J. Korean Math. Soc. **55** (2018), No. 1, pp. 59–71 https://doi.org/10.4134/JKMS.j160767 pISSN: 0304-9914 / eISSN: 2234-3008

CONSTANT CURVATURE FACTORABLE SURFACES IN 3-DIMENSIONAL ISOTROPIC SPACE

Muhittin Evren Aydın

ABSTRACT. In the present paper, we study and classify factorable surfaces in a 3-dimensional isotropic space with constant isotropic Gaussian (K) and mean curvature (H). We provide a non-existence result relating to such surfaces satisfying $\frac{H}{K} = const$. Several examples are also illustrated.

1. Introduction

Let \mathbb{E}^3 be a 3-dimensional Euclidean space and (x, y, z) rectangular coordinates. A surface in \mathbb{E}^3 is said to be *factorable* (so-called *homothetical*) if it is a graph of the form z(x, y) = f(x)g(y), where f and g are smooth functions (see [4, 14]). Such surfaces in \mathbb{E}^3 with constant Gaussian (K) and mean curvature (H) were obtained in [10, 14, 24].

As more general case, Zong et al. [25] defined that an *affine factorable surface* in \mathbb{E}^3 is a graph of the form

$$z(x,y) = f(x)g(y+ax), \ a \neq 0$$

and classified these ones with K, H constants.

A surface in a 3-dimensional Minkowski space \mathbb{E}_1^3 is said to be *factorable* if it can be expressed by one of the explicit forms ([15])

$$\Phi_{1}: z(x,y) = f(x) g(y), \ \Phi_{2}: y(x,z) = f(x) g(z), \ \Phi_{3}: x(y,z) = f(y) g(z).$$

Up to the causal characters of the directions, six different classes of these surfaces in \mathbb{E}_1^3 appear. The surfaces in \mathbb{E}_1^3 with K, H constants were described in [9, 15, 21].

In 3-dimensional context, the factorable surfaces are closely connected with translation surfaces, namely the surfaces generated by translating of two curves. For instance; in the homogeneous Riemannian space $\mathbb{H}^2 \times \mathbb{R}$ that is a Lie group, up to its group operation, a translation surface of type 2 is a graph of the form

 $\odot 2018$ Korean Mathematical Society

59

Received December 3, 2016; Revised April 24, 2017; Accepted June 19, 2017.

²⁰¹⁰ Mathematics Subject Classification. 53A35, 53A40, 53B25.

Key words and phrases. isotropic space, factorable surface, isotropic mean curvature, isotropic Gaussian curvature.

y(x,z) = f(x)g(z) (see [22]). For more details, we refer to [7,8], [11–13], [17,23].

Besides the Minkowskian space, a 3-dimensional isotropic space \mathbb{I}^3 provides two different types of the factorable surfaces. This special ambient space which is one of the real Cayley-Klein spaces is the product of the *xy*-plane and the isotropic *z*-direction with a degenerate parabolic distance metric (cf. [5]).

Due to the absolute figure of \mathbb{I}^3 , the factorable surface Φ_1 distinctly behaves from others. We call it *factorable surface of type 1* (see [1–3]). The surfaces Φ_2 , Φ_3 in \mathbb{I}^3 are locally isometric and, up to a sign, have same second fundamental form. This means to have same isotropic Gaussian K and, up to a sign, mean curvature H. These surfaces are said to be of *type 2*.

In this manner we are mainly interested in the factorable surfaces of type 2 in \mathbb{I}^3 . We describe such surfaces in \mathbb{I}^3 with K, H, H/K constants by the following results:

Theorem 1.1. A factorable surface of type $2(\Phi_3)$ in \mathbb{I}^3 has constant isotropic mean curvature H_0 if and only if, up to suitable translations and constants, one of the following occurs:

(i) If Φ₃ is isotropic minimal, i.e., H₀ = 0;
(i.1) Φ₃ is a non-isotropic plane,
(i.2) x (y, z) = y tan (cz),
(i.3) x (y, z) = c^z/_y.
(ii) Otherwise (H₀ ≠ 0), x (y, z) = ±√(-z/H₀),

where c is some nonzero constant.

Theorem 1.2. A factorable surface of type $2(\Phi_3)$ in \mathbb{I}^3 has constant isotropic Gaussian curvature K_0 if and only if, up to suitable translations and constants, one of the following holds:

(i) If
$$\Phi_3$$
 is isotropic flat, i.e., $K_0 = 0$;
(i.1) $x(y,z) = c_1g(z), \frac{dg}{dz} \neq 0$,
(i.2) $x(y,z) = c_1e^{c_2y+c_3z}$,
(i.3) $x(y,z) = c_1y^{c_2}z^{c_3}, c_2 + c_3 = 1$.
(ii) Otherwise $(K_0 \neq 0)$;
(ii.1) K_0 is negative and $x(y,z) = \pm \frac{z}{\sqrt{-K_y}}$,
(ii.2) $x(y,z) = \frac{c_1}{y}g(z)$ for

$$z = \pm \int \left(c_2 g^{-1} - \frac{K_0}{c_1^2} \right)^{1/2} dg,$$

where c_1, c_2, c_3 are some nonzero constants.

Theorem 1.3. There does not exist a factorable surface of type 2 in \mathbb{I}^3 that satisfies $\frac{H}{K} = \text{const.} \neq 0$.

60

We point out that the above results are also valid for the factorable surface Φ_2 in \mathbb{I}^3 by replacing x with y as well as taking $y = \pm \sqrt{\frac{z}{H_0}}$ in the last statement of Theorem 1.1.

2. Preliminaries

For detailed properties of isotropic spaces, see [6, 16], [18-20].

Let $P(\mathbb{R}^3)$ be a real 3-dimensional projective space and $(x_0 : x_1 : x_2 : x_3)$ denote the projective coordinates in $P(\mathbb{R}^3)$. A 3-dimensional *isotropic space* \mathbb{I}^3 is a Cayley-Klein space obtained from $P(\mathbb{R}^3)$ such that its *absolute figure* consists of a plane (*absolute plane*) ω and complex-conjugate straight lines (*absolute lines*) l_1, l_2 in ω . In coordinate form, ω is given by $x_0 = 0$ and l_1, l_2 by $x_0 = x_1 \pm ix_2 = 0$. The *absolute point*, (0:0:0:1), is the intersection of the absolute lines.

For $x_0 \neq 0$, we have the affine coordinates by $x = \frac{x_1}{x_0}$, $y = \frac{x_2}{x_0}$, $z = \frac{x_3}{x_0}$. The group of motions of \mathbb{I}^3 is given by

(2.1)
$$(x, y, z) \longmapsto (x', y', z') : \begin{cases} x' = a_1 + x \cos \phi - y \sin \phi, \\ y' = a_2 + x \sin \phi + y \cos \phi, \\ z' = a_3 + a_4 x + a_5 y + z, \end{cases}$$

where $a_1, \ldots, a_5, \phi \in \mathbb{R}$. The *isotropic metric* that is an invariant of (2.1) is induced by the absolute figure, namely $ds^2 = dx^2 + dy^2$.

There are two types of the lines and the planes in \mathbb{I}^3 arising from its absolute figure: The lines parallel (resp. non-parallel) to z-direction are said to be *isotropic* (resp. *non-isotropic*). A plane is said to be *isotropic* if it involves an isotropic line. Otherwise it is called *non-isotropic plane* or *Euclidean plane*. For example the equations ax + by + cz = 0 ($a, b, c \in \mathbb{R}$, $c \neq 0$) and ax + by = 0 determine a non-isotropic plane and an isotropic plane, respectively.

We restrict our framework to regular surfaces whose the tangent plane at each point is non-isotropic, namely *admissible surfaces*.

Let M be a regular admissible surface in \mathbb{I}^3 locally parameterized by

$$r(u, v) = (x(u, v), y(u, v), z(u, v))$$

for a coordinate pair (u, v). The components E, F, G of the first fundamental form of M in \mathbb{I}^3 are computed by the induced metric from \mathbb{I}^3 . The unit normal vector of M is the unit vector parallel to the z-direction. The components of the second fundamental form II of M are given by

$$l = \frac{\det(r_{uu}, r_u, r_v)}{\sqrt{EG - F^2}}, \ m = \frac{\det(r_{uv}, r_u, r_v)}{\sqrt{EG - F^2}}, \ n = \frac{\det(r_{vv}, r_u, r_v)}{\sqrt{EG - F^2}}.$$

Accordingly, the *isotropic Gaussian* (or *relative*) and *mean curvature* of M are respectively defined by

$$K = \frac{ln - m^2}{EG - F^2}, \ H = \frac{En - 2Fm + Gl}{2(EG - F^2)}.$$

M. E. AYDIN

A surface in \mathbb{I}^3 is said to be *isotropic minimal* (resp. *flat*) if H (resp. K) vanishes identically. Further, it is said to have constant isotropic mean (resp. Gaussian) curvature if H (resp. K) is a constant function on whole surface.

3. Proof of Theorem 1.1

A factorable surface of type 2 in \mathbb{I}^3 can be locally expressed by either

$$\Phi_{2}: r(x, z) = (x, f(x) g(z), z) \text{ or } \Phi_{3}: r(y, z) = (f(y) g(z), y, z).$$

All over this paper, all calculations shall be done for the surface Φ_3 . Its first fundamental form in \mathbb{I}^3 turns to

$$ds^{2} = \left(1 + (f'g)^{2}\right)dy^{2} + 2(fgf'g')\,dydz + (fg')^{2}\,dz^{2},$$

where $f' = \frac{df}{dy}$, $g' = \frac{dg}{dz}$. Note that g' must be nonzero to obtain a regular admissible surface. By a calculation for the second fundamental form of Φ_3 we have

$$II = \left(\frac{f''g}{fg'}\right)dy^2 + 2\left(\frac{f'}{f}\right)dydz + \left(\frac{g''}{g'}\right)dz^2, \ g' \neq 0.$$

Therefore, the isotropic mean curvature H of Φ_3 becomes

(3.1)
$$H = \frac{\left(\left(f'g\right)^2 + 1\right)g'' + \left(ff'' - 2\left(f'\right)^2\right)g\left(g'\right)^2}{2f^2\left(g'\right)^3}$$

Let us assume that $H = H_0 = const$. First we distinguish the case in which Φ_3 is isotropic minimal:

Case A: $H_0 = 0.$ (3.1) reduces to

(3.2)
$$\left(\left(f'g \right)^2 + 1 \right) g'' + \left(ff'' - 2 \left(f' \right)^2 \right) g \left(g' \right)^2 = 0.$$

We have three cases in order to solve (3.2):

Case A.1. $f = f_0 \neq 0 \in \mathbb{R}$. (3.2) immediately implies $g = c_1 z + c_2, c_1, c_2 \in \mathbb{R}$, and thus we deduce that Φ_3 is a non-isotropic plane. This gives the statement (i.1) of Theorem 1.1.

Case A.2. $f = c_1 y + c_2, c_1, c_2 \in \mathbb{R}, c_1 \neq 0.$ (3.2) turns to

$$\frac{g''}{g'} = \frac{2c_1^2 gg'}{1 + (c_1 g)^2}.$$

By solving this one, we obtain

$$g = \frac{1}{c_1} \tan(c_2 z + c_3), \ c_2, c_3 \in \mathbb{R}, \ c_2 \neq 0,$$

which proves the statement (i.2) of Theorem 1.1.

Case A.3. $f'' \neq 0$. By dividing (3.2) with $g(g')^2$ one can be rewritten as

(3.3)
$$\left(\left(f'g \right)^2 + 1 \right) \frac{g''}{g\left(g' \right)^2} + ff'' - 2\left(f' \right)^2 = 0.$$

Taking partial derivative of (3.3) with respect to z and after dividing with $(f')^2$, we get

(3.4)
$$2\frac{g''}{g'} + \left(\frac{1}{(f')^2} + g^2\right) \left(\frac{g''}{g(g')^2}\right)' = 0.$$

By taking partial derivative of (3.4) with respect to y, we find $g'' = c_1 g (g')^2$, $c_1 \in \mathbb{R}$. We have two cases: **Case A.3.1.** $c_1 = 0$. (3.3) reduces to

(3.5)
$$ff'' - 2(f')^2 = 0.$$

By solving (3.5) we derive

$$f = -\frac{1}{c_2 y + c_3}, \ c_2, c_3 \in \mathbb{R}, \ c_2 \neq 0.$$

This implies the statement (i.3) of Theorem 1.1.

Case A.3.2. $c_1 \neq 0.$ (3.4) immediately leads to the contradiction $2c_1gg' =$ 0.

Case B: $H_0 \neq 0$. We have cases: **Case B.1.** $f = f_0 \neq 0 \in \mathbb{R}$. Then (3.1) follows

(3.6)
$$2H_0 f_0^2 = \frac{g''}{(g')^3}$$

Solving it gives $g(z) = \pm \frac{1}{2H_0 f_0^2} \sqrt{-4H_0 f_0^2 z + c_1} + c_2, c_1, c_2 \in \mathbb{R}.$ This is the proof of the statement (ii) of Theorem 1.1.

Case B.2. $f = c_1 y + c_2, c_1, c_2 \in \mathbb{R}, c_1 \neq 0$. By considering this one into (3.1) we conclude

(3.7)
$$2(c_1y+c_2)^2 H_0 = \left(1+c_1^2g^2\right)\frac{g''}{(g')^3} - 2c_1^2\frac{g}{g'}.$$

The left side in (3.7) is a function of y while other side is either a constant or a function of z. This is not possible.

Case B.3. $f'' \neq 0$. By multiplying both side of (3.1) with $2f^2 \frac{g'}{q}$ one can be rearranged as

(3.8)
$$2H_0 f^2 \frac{g'}{g} = \left(\left(f'g\right)^2 + 1 \right) \frac{g''}{g\left(g'\right)^2} + ff'' - 2\left(f'\right)^2.$$

Taking partial derivative of (3.8) with respect to z and thereafter dividing with $(f')^2$ yields

(3.9)
$$2H_0\left(\frac{f}{f'}\right)^2 \left(\frac{g'}{g}\right)' = 2\frac{g''}{g'} + \left(\frac{1}{(f')^2} + g^2\right) \left(\frac{g''}{g(g')^2}\right)'.$$

It is obvious in (3.9) that $g'' \neq 0$. To solve (3.9) we have two cases:

Case B.3.1. $g'' = c_1 g (g')^2$, $c_1 \in \mathbb{R}$, $c_1 \neq 0$. This implies that

(3.10)
$$g' = e^{\frac{c_1}{2}g^2 + c_2}, \ c_2 \in \mathbb{R}.$$

Substituting (3.10) into (3.9) gives an equation in the following form:

$$\left(c_1 e^{\frac{-c_1}{2}g^2 - c_2}\right)g^3 - \left(c_1 H_0\left(\frac{f}{f'}\right)^2\right)g^2 + H_0\left(\frac{f}{f'}\right)^2 = 0,$$

where all coefficients with respect to g must be zero and this

is a contradiction. **Case B.3.2.** $\left(\frac{g''}{g(g')^2}\right)' \neq 0$. By dividing (3.9) with $\left(\frac{g''}{g(g')^2}\right)'$, it turns to the following form:

$$A_{1}(y) B_{1}(z) = A_{2}(y) + B_{2}(z),$$

where

$$A_{1}(y) = 2H_{0}\left(\frac{f}{f'}\right)^{2}, \quad A_{2}(y) = \frac{1}{(f')^{2}},$$
$$B_{1}(z) = \frac{\left(\frac{g'}{g}\right)'}{\left(\frac{g''}{g(g')^{2}}\right)'}, \quad B_{2}(z) = 2\frac{g''}{g'} + g^{2}.$$

The fact that all terms in (3.11) must be constant for every y and z yields $A_2(y) = \frac{1}{(f')^2} = const.$, which contradicts with the assumption of Case B.3.

4. Proof of Theorem 1.2

By a calculation for a factorable graph of type 2 in \mathbb{I}^3 , the isotropic Gaussian curvature turns to

(4.1)
$$K = \frac{fgf''g'' - (f'g')^2}{(fg')^4}.$$

Let us assume that $K = K_0 = const$. We have cases:

Case A: $K_0 = 0.$ (4.1) reduces to

(4.2)
$$fgf''g'' - (f'g')^2 = 0.$$

f or g constants are solutions for (4.2) and by regularity we have the statement (i.1) of Theorem 1.2. Suppose that f, g are non-constants. Then (4.2) yields $f''g'' \neq 0$. Thereby (4.2) can be arranged as

(4.3)
$$\frac{ff''}{(f')^2} = \frac{(g')^2}{gg''}.$$

64

(3.11)

Both sides of (4.3) are equal to same nonzero constant, namely

(4.4)
$$ff'' - c_1 (f')^2 = 0 \text{ and } gg'' - \frac{1}{c_1} (g')^2 = 0.$$

If $c_1 = 1$ in (4.4), then by solving it we obtain

$$f(y) = c_2 e^{c_3 y}$$
 and $g(z) = c_4 e^{c_5 z}, c_2, \dots, c_5 \in \mathbb{R}$.

This gives the statement (i.2) of Theorem 1.2. Otherwise, i.e., $c_1 \neq 1$ in (4.4), we derive

$$f(y) = ((1 - c_1) (c_6 y + c_7))^{\frac{1}{1 - c_1}}$$
 and $g(z) = \left(\left(\frac{c_1 - 1}{c_1}\right) (c_8 z + c_9)\right)^{\frac{c_1}{c_1 - 1}}$,

where $c_6, \ldots, c_9 \in \mathbb{R}$. This completes the proof of the statement (i) of Theorem 1.2.

Case B : $K_0 \neq 0$. (4.1) can be rewritten as

(4.5)
$$K_0(g')^2 = \frac{f''}{f^3} \left(\frac{gg''}{(g')^2}\right) - \left(\frac{f'}{f^2}\right)^2.$$

Taking partial derivative of (4.5) with respect to z leads to

(4.6)
$$2K_0 g' g'' = \frac{f''}{f^3} \left(\frac{gg''}{(g')^2}\right)'.$$

We have two cases for (4.6):

Case B.1. The situaton that g'' = 0, $g(z) = c_1 z + c_2$, $c_1, c_2 \in \mathbb{R}$, is a solution for (4.6). Hence, from (4.5), we deduce

$$K_0(c_1)^2 = -\left(\frac{f'}{f^2}\right)^2,$$

which implies that K_0 is negative and

$$f(y) = \frac{1}{\pm c_1 \sqrt{-K_0} y + c_3}.$$

This proves the statement (ii.1) of Theorem 1.2. Case B.2. $g'' \neq 0$. (4.6) immediately implies

(4.7)
$$f'' = c_1 f^3, \ c_1 \in \mathbb{R}, \ c_1 \neq 0.$$

Considering (4.7) into (4.5) yields to

(4.8)
$$f' = c_2 f^2, \ c_2 \in \mathbb{R}, \ c_2 \neq 0.$$

It follows from (4.7) and (4.8) that $c_1 = 2c_2^2$ and

$$f\left(y\right) = -\frac{1}{c_2y + c_3}$$

for some constant c_3 . Nevertheless, by substituting (4.7) and (4.8) into (4.5), we conclude

(4.9)
$$\frac{K_0}{c_2^2}r^3 + r = 2g\dot{r},$$

where r = g' and $\dot{r} = \frac{dr}{dg} = \frac{g''}{g'}$. After solving (4.9) we obtain

$$r = \pm \left(c_4^2 g^{-1} - \frac{K_0}{c_2^2} \right)^{-1/2}, \ c_4 \in \mathbb{R}, \ c_4 \neq 0,$$

or

$$z = \pm \int \left(c_4^2 g^{-1} - \frac{K_0}{c_2^2} \right)^{1/2} dg,$$

which proves the statement (ii.2) of Theorem 1.2.

5. Proof of Theorem 1.3

Assume that a factorable surface of type 2 in \mathbb{I}^3 fulfills the condition $H + \lambda K = 0$, $\lambda H K \neq 0$, $\lambda \in \mathbb{R}$. Then (3.1) and (4.1) give rise to (5.1)

$$\left(1 + (f'g)^2\right)f^2g'g'' + \left(ff'' - 2(f')^2\right)f^2g(g')^3 + 2\lambda\left(ff''gg'' - (f'g')^2\right) = 0.$$

Due to $K \neq 0$, f must be a non-constant function and therefore dividing (5.1) with $(ff')^2$ leads to (5.2)

$$\left(\frac{1}{(f')^2} + g^2\right)g'g'' + \left(\frac{ff''}{(f')^2} - 2\right)g(g')^3 + 2\lambda\left[\left(\frac{f''}{f(f')^2}\right)gg'' - \frac{(g')^2}{f^2}\right] = 0.$$

If g'' = 0, namely $g = c_1 z + c_2$, $c_1, c_2 \in \mathbb{R}$, $c_1 \neq 0$, then (5.2) reduces to the following polynomial equation on z:

(5.3)
$$c_1^2 \left(\frac{ff''}{(f')^2} - 2 \right) z + c_1 c_2 \left(\frac{ff''}{(f')^2} - 2 \right) - \frac{2\lambda}{f^2} = 0.$$

All coefficients in (5.3) must be zero and this fact yields the contradiction $\lambda = 0$. Then $g'' \neq 0$ and, by dividing (5.2) with the product g'g'', we get (5.4)

$$\frac{1}{(f')^2} + g^2 - 2\frac{g(g')^2}{g''} + \left(\frac{ff''}{(f')^2}\right)\frac{g(g')^2}{g''} + 2\lambda \left[\left(\frac{f''}{f(f')^2}\right)\frac{g}{g'} - \left(\frac{1}{f^2}\right)\frac{g'}{g''}\right] = 0.$$

Putting $p = f', \dot{p} = \frac{dp}{df} = \frac{f''}{f'}$ and $r = g', \dot{r} = \frac{dr}{dg} = \frac{g''}{g'}$, (5.4) turns to

(5.5)
$$\frac{1}{p^2} + g^2 - 2\frac{gr}{\dot{r}} + \left(\frac{f\dot{p}}{p}\right)\frac{gr}{\dot{r}} + 2\lambda\left[\left(\frac{\dot{p}}{fp}\right)\frac{g}{r} - \left(\frac{1}{f^2}\right)\frac{1}{\dot{r}}\right] = 0$$

Taking partial derivatives of (5.5) with respect to f and g implies an equation in the following form:

(5.6)
$$A_{1}(f) B_{1}(g) + 2\lambda (A_{2}(f) B_{2}(g) - A_{3}(f) B_{3}(g)) = 0,$$

where

(5.7)
$$\begin{cases} A_1(f) = \frac{d}{df} \left(\frac{f\dot{p}}{p}\right), & A_2(f) = \frac{d}{df} \left(\frac{\dot{p}}{fp}\right), & A_3(f) = \frac{d}{df} \left(\frac{1}{f^2}\right), \\ B_1(g) = \frac{d}{dg} \left(\frac{gr}{\dot{r}}\right), & B_2(g) = \frac{d}{dg} \left(\frac{g}{r}\right), & B_3(g) = \frac{d}{dg} \left(\frac{1}{\dot{r}}\right). \end{cases}$$

If $B_2 = 0$, i.e., $r = c_1 g$, $c_1 \in \mathbb{R}$, $c_1 \neq 0$, then (5.5) yields the following polynomial equation g:

(5.8)
$$\left(\frac{f\dot{p}}{p}-1\right)g^2 + \frac{2\lambda}{c_1f^2}\left(\frac{f\dot{p}}{p}-1\right) + \frac{1}{p^2} = 0.$$

The fact that the coefficient of the term g^2 in (5.8) must vanish leads to the contradiction $\frac{1}{p^2} = 0$ and so we deduce $B_2 \neq 0$. Nevertheless, due to $A_3 \neq 0$, (5.6) can be divided by the product A_3B_2 as follows:

(5.9)
$$\underbrace{\left(\frac{A_{1}(f)}{A_{3}(f)}\right)\left(\frac{B_{1}(g)}{B_{2}(g)}\right)}_{A_{4}(f)} + 2\lambda \left(\underbrace{\frac{A_{2}(f)}{B_{2}(g)}}_{B_{4}(g)} - \underbrace{\frac{B_{3}(g)}{B_{2}(g)}}_{B_{5}(g)}\right) = 0,$$

where the terms A_4, A_5, B_4, B_5 must be constant for every f and g. Since $A_4 = c_1$ and $A_5 = c_2$, by (5.7), we derive

(5.10)
$$\frac{f\dot{p}}{p} = \frac{c_1}{f^2} + c_3$$

and

(5.11)
$$\frac{\dot{p}}{fp} = \frac{c_2}{f^2} + c_4, \ c_1, \dots, c_4 \in \mathbb{R}.$$

After equalizing (5.10) and (5.11), we find

(5.12)
$$\frac{\dot{p}}{p} = \frac{c_2}{f}, \ c_2 = c_3,$$

where c_2 must be non-vanishing. Otherwise, considering the situation that $\dot{p} = 0, p(f) = c_5 \in \mathbb{R}, c_5 \neq 0$, into (5.5) gives

(5.13)
$$\frac{1}{c_5^2} + g^2 - 2\frac{gr}{\dot{r}} - \left(\frac{2\lambda}{\dot{r}}\right)\frac{1}{f^2} = 0.$$

The coefficient of the term $\frac{1}{f^2}$ in (5.13) cannot vanish and this leads to a contradiction. So, by (5.12), we derive $A_1 = 0$ and (5.9) reduces to

(5.14)
$$c_2 B_2(g) - B_3(g) = 0.$$

An integration of (5.14) yields

(5.15)
$$c_2 \frac{g}{r} - \frac{1}{\dot{r}} = c_6, \ c_6 \in \mathbb{R}.$$

Substituting (5.12) and (5.15) into (5.5) leads to

(5.16)
$$\frac{1}{p^2} + \frac{2\lambda c_6}{f^2} + g^2 + (c_2 - 2)\frac{gr}{\dot{r}} = 0.$$

By revisiting (5.12), we obtain $p = c_7 f^{c_2}, c_7 \in \mathbb{R}, c_7 \neq 0$ and considering this one into (5.16)

(5.17)
$$\frac{1}{c_7^2 f^{2c_2}} + \frac{2\lambda c_6}{f^2} + g^2 + (c_2 - 2)\frac{gr}{\dot{r}} = 0.$$

Due to the fact that f is an independent variable in (5.17), we conclude

(5.18)
$$c_2 = 1 \text{ and } \frac{1}{c_7^2} + 2\lambda c_6 = 0.$$

Thereby, (5.17) reduces to

(5.19)
$$g^2 - \frac{gr}{\dot{r}} = 0.$$

Comparing (5.19) with (5.15) yields $c_6 = 0$ which contradicts with (5.18).

6. Some examples

We illustrate several examples relating to the factorable surfaces of type 2 in \mathbb{I}^3 with K, H constants.

Example 6.1. Consider the factorable surfaces of type 2 in \mathbb{I}^3 given by

- (1) $\Phi_3: x(y,z) = y \tan z, (y,z) \in \left[0, \frac{\pi}{3}\right]$, (isotropic minimal),
- (2) $\Phi_3: x(y,z) = -\sqrt{z}, (y,z) \in [0,2\pi], (H = -1),$ (3) $\Phi_3: x(y,z) = -\frac{y^2}{4z}, (y,z) \in [1,1.4] \times [1,2\pi], (\text{isotropic flat}),$ (4) $\Phi_3: x(y,z) = \frac{z}{y}, (y,z) \in [1,\pi] \times [1,2\pi], (K = -1).$

These surfaces can be respectively drawn by as in Figs. 1-4.

FIGURE 1. An isotropic minimal factorable surface of type 2.

FIGURE 2. A factorable surface of type 2 with H = -1.

FIGURE 3. An isotropic flat factorable surface of type 2.

FIGURE 4. A factorable surface of type 2 with K = -1.

Acknowledgement. The author would like to thank the referee for his/her careful reading and useful suggestions. All figures in this paper are plotted by using Wolfram Mathematica 7.0.

References

 M. E. Aydin and M. Ergut, Isotropic geometry of graph surfaces associated with product production functions in economics, Tamkang J. Math. 47 (2016), no. 4, 433–443.

M. E. AYDIN

- [2] M. E. Aydin and A. O. Ogrenmis, Homothetical and translation hypersurfaces with constant curvature in the isotropic space, In: Proceedings of the Balkan Society of Geometers, vol. 23, pp. 1–10, 2015.
- [3] _____, Linear Weingarten factorable surfaces in isotropic spaces, Stud. Univ. Babes-Bolyai Math. 62 (2017), no. 2, 261–268.
- [4] M. Bekkar and B. Senoussi, Factorable surfaces in the three-dimensional Euclidean and Lorentzian spaces satisfying △r_i = λ_ir_i, J. Geom. **103** (2012), no. 1, 17–29.
- [5] B. Y. Chen, S. Decu, and L. Verstraelen, Notes on isotropic geometry of production models, Kragujevac J. Math. 38 (2014), no. 1, 23–33.
- [6] S. Decu and L. Verstraelen, A note on the isotropical geometry of production surfaces, Kragujevac J. Math. 37 (2013), no. 2, 217–220.
- [7] F. Dillen, I. Van de Woestyne, L. Verstraelen, and J. T. Walrave, The surface of Scherk in E³: A special case in the class of minimal surfaces defined as the sum of two curves, Bull. Inst. Math. Acad. Sin. 26 (1998), no. 4, 257–267.
- [8] F. Dillen, W. Goemans, and I. Van de Woestyne, Translation surfaces of Weingarten type in 3-space, Bull. Transilv. Univ. Braşov Ser. III 1(50) (2008), 109–122.
- W. Goemans and I. Van de Woestyne, Translation and homothetical lightlike hypersurfaces of semi-Euclidean space, Kuwait J. Sci. Engrg. 38 (2011), no. 2A, 35–42.
- [10] L. Jiu and H. Sun, On minimal homothetical hypersurfaces, Colloq. Math. 109 (2007), no. 2, 239–249.
- H. Liu, Translation surfaces with constant mean curvature in 3-dimensional spaces, J. Geom. 64 (1999), no. 1-2, 141–149.
- [12] R. Lopéz, Minimal translation surfaces in hyperbolic space, Beitr. Algebra Geom. 52 (2011), no. 1, 105–112.
- [13] R. Lopéz and M. I. Munteanu, Minimal translation surfaces in Sol₃, J. Math. Soc. Japan 64 (2012), no. 3, 985–1003.
- [14] R. Lopéz and M. Moruz, Translation and homothetical surfaces in Euclidean space with constant curvature, J. Korean Math. Soc. 52 (2015), no. 3, 523–535.
- [15] H. Meng and H. Liu, Factorable surfaces in Minkowski space, Bull. Korean Math. Soc. 46 (2009), no. 1, 155–169.
- [16] Ž. Milin-Šipuš, Translation surfaces of constant curvatures in a simply isotropic space, Period. Math. Hungar. 68 (2014), no. 2, 160–175.
- [17] M. I. Munteanu, O. Palmas, and G. Ruiz-Hernández, Minimal translation hypersurfaces in Euclidean spaces, Mediterr. J. Math. 13 (2016), no. 5, 2659–2676.
- [18] H. Pottmann and K. Opitz, Curvature analysis and visualization for functions defined on Euclidean spaces or surfaces, Comput. Aided Geom. Design 11 (1994), no. 6, 655– 674.
- [19] H. Pottmann, P. Grohs, and N. J. Mitra, Laguerre minimal surfaces, isotropic geometry and linear elasticity, Adv. Comput. Math. 31 (2009), no. 4, 391–419.
- [20] H. Sachs, Isotrope Geometrie des Raumes, Vieweg Verlag, Braunschweig, 1990.
- [21] I. Van de Woestyne, Minimal homothetical hypersurfaces of a semi-Euclidean space, Results. Math. 27 (1995), 333–342.
- [22] D. W. Yoon, Minimal translation surfaces in $\mathbb{H}^2 \times \mathbb{R}$, Taiwanese J. Math. 17 (2013), no. 5, 1545–1556.
- [23] D. W. Yoon and J. W. Lee, Translation invariant surfaces in the 3-dimensional Heisenberg group, Bull. Iranian Math. Soc. 40 (2014), no. 6, 1373–1385.
- [24] Y. Yu and H. Liu, The factorable minimal surfaces, Proceedings of the Eleventh International Workshop on Differential Geometry, 33–39, Kyungpook Nat. Univ., Taegu, 2007.
- [25] P. Zong, L. Xiao, and H. L. Liu, Affine factorable surfaces in three-dimensional Euclidean space, Acta Math. Sinica (Chin. Ser.) 58 (2015), no. 2, 329–336.

70

Muhittin Evren Aydın Department of Mathematics Faculty of Science Firat University Elazig, 23200, Turkey *E-mail address:* meaydin@firat.edu.tr