CONSTANT CURVATURE FACTORABLE SURFACES IN 3-DIMENSIONAL ISOTROPIC SPACE

Muhittin Evren Aydin

Abstract

In the present paper, we study and classify factorable surfaces in a 3-dimensional isotropic space with constant isotropic Gaussian (K) and mean curvature (H). We provide a non-existence result relating to such surfaces satisfying $\frac{H}{K}=$ const. Several examples are also illustrated.

1. Introduction

Let \mathbb{E}^{3} be a 3 -dimensional Euclidean space and (x, y, z) rectangular coordinates. A surface in \mathbb{E}^{3} is said to be factorable (so-called homothetical) if it is a graph of the form $z(x, y)=f(x) g(y)$, where f and g are smooth functions (see $[4,14]$). Such surfaces in \mathbb{E}^{3} with constant Gaussian (K) and mean curvature (H) were obtained in $[10,14,24]$.

As more general case, Zong et al. [25] defined that an affine factorable surface in \mathbb{E}^{3} is a graph of the form

$$
z(x, y)=f(x) g(y+a x), a \neq 0
$$

and classified these ones with K, H constants.
A surface in a 3 -dimensional Minkowski space \mathbb{E}_{1}^{3} is said to be factorable if it can be expressed by one of the explicit forms ([15])
$\Phi_{1}: z(x, y)=f(x) g(y), \Phi_{2}: y(x, z)=f(x) g(z), \Phi_{3}: x(y, z)=f(y) g(z)$.
Up to the causal characters of the directions, six different classes of these surfaces in \mathbb{E}_{1}^{3} appear. The surfaces in \mathbb{E}_{1}^{3} with K, H constants were described in [9, 15, 21].

In 3-dimensional context, the factorable surfaces are closely connected with translation surfaces, namely the surfaces generated by translating of two curves. For instance; in the homogeneous Riemannian space $\mathbb{H}^{2} \times \mathbb{R}$ that is a Lie group, up to its group operation, a translation surface of type 2 is a graph of the form

[^0]$y(x, z)=f(x) g(z)$ (see [22]). For more details, we refer to [7, 8], [11-13], [17, 23].

Besides the Minkowskian space, a 3 -dimensional isotropic space \mathbb{I}^{3} provides two different types of the factorable surfaces. This special ambient space which is one of the real Cayley-Klein spaces is the product of the $x y$-plane and the isotropic z-direction with a degenerate parabolic distance metric (cf. [5]).

Due to the absolute figure of \mathbb{I}^{3}, the factorable surface Φ_{1} distinctly behaves from others. We call it factorable surface of type 1 (see [1-3]). The surfaces Φ_{2}, Φ_{3} in \mathbb{I}^{3} are locally isometric and, up to a sign, have same second fundamental form. This means to have same isotropic Gaussian K and, up to a sign, mean curvature H. These surfaces are said to be of type 2 .

In this manner we are mainly interested in the factorable surfaces of type 2 in \mathbb{I}^{3}. We describe such surfaces in \mathbb{I}^{3} with $K, H, H / K$ constants by the following results:

Theorem 1.1. A factorable surface of type $2\left(\Phi_{3}\right)$ in \mathbb{I}^{3} has constant isotropic mean curvature H_{0} if and only if, up to suitable translations and constants, one of the following occurs:
(i) If Φ_{3} is isotropic minimal, i.e., $H_{0}=0$;
(i.1) Φ_{3} is a non-isotropic plane,
(i.2) $x(y, z)=y \tan (c z)$,
(i.3) $x(y, z)=c \frac{z}{y}$.
(ii) Otherwise $\left(H_{0} \neq 0\right), x(y, z)= \pm \sqrt{\frac{-z}{H_{0}}}$,
where c is some nonzero constant.
Theorem 1.2. A factorable surface of type 2 $\left(\Phi_{3}\right)$ in \mathbb{I}^{3} has constant isotropic Gaussian curvature K_{0} if and only if, up to suitable translations and constants, one of the following holds:
(i) If Φ_{3} is isotropic flat, i.e., $K_{0}=0$;
(i.1) $x(y, z)=c_{1} g(z), \frac{d g}{d z} \neq 0$,
(i.2) $x(y, z)=c_{1} e^{c_{2} y+c_{3} z}$,
(i.3) $x(y, z)=c_{1} y^{c_{2}} z^{c_{3}}, c_{2}+c_{3}=1$.
(ii) Otherwise $\left(K_{0} \neq 0\right)$;
(ii.1) K_{0} is negative and $x(y, z)= \pm \frac{z}{\sqrt{-K y}}$,
(ii.2) $x(y, z)=\frac{c_{1}}{y} g(z)$ for

$$
z= \pm \int\left(c_{2} g^{-1}-\frac{K_{0}}{c_{1}^{2}}\right)^{1 / 2} d g
$$

where c_{1}, c_{2}, c_{3} are some nonzero constants.
Theorem 1.3. There does not exist a factorable surface of type 2 in $\mathbb{1}^{3}$ that satisfies $\frac{H}{K}=$ const. $\neq 0$.

We point out that the above results are also valid for the factorable surface Φ_{2} in \mathbb{I}^{3} by replacing x with y as well as taking $y= \pm \sqrt{\frac{z}{H_{0}}}$ in the last statement of Theorem 1.1.

2. Preliminaries

For detailed properties of isotropic spaces, see [6, 16], [18-20].
Let $P\left(\mathbb{R}^{3}\right)$ be a real 3-dimensional projective space and $\left(x_{0}: x_{1}: x_{2}: x_{3}\right)$ denote the projective coordinates in $P\left(\mathbb{R}^{3}\right)$. A 3-dimensional isotropic space \mathbb{I}^{3} is a Cayley-Klein space obtained from $P\left(\mathbb{R}^{3}\right)$ such that its absolute figure consists of a plane (absolute plane) ω and complex-conjugate straight lines (absolute lines) l_{1}, l_{2} in ω. In coordinate form, ω is given by $x_{0}=0$ and l_{1}, l_{2} by $x_{0}=x_{1} \pm i x_{2}=0$. The absolute point, $(0: 0: 0: 1)$, is the intersection of the absolute lines.

For $x_{0} \neq 0$, we have the affine coordinates by $x=\frac{x_{1}}{x_{0}}, y=\frac{x_{2}}{x_{0}}, z=\frac{x_{3}}{x_{0}}$. The group of motions of \mathbb{I}^{3} is given by

$$
(x, y, z) \longmapsto\left(x^{\prime}, y^{\prime}, z^{\prime}\right):\left\{\begin{array}{l}
x^{\prime}=a_{1}+x \cos \phi-y \sin \phi \tag{2.1}\\
y^{\prime}=a_{2}+x \sin \phi+y \cos \phi \\
z^{\prime}=a_{3}+a_{4} x+a_{5} y+z
\end{array}\right.
$$

where $a_{1}, \ldots, a_{5}, \phi \in \mathbb{R}$. The isotropic metric that is an invariant of (2.1) is induced by the absolute figure, namely $d s^{2}=d x^{2}+d y^{2}$.

There are two types of the lines and the planes in \mathbb{I}^{3} arising from its absolute figure: The lines parallel (resp. non-parallel) to z-direction are said to be isotropic (resp. non-isotropic). A plane is said to be isotropic if it involves an isotropic line. Otherwise it is called non-isotropic plane or Euclidean plane. For example the equations $a x+b y+c z=0(a, b, c \in \mathbb{R}, c \neq 0)$ and $a x+b y=0$ determine a non-isotropic plane and an isotropic plane, respectively.

We restrict our framework to regular surfaces whose the tangent plane at each point is non-isotropic, namely admissible surfaces.

Let M be a regular admissible surface in \mathbb{I}^{3} locally parameterized by

$$
r(u, v)=(x(u, v), y(u, v), z(u, v))
$$

for a coordinate pair (u, v). The components E, F, G of the first fundamental form of M in \mathbb{I}^{3} are computed by the induced metric from \mathbb{I}^{3}. The unit normal vector of M is the unit vector parallel to the z-direction. The components of the second fundamental form $I I$ of M are given by

$$
l=\frac{\operatorname{det}\left(r_{u u}, r_{u}, r_{v}\right)}{\sqrt{E G-F^{2}}}, m=\frac{\operatorname{det}\left(r_{u v}, r_{u}, r_{v}\right)}{\sqrt{E G-F^{2}}}, n=\frac{\operatorname{det}\left(r_{v v}, r_{u}, r_{v}\right)}{\sqrt{E G-F^{2}}}
$$

Accordingly, the isotropic Gaussian (or relative) and mean curvature of M are respectively defined by

$$
K=\frac{l n-m^{2}}{E G-F^{2}}, H=\frac{E n-2 F m+G l}{2\left(E G-F^{2}\right)} .
$$

A surface in \mathbb{I}^{3} is said to be isotropic minimal (resp. flat) if H (resp. K) vanishes identically. Further, it is said to have constant isotropic mean (resp. Gaussian) curvature if H (resp. K) is a constant function on whole surface.

3. Proof of Theorem 1.1

A factorable surface of type 2 in $\mathbb{\mathbb { }}^{3}$ can be locally expressed by either

$$
\Phi_{2}: r(x, z)=(x, f(x) g(z), z) \text { or } \Phi_{3}: r(y, z)=(f(y) g(z), y, z)
$$

All over this paper, all calculations shall be done for the surface Φ_{3}. Its first fundamental form in \mathbb{I}^{3} turns to

$$
d s^{2}=\left(1+\left(f^{\prime} g\right)^{2}\right) d y^{2}+2\left(f g f^{\prime} g^{\prime}\right) d y d z+\left(f g^{\prime}\right)^{2} d z^{2}
$$

where $f^{\prime}=\frac{d f}{d y}, g^{\prime}=\frac{d g}{d z}$. Note that g^{\prime} must be nonzero to obtain a regular admissible surface. By a calculation for the second fundamental form of Φ_{3} we have

$$
I I=\left(\frac{f^{\prime \prime} g}{f g^{\prime}}\right) d y^{2}+2\left(\frac{f^{\prime}}{f}\right) d y d z+\left(\frac{g^{\prime \prime}}{g^{\prime}}\right) d z^{2}, g^{\prime} \neq 0
$$

Therefore, the isotropic mean curvature H of Φ_{3} becomes

$$
\begin{equation*}
H=\frac{\left(\left(f^{\prime} g\right)^{2}+1\right) g^{\prime \prime}+\left(f f^{\prime \prime}-2\left(f^{\prime}\right)^{2}\right) g\left(g^{\prime}\right)^{2}}{2 f^{2}\left(g^{\prime}\right)^{3}} \tag{3.1}
\end{equation*}
$$

Let us assume that $H=H_{0}=$ const. First we distinguish the case in which Φ_{3} is isotropic minimal:

Case A: $H_{0}=0$. (3.1) reduces to

$$
\begin{equation*}
\left(\left(f^{\prime} g\right)^{2}+1\right) g^{\prime \prime}+\left(f f^{\prime \prime}-2\left(f^{\prime}\right)^{2}\right) g\left(g^{\prime}\right)^{2}=0 \tag{3.2}
\end{equation*}
$$

We have three cases in order to solve (3.2):
Case A.1. $f=f_{0} \neq 0 \in \mathbb{R}$. (3.2) immediately implies $g=c_{1} z+c_{2}, c_{1}, c_{2} \in \mathbb{R}$, and thus we deduce that Φ_{3} is a non-isotropic plane. This gives the statement (i.1) of Theorem 1.1.
Case A.2. $f=c_{1} y+c_{2}, c_{1}, c_{2} \in \mathbb{R}, c_{1} \neq 0$. (3.2) turns to

$$
\frac{g^{\prime \prime}}{g^{\prime}}=\frac{2 c_{1}^{2} g g^{\prime}}{1+\left(c_{1} g\right)^{2}}
$$

By solving this one, we obtain

$$
g=\frac{1}{c_{1}} \tan \left(c_{2} z+c_{3}\right), c_{2}, c_{3} \in \mathbb{R}, c_{2} \neq 0
$$

which proves the statement (i.2) of Theorem 1.1.
Case A.3. $f^{\prime \prime} \neq 0$. By dividing (3.2) with $g\left(g^{\prime}\right)^{2}$ one can be rewritten as

$$
\begin{equation*}
\left(\left(f^{\prime} g\right)^{2}+1\right) \frac{g^{\prime \prime}}{g\left(g^{\prime}\right)^{2}}+f f^{\prime \prime}-2\left(f^{\prime}\right)^{2}=0 \tag{3.3}
\end{equation*}
$$

Taking partial derivative of (3.3) with respect to z and after dividing with $\left(f^{\prime}\right)^{2}$, we get

$$
\begin{equation*}
2 \frac{g^{\prime \prime}}{g^{\prime}}+\left(\frac{1}{\left(f^{\prime}\right)^{2}}+g^{2}\right)\left(\frac{g^{\prime \prime}}{g\left(g^{\prime}\right)^{2}}\right)^{\prime}=0 \tag{3.4}
\end{equation*}
$$

By taking partial derivative of (3.4) with respect to y, we find $g^{\prime \prime}=c_{1} g\left(g^{\prime}\right)^{2}, c_{1} \in \mathbb{R}$. We have two cases:
Case A.3.1. $c_{1}=0$. (3.3) reduces to

$$
\begin{equation*}
f f^{\prime \prime}-2\left(f^{\prime}\right)^{2}=0 \tag{3.5}
\end{equation*}
$$

By solving (3.5) we derive

$$
f=-\frac{1}{c_{2} y+c_{3}}, c_{2}, c_{3} \in \mathbb{R}, c_{2} \neq 0
$$

This implies the statement (i.3) of Theorem 1.1.
Case A.3.2. $c_{1} \neq 0$. (3.4) immediately leads to the contradiction $2 c_{1} g g^{\prime}=$ 0 .
Case B: $H_{0} \neq 0$. We have cases:
Case B.1. $f=f_{0} \neq 0 \in \mathbb{R}$. Then (3.1) follows

$$
\begin{equation*}
2 H_{0} f_{0}^{2}=\frac{g^{\prime \prime}}{\left(g^{\prime}\right)^{3}} \tag{3.6}
\end{equation*}
$$

Solving it gives $g(z)= \pm \frac{1}{2 H_{0} f_{0}^{2}} \sqrt{-4 H_{0} f_{0}^{2} z+c_{1}}+c_{2}, c_{1}, c_{2} \in \mathbb{R}$. This is the proof of the statement (ii) of Theorem 1.1.
Case B.2. $f=c_{1} y+c_{2}, c_{1}, c_{2} \in \mathbb{R}, c_{1} \neq 0$. By considering this one into (3.1) we conclude

$$
2\left(c_{1} y+c_{2}\right)^{2} H_{0}=\left(1+c_{1}^{2} g^{2}\right) \frac{g^{\prime \prime}}{\left(g^{\prime}\right)^{3}}-2 c_{1}^{2} \frac{g}{g^{\prime}}
$$

The left side in (3.7) is a function of y while other side is either a constant or a function of z. This is not possible.
Case B.3. $f^{\prime \prime} \neq 0$. By multiplying both side of (3.1) with $2 f^{2} \frac{g^{\prime}}{g}$ one can be rearranged as

$$
\begin{equation*}
2 H_{0} f^{2} \frac{g^{\prime}}{g}=\left(\left(f^{\prime} g\right)^{2}+1\right) \frac{g^{\prime \prime}}{g\left(g^{\prime}\right)^{2}}+f f^{\prime \prime}-2\left(f^{\prime}\right)^{2} \tag{3.8}
\end{equation*}
$$

Taking partial derivative of (3.8) with respect to z and thereafter dividing with $\left(f^{\prime}\right)^{2}$ yields
$2 H_{0}\left(\frac{f}{f^{\prime}}\right)^{2}\left(\frac{g^{\prime}}{g}\right)^{\prime}=2 \frac{g^{\prime \prime}}{g^{\prime}}+\left(\frac{1}{\left(f^{\prime}\right)^{2}}+g^{2}\right)\left(\frac{g^{\prime \prime}}{g\left(g^{\prime}\right)^{2}}\right)^{\prime}$.
It is obvious in (3.9) that $g^{\prime \prime} \neq 0$. To solve (3.9) we have two cases:

Case B.3.1. $g^{\prime \prime}=c_{1} g\left(g^{\prime}\right)^{2}, c_{1} \in \mathbb{R}, c_{1} \neq 0$. This implies that

$$
\begin{equation*}
g^{\prime}=e^{\frac{c_{1}}{2} g^{2}+c_{2}}, c_{2} \in \mathbb{R} \tag{3.10}
\end{equation*}
$$

Substituting (3.10) into (3.9) gives an equation in the following form:

$$
\left(c_{1} e^{\frac{-c_{1}}{2} g^{2}-c_{2}}\right) g^{3}-\left(c_{1} H_{0}\left(\frac{f}{f^{\prime}}\right)^{2}\right) g^{2}+H_{0}\left(\frac{f}{f^{\prime}}\right)^{2}=0
$$

where all coefficients with respect to g must be zero and this is a contradiction.
Case B.3.2. $\left(\frac{g^{\prime \prime}}{g\left(g^{\prime}\right)^{2}}\right)^{\prime} \neq 0$. By dividing (3.9) with $\left(\frac{g^{\prime \prime}}{g\left(g^{\prime}\right)^{2}}\right)^{\prime}$, it turns to the following form:

$$
\begin{equation*}
A_{1}(y) B_{1}(z)=A_{2}(y)+B_{2}(z) \tag{3.11}
\end{equation*}
$$

where

$$
\begin{cases}A_{1}(y)=2 H_{0}\left(\frac{f}{f^{\prime}}\right)^{2}, & A_{2}(y)=\frac{1}{\left(f^{\prime}\right)^{2}} \\ B_{1}(z)=\frac{\left(\frac{g^{\prime}}{g}\right)^{\prime}}{\left(\frac{g^{\prime \prime}}{g\left(g^{\prime}\right)^{2}}\right)^{\prime}}, & B_{2}(z)=2 \frac{g^{\prime \prime}}{g^{\prime}}+g^{2}\end{cases}
$$

The fact that all terms in (3.11) must be constant for every y and z yields $A_{2}(y)=\frac{1}{\left(f^{\prime}\right)^{2}}=$ const., which contradicts with the assumption of Case B.3.

4. Proof of Theorem 1.2

By a calculation for a factorable graph of type 2 in \mathbb{I}^{3}, the isotropic Gaussian curvature turns to

$$
\begin{equation*}
K=\frac{f g f^{\prime \prime} g^{\prime \prime}-\left(f^{\prime} g^{\prime}\right)^{2}}{\left(f g^{\prime}\right)^{4}} \tag{4.1}
\end{equation*}
$$

Let us assume that $K=K_{0}=$ const. We have cases:
Case A: $K_{0}=0$. (4.1) reduces to

$$
\begin{equation*}
f g f^{\prime \prime} g^{\prime \prime}-\left(f^{\prime} g^{\prime}\right)^{2}=0 \tag{4.2}
\end{equation*}
$$

f or g constants are solutions for (4.2) and by regularity we have the statement (i.1) of Theorem 1.2. Suppose that f, g are non-constants. Then (4.2) yields $f^{\prime \prime} g^{\prime \prime} \neq 0$. Thereby (4.2) can be arranged as

$$
\begin{equation*}
\frac{f f^{\prime \prime}}{\left(f^{\prime}\right)^{2}}=\frac{\left(g^{\prime}\right)^{2}}{g g^{\prime \prime}} \tag{4.3}
\end{equation*}
$$

Both sides of (4.3) are equal to same nonzero constant, namely

$$
\begin{equation*}
f f^{\prime \prime}-c_{1}\left(f^{\prime}\right)^{2}=0 \text { and } g g^{\prime \prime}-\frac{1}{c_{1}}\left(g^{\prime}\right)^{2}=0 \tag{4.4}
\end{equation*}
$$

If $c_{1}=1$ in (4.4), then by solving it we obtain

$$
f(y)=c_{2} e^{c_{3} y} \text { and } g(z)=c_{4} e^{c_{5} z}, c_{2}, \ldots, c_{5} \in \mathbb{R}
$$

This gives the statement (i.2) of Theorem 1.2. Otherwise, i.e., $c_{1} \neq 1$ in (4.4), we derive
$f(y)=\left(\left(1-c_{1}\right)\left(c_{6} y+c_{7}\right)\right)^{\frac{1}{1-c_{1}}}$ and $g(z)=\left(\left(\frac{c_{1}-1}{c_{1}}\right)\left(c_{8} z+c_{9}\right)\right)^{\frac{c_{1}}{c_{1}-1}}$,
where $c_{6}, \ldots, c_{9} \in \mathbb{R}$. This completes the proof of the statement (i) of Theorem 1.2.
Case B: $K_{0} \neq 0$. (4.1) can be rewritten as

$$
\begin{equation*}
K_{0}\left(g^{\prime}\right)^{2}=\frac{f^{\prime \prime}}{f^{3}}\left(\frac{g g^{\prime \prime}}{\left(g^{\prime}\right)^{2}}\right)-\left(\frac{f^{\prime}}{f^{2}}\right)^{2} \tag{4.5}
\end{equation*}
$$

Taking partial derivative of (4.5) with respect to z leads to

$$
\begin{equation*}
2 K_{0} g^{\prime} g^{\prime \prime}=\frac{f^{\prime \prime}}{f^{3}}\left(\frac{g g^{\prime \prime}}{\left(g^{\prime}\right)^{2}}\right)^{\prime} \tag{4.6}
\end{equation*}
$$

We have two cases for (4.6):
Case B.1. The situaton that $g^{\prime \prime}=0, g(z)=c_{1} z+c_{2}, c_{1}, c_{2} \in \mathbb{R}$, is a solution for (4.6). Hence, from (4.5), we deduce

$$
K_{0}\left(c_{1}\right)^{2}=-\left(\frac{f^{\prime}}{f^{2}}\right)^{2}
$$

which implies that K_{0} is negative and

$$
f(y)=\frac{1}{ \pm c_{1} \sqrt{-K_{0}} y+c_{3}} .
$$

This proves the statement (ii.1) of Theorem 1.2.
Case B.2. $g^{\prime \prime} \neq 0$. (4.6) immediately implies

$$
\begin{equation*}
f^{\prime \prime}=c_{1} f^{3}, c_{1} \in \mathbb{R}, c_{1} \neq 0 \tag{4.7}
\end{equation*}
$$

Considering (4.7) into (4.5) yields to

$$
\begin{equation*}
f^{\prime}=c_{2} f^{2}, c_{2} \in \mathbb{R}, c_{2} \neq 0 \tag{4.8}
\end{equation*}
$$

It follows from (4.7) and (4.8) that $c_{1}=2 c_{2}^{2}$ and

$$
f(y)=-\frac{1}{c_{2} y+c_{3}}
$$

for some constant c_{3}. Nevertheless, by substituting (4.7) and (4.8) into (4.5), we conclude

$$
\begin{equation*}
\frac{K_{0}}{c_{2}^{2}} r^{3}+r=2 g \dot{r} \tag{4.9}
\end{equation*}
$$

where $r=g^{\prime}$ and $\dot{r}=\frac{d r}{d g}=\frac{g^{\prime \prime}}{g^{\prime}}$. After solving (4.9) we obtain

$$
r= \pm\left(c_{4}^{2} g^{-1}-\frac{K_{0}}{c_{2}^{2}}\right)^{-1 / 2}, c_{4} \in \mathbb{R}, c_{4} \neq 0
$$

or

$$
z= \pm \int\left(c_{4}^{2} g^{-1}-\frac{K_{0}}{c_{2}^{2}}\right)^{1 / 2} d g
$$

which proves the statement (ii.2) of Theorem 1.2.

5. Proof of Theorem 1.3

Assume that a factorable surface of type 2 in \mathbb{I}^{3} fulfills the condition $H+$ $\lambda K=0, \lambda H K \neq 0, \lambda \in \mathbb{R}$. Then (3.1) and (4.1) give rise to
$\left(1+\left(f^{\prime} g\right)^{2}\right) f^{2} g^{\prime} g^{\prime \prime}+\left(f f^{\prime \prime}-2\left(f^{\prime}\right)^{2}\right) f^{2} g\left(g^{\prime}\right)^{3}+2 \lambda\left(f f^{\prime \prime} g g^{\prime \prime}-\left(f^{\prime} g^{\prime}\right)^{2}\right)=0$.
Due to $K \neq 0, f$ must be a non-constant function and therefore dividing (5.1) with $\left(f f^{\prime}\right)^{2}$ leads to

$$
\begin{equation*}
\left(\frac{1}{\left(f^{\prime}\right)^{2}}+g^{2}\right) g^{\prime} g^{\prime \prime}+\left(\frac{f f^{\prime \prime}}{\left(f^{\prime}\right)^{2}}-2\right) g\left(g^{\prime}\right)^{3}+2 \lambda\left[\left(\frac{f^{\prime \prime}}{f\left(f^{\prime}\right)^{2}}\right) g g^{\prime \prime}-\frac{\left(g^{\prime}\right)^{2}}{f^{2}}\right]=0 \tag{5.2}
\end{equation*}
$$

If $g^{\prime \prime}=0$, namely $g=c_{1} z+c_{2}, c_{1}, c_{2} \in \mathbb{R}, c_{1} \neq 0$, then (5.2) reduces to the following polynomial equation on z :

$$
\begin{equation*}
c_{1}^{2}\left(\frac{f f^{\prime \prime}}{\left(f^{\prime}\right)^{2}}-2\right) z+c_{1} c_{2}\left(\frac{f f^{\prime \prime}}{\left(f^{\prime}\right)^{2}}-2\right)-\frac{2 \lambda}{f^{2}}=0 \tag{5.3}
\end{equation*}
$$

All coefficients in (5.3) must be zero and this fact yields the contradiction $\lambda=0$. Then $g^{\prime \prime} \neq 0$ and, by dividing (5.2) with the product $g^{\prime} g^{\prime \prime}$, we get
$\frac{1}{\left(f^{\prime}\right)^{2}}+g^{2}-2 \frac{g\left(g^{\prime}\right)^{2}}{g^{\prime \prime}}+\left(\frac{f f^{\prime \prime}}{\left(f^{\prime}\right)^{2}}\right) \frac{g\left(g^{\prime}\right)^{2}}{g^{\prime \prime}}+2 \lambda\left[\left(\frac{f^{\prime \prime}}{f\left(f^{\prime}\right)^{2}}\right) \frac{g}{g^{\prime}}-\left(\frac{1}{f^{2}}\right) \frac{g^{\prime}}{g^{\prime \prime}}\right]=0$.
Putting $p=f^{\prime}, \dot{p}=\frac{d p}{d f}=\frac{f^{\prime \prime}}{f^{\prime}}$ and $r=g^{\prime}, \dot{r}=\frac{d r}{d g}=\frac{g^{\prime \prime}}{g^{\prime}}$, (5.4) turns to

$$
\begin{equation*}
\frac{1}{p^{2}}+g^{2}-2 \frac{g r}{\dot{r}}+\left(\frac{f \dot{p}}{p}\right) \frac{g r}{\dot{r}}+2 \lambda\left[\left(\frac{\dot{p}}{f p}\right) \frac{g}{r}-\left(\frac{1}{f^{2}}\right) \frac{1}{\dot{r}}\right]=0 . \tag{5.5}
\end{equation*}
$$

Taking partial derivatives of (5.5) with respect to f and g implies an equation in the following form:

$$
\begin{equation*}
A_{1}(f) B_{1}(g)+2 \lambda\left(A_{2}(f) B_{2}(g)-A_{3}(f) B_{3}(g)\right)=0 \tag{5.6}
\end{equation*}
$$

where

$$
\left\{\begin{array}{lll}
A_{1}(f)=\frac{d}{d f}\left(\frac{f \dot{p}}{p}\right), & A_{2}(f)=\frac{d}{d f}\left(\frac{\dot{p}}{f p}\right), & A_{3}(f)=\frac{d}{d f}\left(\frac{1}{f^{2}}\right) \tag{5.7}\\
B_{1}(g)=\frac{d}{d g}\left(\frac{g r}{\dot{r}}\right), & B_{2}(g)=\frac{d}{d g}\left(\frac{g}{r}\right), & B_{3}(g)=\frac{d}{d g}\left(\frac{1}{\dot{r}}\right)
\end{array}\right.
$$

If $B_{2}=0$, i.e., $r=c_{1} g, c_{1} \in \mathbb{R}, c_{1} \neq 0$, then (5.5) yields the following polynomial equation g :

$$
\begin{equation*}
\left(\frac{f \dot{p}}{p}-1\right) g^{2}+\frac{2 \lambda}{c_{1} f^{2}}\left(\frac{f \dot{p}}{p}-1\right)+\frac{1}{p^{2}}=0 . \tag{5.8}
\end{equation*}
$$

The fact that the coefficient of the term g^{2} in (5.8) must vanish leads to the contradiction $\frac{1}{p^{2}}=0$ and so we deduce $B_{2} \neq 0$. Nevertheless, due to $A_{3} \neq 0$, (5.6) can be divided by the product $A_{3} B_{2}$ as follows:

$$
\begin{equation*}
\underbrace{\left(\frac{A_{1}(f)}{A_{3}(f)}\right)}_{A_{4}(f)} \underbrace{\left(\frac{B_{1}(g)}{B_{2}(g)}\right)}_{B_{4}(g)}+2 \lambda(\underbrace{\frac{A_{2}(f)}{A_{3}(f)}}_{A_{5}(f)}-\underbrace{\frac{B_{3}(g)}{B_{2}(g)}}_{B_{5}(g)})=0, \tag{5.9}
\end{equation*}
$$

where the terms $A_{4}, A_{5}, B_{4}, B_{5}$ must be constant for every f and g. Since $A_{4}=c_{1}$ and $A_{5}=c_{2}$, by (5.7), we derive

$$
\begin{equation*}
\frac{f \dot{p}}{p}=\frac{c_{1}}{f^{2}}+c_{3} \tag{5.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\dot{p}}{f p}=\frac{c_{2}}{f^{2}}+c_{4}, c_{1}, \ldots, c_{4} \in \mathbb{R} \tag{5.11}
\end{equation*}
$$

After equalizing (5.10) and (5.11), we find

$$
\begin{equation*}
\frac{\dot{p}}{p}=\frac{c_{2}}{f}, c_{2}=c_{3}, \tag{5.12}
\end{equation*}
$$

where c_{2} must be non-vanishing. Otherwise, considering the situation that $\dot{p}=0, p(f)=c_{5} \in \mathbb{R}, c_{5} \neq 0$, into (5.5) gives

$$
\begin{equation*}
\frac{1}{c_{5}^{2}}+g^{2}-2 \frac{g r}{\dot{r}}-\left(\frac{2 \lambda}{\dot{r}}\right) \frac{1}{f^{2}}=0 \tag{5.13}
\end{equation*}
$$

The coefficient of the term $\frac{1}{f^{2}}$ in (5.13) cannot vanish and this leads to a contradiction. So, by (5.12), we derive $A_{1}=0$ and (5.9) reduces to

$$
\begin{equation*}
c_{2} B_{2}(g)-B_{3}(g)=0 . \tag{5.14}
\end{equation*}
$$

An integration of (5.14) yields

$$
\begin{equation*}
c_{2} \frac{g}{r}-\frac{1}{\dot{r}}=c_{6}, c_{6} \in \mathbb{R} \tag{5.15}
\end{equation*}
$$

Substituting (5.12) and (5.15) into (5.5) leads to

$$
\begin{equation*}
\frac{1}{p^{2}}+\frac{2 \lambda c_{6}}{f^{2}}+g^{2}+\left(c_{2}-2\right) \frac{g r}{\dot{r}}=0 . \tag{5.16}
\end{equation*}
$$

By revisiting (5.12), we obtain $p=c_{7} f^{c_{2}}, c_{7} \in \mathbb{R}, c_{7} \neq 0$ and considering this one into (5.16)

$$
\begin{equation*}
\frac{1}{c_{7}^{2} f^{2 c_{2}}}+\frac{2 \lambda c_{6}}{f^{2}}+g^{2}+\left(c_{2}-2\right) \frac{g r}{\dot{r}}=0 . \tag{5.17}
\end{equation*}
$$

Due to the fact that f is an independent variable in (5.17), we conclude

$$
\begin{equation*}
c_{2}=1 \text { and } \frac{1}{c_{7}^{2}}+2 \lambda c_{6}=0 \tag{5.18}
\end{equation*}
$$

Thereby, (5.17) reduces to

$$
\begin{equation*}
g^{2}-\frac{g r}{\dot{r}}=0 \tag{5.19}
\end{equation*}
$$

Comparing (5.19) with (5.15) yields $c_{6}=0$ which contradicts with (5.18).

6. Some examples

We illustrate several examples relating to the factorable surfaces of type 2 in \mathbb{I}^{3} with K, H constants.

Example 6.1. Consider the factorable surfaces of type 2 in \mathbb{I}^{3} given by
(1) $\Phi_{3}: x(y, z)=y \tan z,(y, z) \in\left[0, \frac{\pi}{3}\right]$, (isotropic minimal),
(2) $\Phi_{3}: x(y, z)=-\sqrt{z},(y, z) \in[0,2 \pi],(H=-1)$,
(3) $\Phi_{3}: x(y, z)=-\frac{y^{2}}{4 z},(y, z) \in[1,1.4] \times[1,2 \pi]$, (isotropic flat),
(4) $\Phi_{3}: x(y, z)=\frac{z}{y},(y, z) \in[1, \pi] \times[1,2 \pi],(K=-1)$.

These surfaces can be respectively drawn by as in Figs. 1-4.

Figure 1. An isotropic minimal factorable surface of type 2.

Figure 2. A factorable surface of type 2 with $H=-1$.

Figure 3. An isotropic flat factorable surface of type 2.

Figure 4. A factorable surface of type 2 with $K=-1$.

Acknowledgement. The author would like to thank the referee for his/her careful reading and useful suggestions. All figures in this paper are plotted by using Wolfram Mathematica 7.0.

References

[1] M. E. Aydin and M. Ergut, Isotropic geometry of graph surfaces associated with product production functions in economics, Tamkang J. Math. 47 (2016), no. 4, 433-443.
[2] M. E. Aydin and A. O. Ogrenmis, Homothetical and translation hypersurfaces with constant curvature in the isotropic space, In: Proceedings of the Balkan Society of Geometers, vol. 23, pp. 1-10, 2015.
[3] , Linear Weingarten factorable surfaces in isotropic spaces, Stud. Univ. BabesBolyai Math. 62 (2017), no. 2, 261-268.
[4] M. Bekkar and B. Senoussi, Factorable surfaces in the three-dimensional Euclidean and Lorentzian spaces satisfying $\triangle r_{i}=\lambda_{i} r_{i}$, J. Geom. 103 (2012), no. 1, 17-29.
[5] B. Y. Chen, S. Decu, and L. Verstraelen, Notes on isotropic geometry of production models, Kragujevac J. Math. 38 (2014), no. 1, 23-33.
[6] S. Decu and L. Verstraelen, A note on the isotropical geometry of production surfaces, Kragujevac J. Math. 37 (2013), no. 2, 217-220.
[7] F. Dillen, I. Van de Woestyne, L. Verstraelen, and J. T. Walrave, The surface of Scherk in $E^{3}:$ A special case in the class of minimal surfaces defined as the sum of two curves, Bull. Inst. Math. Acad. Sin. 26 (1998), no. 4, 257-267.
[8] F. Dillen, W. Goemans, and I. Van de Woestyne, Translation surfaces of Weingarten type in 3-space, Bull. Transilv. Univ. Braşov Ser. III 1(50) (2008), 109-122.
[9] W. Goemans and I. Van de Woestyne, Translation and homothetical lightlike hypersurfaces of semi-Euclidean space, Kuwait J. Sci. Engrg. 38 (2011), no. 2A, 35-42.
[10] L. Jiu and H. Sun, On minimal homothetical hypersurfaces, Colloq. Math. 109 (2007), no. 2, 239-249.
[11] H. Liu, Translation surfaces with constant mean curvature in 3-dimensional spaces, J. Geom. 64 (1999), no. 1-2, 141-149.
[12] R. Lopéz, Minimal translation surfaces in hyperbolic space, Beitr. Algebra Geom. 52 (2011), no. 1, 105-112.
[13] R. Lopéz and M. I. Munteanu, Minimal translation surfaces in Sol 3 , J. Math. Soc. Japan 64 (2012), no. 3, 985-1003.
[14] R. Lopéz and M. Moruz, Translation and homothetical surfaces in Euclidean space with constant curvature, J. Korean Math. Soc. 52 (2015), no. 3, 523-535.
[15] H. Meng and H. Liu, Factorable surfaces in Minkowski space, Bull. Korean Math. Soc. 46 (2009), no. 1, 155-169.
[16] Z̆. Milin-S̆ipus̆, Translation surfaces of constant curvatures in a simply isotropic space, Period. Math. Hungar. 68 (2014), no. 2, 160-175.
[17] M. I. Munteanu, O. Palmas, and G. Ruiz-Hernández, Minimal translation hypersurfaces in Euclidean spaces, Mediterr. J. Math. 13 (2016), no. 5, 2659-2676.
[18] H. Pottmann and K. Opitz, Curvature analysis and visualization for functions defined on Euclidean spaces or surfaces, Comput. Aided Geom. Design 11 (1994), no. 6, 655674.
[19] H. Pottmann, P. Grohs, and N. J. Mitra, Laguerre minimal surfaces, isotropic geometry and linear elasticity, Adv. Comput. Math. 31 (2009), no. 4, 391-419.
[20] H. Sachs, Isotrope Geometrie des Raumes, Vieweg Verlag, Braunschweig, 1990.
[21] I. Van de Woestyne, Minimal homothetical hypersurfaces of a semi-Euclidean space, Results. Math. 27 (1995), 333-342.
[22] D. W. Yoon, Minimal translation surfaces in $\mathbb{H}^{2} \times \mathbb{R}$, Taiwanese J. Math. 17 (2013), no. 5, 1545-1556.
[23] D. W. Yoon and J. W. Lee, Translation invariant surfaces in the 3-dimensional Heisenberg group, Bull. Iranian Math. Soc. 40 (2014), no. 6, 1373-1385.
[24] Y. Yu and H. Liu, The factorable minimal surfaces, Proceedings of the Eleventh International Workshop on Differential Geometry, 33-39, Kyungpook Nat. Univ., Taegu, 2007.
[25] P. Zong, L. Xiao, and H. L. Liu, Affine factorable surfaces in three-dimensional Euclidean space, Acta Math. Sinica (Chin. Ser.) 58 (2015), no. 2, 329-336.

Muhittin Evren Aydin
Department of Mathematics
Faculty of Science
Firat University
Elazig, 23200, Turkey
E-mail address: meaydin@firat.edu.tr

[^0]: Received December 3, 2016; Revised April 24, 2017; Accepted June 19, 2017.
 2010 Mathematics Subject Classification. 53A35, 53A40, 53B25.
 Key words and phrases. isotropic space, factorable surface, isotropic mean curvature, isotropic Gaussian curvature.

