following notation:

Ψn(T, h) := 〈Ψn(T )h, h〉 =
∑
|α|=n

(
n

α

)
‖Tαh‖2 ,(13)
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Φn(T, h) := 〈Φn(T )h, h〉 =

n∑
k=0

(−1)n−k
(
n

k

)
Ψk(T, h)

=

n∑
k=0

(−1)n−k
(
n

k

) ∑
|α|=n

(
n

α

)
‖Tαh‖2 .(14)

The above proposition can be reformulated as follows: T is an m-isometry if
and only if for n ≥ m,h ∈ H,

(15) Ψn(T, h) =

m−1∑
k=0

(
n

k

)
Φk(T, h).

It turns out (from Lemma 5.1) the above formula is automatically true (T
does not have to be an m-isometry) for 0 ≤ n ≤ m−1 if one interprets

(
n
k

)
= 0

for n < k. We state this formally as a lemma.

Lemma 5.3. Let T ∈ B(H)d. For h ∈ H, Ψn(T, h), and Φn(T, h) defined as
in (13) and (14), the unique polynomial P (x) interpolating

{(k,Ψk(T, h)), 0 ≤ k ≤ m− 1}

is

P (x) =

m−1∑
k=0

(
x

k

)
Φk(T, h),

where for a real number x,(
x

k

)
=
x(x− 1) · · · (x− k + 1)

k!
.

We also note the right side of the above formula is a polynomial of degree
less than or equal to m− 1. The right side is of degree m− 1 for some h ∈ H
precisely when T is a strict m-isometry. To set up and motivate our result,
we recall the following characterization of an m-isometry of a single operator
in [30]. Although this observation seems to be a slight change of perspective
to (15), it has proved to be very powerful; see several nice results following
from this characterization [30]. This characterization essentially follows from
the combinatorial fact below, see [30] for a reference of this fact. Let Z denote
the set of integers and Z+ denote the set of nonnegative integers.

Lemma 5.4. Let {an}n∈Z+
be a sequence of real numbers. Then

m∑
k=0

(−1)m−k
(
m

k

)
aj+k = 0 for j ≥ 0

if and only if there exists a polynomial P (x) of degree less than or equal to m−1
such that an = P (n). In this case P (x) is the unique polynomial interpolating
{(k, ak), 0 ≤ k ≤ m− 1} .
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Theorem 5.5 ([30]). Let T ∈ B(H). For any h ∈ H, set an := ‖Tnh‖2. Then
T is an m-isometry if and only if for each h ∈ H, there exists a polynomial
Ph(x) of degree less than or equal to m− 1, such that an = Ph(n) for n ∈ Z+.

Proof. We include a short proof of one direction just using the definition and
Lemma 5.4. If T is an m-isometry, then by definition (14) with d = 1,

m−1∑
k=0

(−1)m−k
(
m

k

)∥∥T kh∥∥2 = 0.

Since h is arbitrary, for j ≥ 0, replacing h by T jh, we have

m−1∑
k=0

(−1)m−k
(
m

k

)∥∥T kh∥∥2 =

m−1∑
k=0

(−1)m−k
(
m

k

)
aj+k = 0.

By Lemma 5.4, there exists a polynomial Ph(x) of degree less than or equal to
m− 1 such that an = Ph(n). For the proof of the other direction, see the proof
of the next theorem. �

We now state the analogous characterization for m-isometric tuples. The
proof is slightly more subtle.

Theorem 5.6. Let T ∈ B(H)d. Then T is an m-isometry if and only if for
each h ∈ H, there exists a polynomial Ph(x) of degree less than or equal to
m− 1, such that Ψn(T, h) = Ph(n) for n ∈ Z+.

Proof. Assume T is an m-isometry. By (15), for each h ∈ H, there exists a
polynomial Ph(x) of degree less than or equal to m − 1 such that Ψn(T, h) =
Ph(n).

Conversely, assume for each h ∈ H, there exists a polynomial Ph(x) of degree
less than or equal to m− 1 such that Ψn(T, h) = Ph(n). Then by Lemma 5.4,
this Ph(x) is the unique polynomial P (x) interpolating

{(k,Ψk(T, h)), 0 ≤ k ≤ m− 1} .
Now by Lemma 5.3,

Ph(x) =

m−1∑
k=0

(
x

k

)
Φk(T, h).

Therefore for n ≥ 0,

Ψn(T, h) = Ph(n) =

m−1∑
k=0

(
n

k

)
Φk(T, h).

Now by Proposition 5.2 or equivalently (15), T is an m-isometry. �

One observation for a tuple of weighted shifts to be an m-isometry is that
it only requires (15) to hold for basis vectors. We first introduce a tuple of
d-variables unilateral weighted shifts. Let

Zd+ = {α = (α1, . . . αd) : αi ∈ Z+, 1 ≤ i ≤ d} .
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We write α ≥ 0 if α ∈ Zd+. Let εi = (0, . . . , 1, . . . , 0) be the multi-index having
1 at i-th component and 0 elsewhere, and let 0 be the multi-index (0, 0, , . . . , 0).
Let l2(Zd+) be the complex Hilbert space with standard bases

{
eα, α ∈ Zd+

}
.

Let
{
wα,i, α ∈ Zd+, i = 1, . . . , d

}
be a bounded set of complex numbers such

that

(16) wα,iwα+εi,j = wα,jwα+εj ,i, α ∈ Zd+, 1 ≤ i, j ≤ d.

Definition 5.7. A tuple of d-variables unilateral weighted shifts is a family of
d bounded operators on l2(Zd+), T = (T1, . . . , Td) defined by

(17) Tieα = wα,ieα+εi , α ∈ Zd+, i = 1, . . . , d.

The condition (16) on wα,i implies that T is a tuple of commuting operators.
Note also

T ∗i eα = wα−εi,ieα−εi if αi ≥ 1, i = 1, . . . , d

T ∗i eα = 0 if αi = 0, i = 1, . . . , d.

Examples and characterizations of m-isometric weighted shifts of a single
variable have been given in [6], [13], [17] and [21]. The author [24] gives a
unified approach for both bilateral and unilateral shifts of a single variable on
lp spaces. Even though unilateral shifts are the focus of the most research,
bilateral shifts are important because they provide examples of invertible m-
isometries [17]. It seems more difficult to treat them uniformly in the case of
several weighted shifts. Here we only discuss unilateral weighted shifts, and we
will often say weighted shifts instead of unilateral weighted shifts.

Next we give a characterization of anm-isometric tuple of unilateral weighted
shifts. This characterization is not as complete as for weighted shifts of a sin-
gle variable (see [13] and [24]) because of the intrinsic freedom in tuples of
weighted shifts. We assume all the weights wα,i 6= 0. By Corollary 3 in [31],
in this case T is unitarily equivalent to weighted shifts with positive weights.
Thus we further assume all weights wα,i > 0.

When T is a unilateral or bilateral weighted shift of a single variable, if T is
an m-isometry, then all weights of T are nonzero; see Proposition 2.2 in [24].
But in the case of T being a tuple of weighted shifts, this is obviously not true.
For example, if T = (T1, T2) = (0, T2), where T2 is an m-isometric weighted
shift, then T is an m-isometric tuple of two weighted shifts.

Lemma 5.8. Let T = (T1, . . . , Td) be a tuple of unilateral weighted shifts.
Then T is an m-isometry if and only if for all n ≥ m and β ∈ Zd+,

(18) Ψn(T, eβ) =

m−1∑
k=0

(
n

k

)
Φk(T, eβ).
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Proof. Let h =
∑
β

cβeβ ∈ l2(Zd+). Since for any α ∈ Zd+, Tα maps orthogonal

vectors into orthogonal vectors, we have

‖Tαh‖2 =

∥∥∥∥∥∥Tα
∑

β

cβeβ

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
∑
β

cβT
αeβ

∥∥∥∥∥∥
2

=
∑
β

|cβ |2 ‖Tαeβ‖2 .

Thus by the defining formulas (13) and (14), for all n ≥ 0,

Ψn(T, h) =
∑
β

|cβ |2 Ψn(T, eβ),

Φn(T, h) =
∑
β

|cβ |2 Φn(T, eβ).

Therefore (15) holds for all h ∈ l2(Zd+) if and only if it holds for all eβ , β ∈
Zd+. �

Combining Theorem 5.6 and Lemma 5.8, we have the following characteri-
zation of an m-isometric tuple of weighted shifts.

Theorem 5.9. Let T = (T1, . . . , Td) be a tuple of unilateral weighted shifts.
Assume all the weights wα,i 6= 0. Then T is an m-isometry if and only if for all
β ∈ Zd+, there exists a polynomial Pβ(x) of degree less than or equal to m − 1
such that

(19) Pβ(n) = Ψn(T, eβ) :=
∑
|α|=n

(
n

α

)
‖Tαeβ‖2 , n ∈ Z+.

In the case of a single weighted shift T being an m-isometry (d = 1), since

‖Tαeβ‖2 =

∥∥Tα+βe0∥∥2
‖T βe0‖2

,

only one polynomial Pβ(x) for β = 0 is needed. Furthermore this polynomial
completely determines all the weights. See Theorem 3.4 in [13], Theorem 2.9
and Corollary 4.6 in [24]. Of course the polynomial P0(x) has to satisfy the
positivity condition P0(n) > 0 for all n ≥ 0. Let Pm−1+ be the set of polynomials
P (x) degree m − 1 such that P (0) = 1 and P (n) > 0 for all n > 0. For a
real number b, let [b] denote the integer part of b. The following result from
Proposition 4.8 [24] gives a description of Pm−1+ .

Proposition 5.10. The polynomial P (x) ∈ Pm−1+ if and only if m − 1 =
2m1 + 2m2 +m3,

(20) P (x) =
m1∏
i=1

(x− ai)(x− ai)
m2∏
i=1

(x− b2i−1)(x− b2i)
m3∏
i=1

(x+ ci)
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for some complex numbers ai, i = 1, . . . ,m1, positive numbers b2i−1, b2i such
that [b2i−1] = [b2i] , i = 1, . . . ,m2, ci > 0, i = 1, . . . ,m2 and all ai, b2i−1, b2i are
not integers, but ci could be integers.

Theorem 5.11. Let T = (T1, . . . , Td) be a tuple of unilateral weighted shifts
with weights

w2
α,i =

(αi + 1)P (|α|+ 1)

(|α|+ d)P (|α|)
, α ∈ Zd+, i = 1, . . . , d,

where P (x) ∈ Pm−1+ , then T is a strict m-isometry.

Proof. We first verify that wα,i satisfies (16) so that T is a tuple of commuting
weighted shifts. Note that for α ∈ Zd+, 1 ≤ i, j ≤ d,

w2
α,iw

2
α+εi,j =

(αi + 1)P (|α|+ 1)

(|α|+ d)P (|α|)
(αj + 1)P (|α|+ 2)

(|α|+ 1 + d)P (|α|+ 1)
,

w2
α,jw

2
α+εj ,i =

(αj + 1)P (|α|+ 1)

(|α|+ d)P (|α|)
(αi + 1)P (|α|+ 2)

(|α|+ 1 + d)P (|α|+ 1)
.

Thus,

wα,iwα+εi,j = wα,jwα+εj ,i.

Note that

Tα1
1 e0

= w0,1wε1,1w2ε1,1 · · ·w(α1−1)ε1,1eα1ε1

=

[
1 · P (1)

d · P (0)

2 · P (2)

(d+ 1) · P (1)

3 · P (3)

(d+ 2) · P (2)
· · · α1 · P (α1)

(d+ α1 − 1) · P (α1 − 1)

]1/2
eα1ε1

=

[
(d− 1)!α1!P (|α1|)
(|α1|+ d− 1)!P (0)

]1/2
eα1ε1 .

Similarly,

Tαe0 = Tαd

d · · ·T
α1
1 e0 =

[
(d− 1)!α1!P (|α1|)
(|α1|+ d− 1)!P (0)

]1/2
Tαd

d · · ·T
α2
2 eα1ε1

=

[
(d− 1)!α1!P (|α1|)
(|α1|+ d− 1)!P (0)

α2!P (|α1|+ |α2|)
(|α1|+ d) · · · (|α1|+ d+ |α2| − 1)P (|α1|)

]1/2
· Tαd

d · · ·T
α3
3 eα1ε1+α2ε2

=

[
(d− 1)!α1!α2!P (|α1|+ |α2|)
(|α1|+ |α2|+ d− 1)!P (0)

]1/2
Tαd

d · · ·T
α3
3 eα1ε1+α2ε2

=

[
(d− 1)!α1!α2! · · ·αd!P (|α|)

(|α|+ d− 1)!P (0)

]1/2
eα =

[
(d− 1)!α!P (|α|)

(|α|+ d− 1)!P (0)

]1/2
eα.

Thus for any β ∈ Zd+,

Ψn(T, eβ)(21)
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=
∑
|α|=n

(
n

α

)
‖Tαeβ‖2 =

∑
|α|=n

(
n

α

)∥∥Tα+βe0∥∥2
‖T βe0‖2

=
∑
|α|=n

(
n

α

)
(d− 1)!(α+ β)!

(|α|+ |β|+ d− 1)!

P (|α|+ |β|)
P (0)

(|β|+ d− 1)!

(d− 1)!β!

P (0)

P (|β|)

=
P (n+ |β|) (|β|+ d− 1)!

P (|β|) (n+ |β|+ d− 1)!β!

∑
|α|=n

(
n

α

)
(α+ β)!

=
P (n+ |β|)
P (|β|)

,

where in the last equality we use the identity∑
|α|=n

(
n

α

)
(α+ β)! =

(n+ |β|+ d− 1)!β!

(|β|+ d− 1)!
,

which will be proved in the next lemma. By Theorem 5.9, T is an m-isometry.
�

Lemma 5.12. The following identity holds.

(22)
∑
|α|=n

(
n

α

)
(α+ β)! =

(n+ |β|+ d− 1)!β!

(|β|+ d− 1)!
=

(
n+ |β|+ d− 1

n

)
n!β!,

where α and β are multi-indices (or compositions) with d parts.

Proof. Looking at the left side of (22), we build a collection of objects by
following these three steps:

1. Write down the numbers 1, . . . , β1 (in consecutive order), then a “, ”, then
the numbers β1 + 1, . . . , β1 + β2, and another “, ”, and so on. This creates d
strings of consecutive integers with strings separated by commas.

2. Place each one of the numbers |β| + 1, . . . , |β| + n + 1 at the end of any
of the d consecutive strings. The choices made in this step account for the
summand and the multinomial coefficient

(
n
α

)
in the left side of (22).

3. Permute each of the d strings. This accounts for the (α+ β)! term in the
left side of (22).

The number of ways to complete these three steps is the left side of (22).
Looking at the right side of (22), we can create these same objects by con-

sidering how to fill n + |β| + d − 1 positions with either integers or commas.
These steps give a second way to build the same objects:

1. Select n out of the total n+ |β|+ d− 1 positions. This accounts for the
binomial coefficient in the right side of (22).

2. In the selected positions, write a permutation of the n integers |β| +
1, . . . , |β|+ n+ 1. This accounts for the n! in the right side of (22).

3. In the remaining positions, write a permutation of 1, . . . , β1, then a “, ”,
then a permutation of β1 + 1, . . . , β1 + β2, and another “, ”, and so on. This
accounts for the β! in the right side of (22).
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The number of ways to complete these three steps is the right side of (22).
This argument shows that the right and left sides of (22) count the same

collection of objects and so the identity is proved. �

Inspired by the Berger-Shaw result [8] that the commutator of a finitely
cyclic hyponormal operator is of trace class, Agler and Stankus proved in
Proposition 1.24 [3] and Proposition 10.6 [5] that if T is an m-isometry on
a Hilbert space for even m and T is finitely cyclic, then Φm−1(T ) is a compact
operator. An example of a cyclic 3-isometry T with non compact Φ2(T ) was
given in [5]. For a single m-isometric weighted shift T , the author showed in
Theorem 3.4 [24] that Φm−1(T ) is not in the trace class when m = 2. However,
it is in the von Neumann-Schatten class r for any r > 1, and Φm−1(T ) is in the
trace class when m ≥ 3. We have the following analogue for tuples of weighted
shifts as in Theorem 5.11. We assume m ≥ 2 to avoid triviality.

Theorem 5.13. Let T = (T1, . . . , Td) be a tuple of unilateral weighted shifts
with weights

(23) w2
α,i =

(αi + 1)P (|α|+ 1)

(|α|+ d)P (|α|)
, α ∈ Zd+, i = 1, . . . , d,

where P (x) ∈ Pm−1+ . Then Φm−1(T ) is a positive trace class operator if and
only if m ≥ d + 2. When m = d + 1, Φm−1(T ) is in von Neumann-Schatten
class r for any r > 1. When 1 ≤ m ≤ d, Φm−1(T ) is a compact operator.

The proof is similar to the proof of Theorem 3.4 [24], but notations are
different. Slight simplifications are made here. We need two lemmas. The
following lemma is known as Euler’s finite difference theorem in some books
and a short proof is given in Lemma 3.3 [24].

Lemma 5.14. The following equalities hold.

n∑
k=0

(−1)n−k
(
n

k

)
ki = 0 for i = 0, 1, . . . , n− 1 and

n∑
k=0

(−1)n−k
(
n

k

)
kn = n!.

Lemma 5.15. Let T = (T1, . . . , Td) be a tuple of unilateral weighted shifts with
weights as in (23). Then for all β ∈ Zd+,

(24) Φm−1(T, eβ) =
Φm−1(T, e0)

P (|β|)
.

Proof. Write the polynomial P (x) as

P (x) = bm−1x
m−1 + bm−2x

m−2 + · · ·+ b1x+ 1.

Then for β ∈ Zd+, polynomial P (x+ |β|) is

P (x+ |β|) = am−1x
m−1 + am−2x

m−2 + · · ·+ a1x+ a0,
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where aj are constants depending on |β| for 0 ≤ j ≤ m− 2, but am−1 = bm−1
is a constant independent of β. By (14) and (21),

Φm−1(T, eβ) =

m−1∑
k=0

(−1)m−1−k
(
m− 1

k

)
Ψk(T, eβ)

=

m−1∑
k=0

(−1)m−1−k
(
m− 1

k

)
P (k + |β|)
P (|β|)

=
1

P (|β|)

m−1∑
k=0

(−1)m−1−k
(
m− 1

k

)m−1∑
j=0

ajk
j


=

1

P (|β|)

m−1∑
j=0

aj

[
m−1∑
k=0

(−1)m−1−k
(
m− 1

k

)
kj

]
=
am−1(m− 1)!

P (|β|)
,

where last equality follows from Lemma 5.14. By setting β = 0 and noting
P (0) = 1, we actually have am−1(m−1)! = Φm−1(T, e0). The proof is complete.

�

Proof of Theorem 5.13. It was proved in Proposition 2.3 [22] that if S is an
m-isometric tuple, then Φm−1(S) is a positive operator. By Lemma 5.15,∑

β≥0

〈Φm−1(T )eβ , eβ〉

=
∑
β≥0

Φm−1(T, eβ) =
∑
β≥0

Φm−1(T, e0)

P (|β|)

= Φm−1(T, e0)

∞∑
|β|=0

(|β|+d−1
d−1

)
P (|β|)

,

where, for each β, since 1/P (|β|) only depends on |β| , there are
(|β|+d−1

d−1
)

terms

of 1/P (|β|). Since(
|β|+ d− 1

d− 1

)
≈ |β|d−1 and P (|β|) ≈ |β|m−1 ,

the series
∑
β≥0
〈Φm−1(T )eβ , eβ〉 is convergent if and only if m ≥ d + 2. The

operator Φm−1(T ) is a diagonal operator since

〈Φm−1(T )eβ , eγ〉 = 0

for any β, γ ∈ Zd+ such that β 6= γ. By (24),

〈Φm−1(T )eβ , eβ〉 =
Φm−1(T, e0)

P (|β|)
→ 0 as |β| → ∞.

Therefore Φm−1(T ) is a compact operator. �
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6. Multiplication operators on weighted Hardy spaces of several
variables

In this section, we reformulate results for unilateral weighted shifts of one
variable or several variables as theorems for multiplication operators on weight-
ed Hardy spaces of analytic functions of one variable or several variables. In
particular, we immediately get the examples of m-isometries in Theorem 4.2 of
[22] by simply choosing some special polynomials.

We first introduce the weighted Hardy spaces of d variables. The paper [39]
is the classical reference for weighted Hardy spaces of one variable.

Definition 6.1. Let
{
vα, α ∈ Zd+

}
be a set of strictly positive numbers with

v0 = 1. Then, let

H2(v) =

f(z) =
∑
α≥0

fαz
α : ‖f‖2v =

∑
α≥0

|fα|2 v2α <∞

 .

Clearly H2(v) is a Hilbert space with the inner product

〈f, g〉 =
∑
α≥0

fαgαv
2
α,

and
{
zα, α ∈ Zd+

}
forms an orthogonal basis for H2(v) which, in general, is not

orthonormal since

‖zα‖v = vα.

Let Mz = (Mz1 , . . . ,Mzd) be the tuple of the multiplication operators defined
by

Mzif(z) = zif(z), f ∈ H2(v), i = 1, . . . , d.

Then by Proposition 8 in [31], Mz is unitarily equivalent to a tuple of d-variables
unilateral weighted shifts with weights{

wα,i =
vα+εi
vα

, α ∈ Zd+, i = 1, . . . , d

}
.

Conversely, a tuple of d-variables unilateral weighted shifts with weights wα,i
is unitarily equivalent to Mz on H2(v), where vα is defined recursively by

v0 = 1, vα+εi = wα,ivα, α ≥ 0, i = 1, . . . , d.

Now Theorem 5.9 can be reformulated as the following.

Theorem 6.2. The tuple Mz on H2(v) is an m-isometry if and only if for all
n ≥ m and all β ∈ Zd+

∑
|α|=n

(
n

α

)
v2α+β
v2β

=

m−1∑
k=0

(
n

k

) k∑
i=0

(−1)k−i
(
k

i

) ∑
|α|=i

(
i

α

)
v2α+β
v2β

 .
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Equivalently, Mz is an m-isometry if and only if for each β ∈ Zd+, there exists
a polynomial Pβ(x) of degree less than or equal to m− 1, such that

(25)
∑
|α|=n

(
n

α

)
v2α+β
v2β

= Pβ(n) for n ∈ Z+.

Proof. We still use e0 to denote the function of constant 1 in H2(v) and eβ to
denote zβ . Note that

Ψn(Mz, eβ) =
∑
|α|=n

(
n

α

)
‖Mα

z eβ‖
2

=
∑
|α|=n

(
n

α

)∥∥Mα+β
z e0

∥∥2
‖Mα

z e0‖
2 =

∑
|α|=n

(
n

α

)
v2α+β
v2β

.

Now (25) is (19) by using (14). �

Theorem 5.11 can be reformulated as the following.

Theorem 6.3. Let P (x) be a polynomial of degree m− 1 such that P (n) > 0
for all n ∈ Z+. Set

(26) v2α =
(d− 1)!α!P (|α|)

(|α|+ d− 1)!P (0)
, α ∈ Zd+.

Then Mz on H2(v) is a strict m-isometry.

Proof. Let T = (T1, . . . , Td) be the tuple of unilateral weighted shifts with
weights

w2
α,i =

(αi + 1)P (|α|+ 1)

(|α|+ d)P (|α|)
, α ∈ Zd+, i = 1, . . . , d,

where P (x) is a polynomial of degree m−1. Then by using v0 = 1 and vα+εi =
wα,ivα recursively, we have the formula for v2α. �

When d = 1, the above two theorems are the same. See Theorem 3.4 in [13],
Theorem 2.9 and Corollary 4.6 in [24].

Theorem 6.4. Let d = 1. Then Mz is an m-isometry on H2(v) if and only if
for all n ≥ m,

v2n =

m−1∑
k=0

(
n

k

)[ k∑
i=0

(−1)k−i
(
k

i

)
v2i

]
.

Equivalently, Mz is a strict m-isometry if and only if there exists a polynomial
P (x) of degree equal to m− 1 such that

v2n =
P (n)

P (0)
for n ∈ Z+.
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The above theorem says if Mz is an m-isometry on H2(v), then v1, v2, . . .,
vm−1 completely determine all weights vn. In the weighted shift case, w0, w1, . . .,
wm−2 completely determine all weights wn; see Section 4 in [24] for some
discussions on which weights w0, w1, . . . , wm−2 are possible to generate an m-
isometric unilateral weighted shift.

When d = 1 and v2n = n + 1, then H2(v) is the Dirichlet space. The fact
that Dirichlet shift is an 2-isometry plays an important role in studying the
invariant subspaces of Dirichlet shift, see [36] and [37] for details.

The weighted Hardy space H2(v) is also a reproducing kernel Hilbert space
with reproducing kernel K(z, w) defined by

K(z, w) =
∑
α≥0

zαwα

v2α
.

The reproducing property of K(z, w) is

〈f(z),K(z, w)〉 = f(w) for f ∈ H2(v).

For vα as in (26),

K(z, w) =
∑
α≥0

zαwα

v2α
=
∑
α≥0

(|α|+ d− 1)!P (0)zαwα

(d− 1)!α!P (|α|)

=

∞∑
n=0

(n+ d− 1)!P (0)

(d− 1)!P (n)

∑
|α|=n

zαwα

α!

=

∞∑
n=0

(n+ d− 1)!P (0)

(d− 1)!n!P (n)

∑
|α|=n

n!zαwα

α!

=

∞∑
n=0

(n+ d− 1)!P (0)

(d− 1)!n!P (n)
[z · w]

n
.(27)

If d ≥ m, let a = d−m+ 1 ≥ 1. If we set

(28) P (n) = (n+ d− 1) · · · (n+ d−m+ 1),

then the degree of P (x) is m− 1 (if m = 1, P (n) = P (0) = 1), and

K(z, w) =

∞∑
n=0

(n+ d− 1)!P (0)

(d− 1)!n!(n+ d− 1) · · · (n+ d−m+ 1)
[z · w]

n

=

∞∑
n=0

(n+ d− 1)!(d− 1) · · · (d−m+ 1)

(d− 1)!n!(n+ d− 1) · · · (n+ d−m+ 1)
[z · w]

n

=

∞∑
n=0

(n+ a− 1)!

(a− 1)!n!
[z · w]

n
=

1

(1− z · w)
a .

Therefore if v2n = P (n)/P (0), where P (n) is given by (28), then H2(v) is the
space Ka,d (for two positive integers a and d), which is the space of analytic
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functions on the ball Bd with reproducing kernel

K(z, w) =
1

(1− z · w)
a .

It is also clear from the above discussion that if d < a, we can not find a
polynomial P (x) such that K(z, w) given in (27) is of the form 1/ (1− z · w)

a

for some positive integer a. We have the following result which is contained in
Theorem 4.2 [22].

Corollary 6.5 ([22]). The tuple Mz on Ka,d is a strict m-isometry for some
m ≥ 1 if and only if d ≥ a. In this case m = d− a+ 1.

In Theorem 4.2 [22], d ≥ a is assumed and the strictness is not stated.
Since m = d− a+ 1 ≥ d+ 1 is impossible, Theorem 5.13 tells us Φm−1(Mz)

on Ka,d is a compact operator, but not in von Neumann-Schatten class r for
any r ≥ 1. Here we assume m ≥ 2 to avoid triviality.

The space K1,d is denoted by H2
d , which is now called Drury-Arveson space,

and Mz on H2
d has played a role in the dilation theory of row contractions.

It is natural to ask if Mz on the Dirichlet space of d-variables is an m-
isometry. Let Dd denote the holomorphic Dirichlet space on Bd with repro-
ducing kernel

K(z, w) = − 1

z · w
ln(1− z · w).

It is quite surprising that we can again apply Theorem 5.11. In fact, this time
we will use the equivalent Theorem 6.3. Note that

K(z, w) = − 1

z · w
ln(1− z · w)

=

∞∑
n=0

1

n+ 1
[z · w]

n

=

∞∑
n=0

1

n+ 1

∑
|α|=n

n!zαwα

α!

=
∑
α≥0

|α|!zαwα

(|α|+ 1)α!
=
∑
α≥0

zαwα

v2α
,

where

v2α =
α! (|α|+ 1)

|α|!
=

(d− 1)!α!P (|α|)
(|α|+ d− 1)!P (0)

for P (|α|) = (|α|+ 1) [(|α|+ d− 1) · · · (|α|+ 2) (|α|+ 1)] .

The degree of P (x) above is d.

Corollary 6.6. The tuple Mz on the Dirichlet space Dd is a strict (d + 1)-
isometry.
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By Theorem 5.13, Φd(Mz) on Dd is in von Neumann-Schatten class r for
any r > 1.

We remark that it comes to our attention the more general Banach space
version of Theorem 5.6 is Theorem 3.3 in a by Hoffman and Mackey [29]. Our
treatment (on a Hilbert space) seems to be more direct and concise.

Acknowledgements. I thank Anthony Mendes for his help with the proof of
Lemma 5.12. I thank the referee for a careful reading and several constructive
suggestions.
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