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CONSTANT CURVATURE FACTORABLE SURFACES IN

3-DIMENSIONAL ISOTROPIC SPACE

Muhittin Evren Aydin

Abstract. In the present paper, we study and classify factorable surfaces

in a 3-dimensional isotropic space with constant isotropic Gaussian (K)
and mean curvature (H). We provide a non-existence result relating to

such surfaces satisfying H
K

= const. Several examples are also illustrated.

1. Introduction

Let E3 be a 3-dimensional Euclidean space and (x, y, z) rectangular coor-
dinates. A surface in E3 is said to be factorable (so-called homothetical) if it
is a graph of the form z (x, y) = f (x) g (y) , where f and g are smooth func-
tions (see [4, 14]). Such surfaces in E3 with constant Gaussian (K) and mean
curvature (H) were obtained in [10,14,24].

As more general case, Zong et al. [25] defined that an affine factorable surface
in E3 is a graph of the form

z (x, y) = f (x) g (y + ax) , a 6= 0

and classified these ones with K,H constants.
A surface in a 3-dimensional Minkowski space E3

1 is said to be factorable if
it can be expressed by one of the explicit forms ([15])

Φ1 : z (x, y) = f (x) g (y) , Φ2 : y (x, z) = f (x) g (z) , Φ3 : x (y, z) = f (y) g (z) .

Up to the causal characters of the directions, six different classes of these sur-
faces in E3

1 appear. The surfaces in E3
1 with K,H constants were described in

[9, 15,21].
In 3-dimensional context, the factorable surfaces are closely connected with

translation surfaces, namely the surfaces generated by translating of two curves.
For instance; in the homogeneous Riemannian space H2×R that is a Lie group,
up to its group operation, a translation surface of type 2 is a graph of the form
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y (x, z) = f (x) g (z) (see [22]). For more details, we refer to [7, 8], [11–13],
[17, 23].

Besides the Minkowskian space, a 3-dimensional isotropic space I3 provides
two different types of the factorable surfaces. This special ambient space which
is one of the real Cayley-Klein spaces is the product of the xy-plane and the
isotropic z-direction with a degenerate parabolic distance metric (cf. [5]).

Due to the absolute figure of I3, the factorable surface Φ1 distinctly behaves
from others. We call it factorable surface of type 1 (see [1–3]). The surfaces Φ2,
Φ3 in I3 are locally isometric and, up to a sign, have same second fundamental
form. This means to have same isotropic Gaussian K and, up to a sign, mean
curvature H. These surfaces are said to be of type 2.

In this manner we are mainly interested in the factorable surfaces of type
2 in I3. We describe such surfaces in I3 with K,H,H/K constants by the
following results:

Theorem 1.1. A factorable surface of type 2 (Φ3) in I3 has constant isotropic
mean curvature H0 if and only if, up to suitable translations and constants,
one of the following occurs:

(i) If Φ3 is isotropic minimal, i.e., H0 = 0;
(i.1) Φ3 is a non-isotropic plane,
(i.2) x (y, z) = y tan (cz),
(i.3) x (y, z) = c zy .

(ii) Otherwise (H0 6= 0), x (y, z) = ±
√
−z
H0
,

where c is some nonzero constant.

Theorem 1.2. A factorable surface of type 2 (Φ3) in I3 has constant isotropic
Gaussian curvature K0 if and only if, up to suitable translations and constants,
one of the following holds:

(i) If Φ3 is isotropic flat, i.e., K0 = 0;

(i.1) x (y, z) = c1g (z) , dgdz 6= 0,
(i.2) x (y, z) = c1e

c2y+c3z,
(i.3) x (y, z) = c1y

c2zc3 , c2 + c3 = 1.
(ii) Otherwise (K0 6= 0);

(ii.1) K0 is negative and x (y, z) = ± z√
−Ky ,

(ii.2) x (y, z) = c1
y g (z) for

z = ±
∫ (

c2g
−1 − K0

c21

)1/2

dg,

where c1, c2, c3 are some nonzero constants.

Theorem 1.3. There does not exist a factorable surface of type 2 in I3 that
satisfies H

K = const. 6= 0.
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We point out that the above results are also valid for the factorable surface

Φ2 in I3 by replacing x with y as well as taking y = ±
√

z
H0

in the last statement

of Theorem 1.1.

2. Preliminaries

For detailed properties of isotropic spaces, see [6, 16], [18–20].
Let P

(
R3
)

be a real 3-dimensional projective space and (x0 : x1 : x2 : x3)

denote the projective coordinates in P
(
R3
)
. A 3-dimensional isotropic space

I3 is a Cayley-Klein space obtained from P
(
R3
)

such that its absolute figure
consists of a plane (absolute plane) ω and complex-conjugate straight lines
(absolute lines) l1, l2 in ω. In coordinate form, ω is given by x0 = 0 and l1, l2
by x0 = x1 ± ix2 = 0. The absolute point, (0 : 0 : 0 : 1) , is the intersection of
the absolute lines.

For x0 6= 0, we have the affine coordinates by x = x1

x0
, y = x2

x0
, z = x3

x0
. The

group of motions of I3 is given by

(2.1) (x, y, z) 7−→ (x′, y′, z′) :

 x′ = a1 + x cosφ− y sinφ,
y′ = a2 + x sinφ+ y cosφ,
z′ = a3 + a4x+ a5y + z,

where a1, . . . , a5, φ ∈ R. The isotropic metric that is an invariant of (2.1) is
induced by the absolute figure, namely ds2 = dx2 + dy2.

There are two types of the lines and the planes in I3 arising from its abso-
lute figure: The lines parallel (resp. non-parallel) to z-direction are said to be
isotropic (resp. non-isotropic). A plane is said to be isotropic if it involves an
isotropic line. Otherwise it is called non-isotropic plane or Euclidean plane.
For example the equations ax+ by+ cz = 0 (a, b, c ∈ R, c 6= 0) and ax+ by = 0
determine a non-isotropic plane and an isotropic plane, respectively.

We restrict our framework to regular surfaces whose the tangent plane at
each point is non-isotropic, namely admissible surfaces.

Let M be a regular admissible surface in I3 locally parameterized by

r (u, v) = (x (u, v) , y (u, v) , z (u, v))

for a coordinate pair (u, v). The components E,F,G of the first fundamental
form of M in I3 are computed by the induced metric from I3. The unit normal
vector of M is the unit vector parallel to the z-direction. The components of
the second fundamental form II of M are given by

l =
det (ruu, ru, rv)√

EG− F 2
, m =

det (ruv, ru, rv)√
EG− F 2

, n =
det (rvv, ru, rv)√

EG− F 2
.

Accordingly, the isotropic Gaussian (or relative) and mean curvature of M are
respectively defined by

K =
ln−m2

EG− F 2
, H =

En− 2Fm+Gl

2 (EG− F 2)
.
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A surface in I3 is said to be isotropic minimal (resp. flat) if H (resp. K) vanishes
identically. Further, it is said to have constant isotropic mean (resp. Gaussian)
curvature if H (resp. K) is a constant function on whole surface.

3. Proof of Theorem 1.1

A factorable surface of type 2 in I3 can be locally expressed by either

Φ2 : r (x, z) = (x, f (x) g (z) , z) or Φ3 : r (y, z) = (f (y) g (z) , y, z) .

All over this paper, all calculations shall be done for the surface Φ3. Its first
fundamental form in I3 turns to

ds2 =
(

1 + (f ′g)
2
)
dy2 + 2 (fgf ′g′) dydz + (fg′)

2
dz2,

where f ′ = df
dy , g′ = dg

dz . Note that g′ must be nonzero to obtain a regular

admissible surface. By a calculation for the second fundamental form of Φ3 we
have

II =

(
f ′′g

fg′

)
dy2 + 2

(
f ′

f

)
dydz +

(
g′′

g′

)
dz2, g′ 6= 0.

Therefore, the isotropic mean curvature H of Φ3 becomes

(3.1) H =

(
(f ′g)

2
+ 1
)
g′′ +

(
ff ′′ − 2 (f ′)

2
)
g (g′)

2

2f2 (g′)
3 .

Let us assume that H = H0 = const. First we distinguish the case in which
Φ3 is isotropic minimal:

Case A: H0 = 0. (3.1) reduces to

(3.2)
(

(f ′g)
2

+ 1
)
g′′ +

(
ff ′′ − 2 (f ′)

2
)
g (g′)

2
= 0.

We have three cases in order to solve (3.2):
Case A.1. f = f0 6= 0 ∈ R. (3.2) immediately implies g = c1z+c2, c1, c2 ∈ R,

and thus we deduce that Φ3 is a non-isotropic plane. This gives
the statement (i.1) of Theorem 1.1.

Case A.2. f = c1y + c2, c1, c2 ∈ R, c1 6= 0. (3.2) turns to

g′′

g′
=

2c21gg
′

1 + (c1g)
2 .

By solving this one, we obtain

g =
1

c1
tan (c2z + c3) , c2, c3 ∈ R, c2 6= 0,

which proves the statement (i.2) of Theorem 1.1.

Case A.3. f ′′ 6= 0. By dividing (3.2) with g (g′)
2

one can be rewritten as

(3.3)
(

(f ′g)
2

+ 1
) g′′

g (g′)
2 + ff ′′ − 2 (f ′)

2
= 0.
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Taking partial derivative of (3.3) with respect to z and after di-

viding with (f ′)
2
, we get

(3.4) 2
g′′

g′
+

(
1

(f ′)
2 + g2

)(
g′′

g (g′)
2

)′
= 0.

By taking partial derivative of (3.4) with respect to y, we find

g′′ = c1g (g′)
2
, c1 ∈ R. We have two cases:

Case A.3.1. c1 = 0. (3.3) reduces to

(3.5) ff ′′ − 2 (f ′)
2

= 0.

By solving (3.5) we derive

f = − 1

c2y + c3
, c2, c3 ∈ R, c2 6= 0.

This implies the statement (i.3) of Theorem 1.1.
Case A.3.2. c1 6= 0. (3.4) immediately leads to the contradiction 2c1gg

′ =
0.

Case B: H0 6= 0. We have cases:
Case B.1. f = f0 6= 0 ∈ R. Then (3.1) follows

(3.6) 2H0f
2
0 =

g′′

(g′)
3 .

Solving it gives g (z) = ± 1
2H0f2

0

√
−4H0f20 z + c1 + c2, c1, c2 ∈ R.

This is the proof of the statement (ii) of Theorem 1.1.
Case B.2. f = c1y+ c2, c1, c2 ∈ R, c1 6= 0. By considering this one into (3.1)

we conclude

(3.7) 2 (c1y + c2)
2
H0 =

(
1 + c21g

2
) g′′

(g′)
3 − 2c21

g

g′
.

The left side in (3.7) is a function of y while other side is either a
constant or a function of z. This is not possible.

Case B.3. f ′′ 6= 0. By multiplying both side of (3.1) with 2f2 g
′

g one can be

rearranged as

(3.8) 2H0f
2 g
′

g
=
(

(f ′g)
2

+ 1
) g′′

g (g′)
2 + ff ′′ − 2 (f ′)

2
.

Taking partial derivative of (3.8) with respect to z and thereafter

dividing with (f ′)
2

yields

(3.9) 2H0

(
f

f ′

)2(
g′

g

)′
= 2

g′′

g′
+

(
1

(f ′)
2 + g2

)(
g′′

g (g′)
2

)′
.

It is obvious in (3.9) that g′′ 6= 0. To solve (3.9) we have two cases:



64 M. E. AYDIN

Case B.3.1. g′′ = c1g (g′)
2
, c1 ∈ R, c1 6= 0. This implies that

(3.10) g′ = e
c1
2 g

2+c2 , c2 ∈ R.

Substituting (3.10) into (3.9) gives an equation in the fol-
lowing form:(

c1e
−c1
2 g2−c2

)
g3 −

(
c1H0

(
f

f ′

)2
)
g2 +H0

(
f

f ′

)2

= 0,

where all coefficients with respect to g must be zero and this
is a contradiction.

Case B.3.2.
(

g′′

g(g′)2

)′
6= 0. By dividing (3.9) with

(
g′′

g(g′)2

)′
, it turns to

the following form:

(3.11) A1 (y)B1 (z) = A2 (y) +B2 (z) ,

where

A1 (y) = 2H0

(
f

f ′

)2

, A2 (y) =
1

(f ′)
2 ,

B1 (z) =

(
g′

g

)′
(

g′′

g (g′)
2

)′ , B2 (z) = 2
g′′

g′
+ g2.

The fact that all terms in (3.11) must be constant for every
y and z yields A2 (y) = 1

(f ′)2
= const., which contradicts

with the assumption of Case B.3.

4. Proof of Theorem 1.2

By a calculation for a factorable graph of type 2 in I3, the isotropic Gaussian
curvature turns to

(4.1) K =
fgf ′′g′′ − (f ′g′)

2

(fg′)
4 .

Let us assume that K = K0 = const. We have cases:

Case A: K0 = 0. (4.1) reduces to

(4.2) fgf ′′g′′ − (f ′g′)
2

= 0.

f or g constants are solutions for (4.2) and by regularity we have the
statement (i.1) of Theorem 1.2. Suppose that f, g are non-constants.
Then (4.2) yields f ′′g′′ 6= 0. Thereby (4.2) can be arranged as

(4.3)
ff ′′

(f ′)
2 =

(g′)
2

gg′′
.
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Both sides of (4.3) are equal to same nonzero constant, namely

(4.4) ff ′′ − c1 (f ′)
2

= 0 and gg′′ − 1

c1
(g′)

2
= 0.

If c1 = 1 in (4.4) , then by solving it we obtain

f (y) = c2e
c3y and g (z) = c4e

c5z, c2, . . . , c5 ∈ R.

This gives the statement (i.2) of Theorem 1.2. Otherwise, i.e., c1 6= 1
in (4.4) , we derive

f (y) = ((1− c1) (c6y + c7))
1

1−c1 and g (z) =

((
c1 − 1

c1

)
(c8z + c9)

) c1
c1−1

,

where c6, . . . , c9 ∈ R. This completes the proof of the statement (i) of
Theorem 1.2.

Case B : K0 6= 0. (4.1) can be rewritten as

(4.5) K0 (g′)
2

=
f ′′

f3

(
gg′′

(g′)
2

)
−
(
f ′

f2

)2

.

Taking partial derivative of (4.5) with respect to z leads to

(4.6) 2K0g
′g′′ =

f ′′

f3

(
gg′′

(g′)
2

)′
.

We have two cases for (4.6):
Case B.1. The situaton that g′′ = 0, g (z) = c1z+ c2, c1, c2 ∈ R, is a solution

for (4.6). Hence, from (4.5), we deduce

K0 (c1)
2

= −
(
f ′

f2

)2

,

which implies that K0 is negative and

f (y) =
1

±c1
√
−K0y + c3

.

This proves the statement (ii.1) of Theorem 1.2.
Case B.2. g′′ 6= 0. (4.6) immediately implies

(4.7) f ′′ = c1f
3, c1 ∈ R, c1 6= 0.

Considering (4.7) into (4.5) yields to

(4.8) f ′ = c2f
2, c2 ∈ R, c2 6= 0.

It follows from (4.7) and (4.8) that c1 = 2c22 and

f (y) = − 1

c2y + c3
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for some constant c3. Nevertheless, by substituting (4.7) and (4.8)
into (4.5), we conclude

(4.9)
K0

c22
r3 + r = 2gṙ,

where r = g′ and ṙ = dr
dg = g′′

g′ . After solving (4.9) we obtain

r = ±
(
c24g
−1 − K0

c22

)−1/2
, c4 ∈ R, c4 6= 0,

or

z = ±
∫ (

c24g
−1 − K0

c22

)1/2

dg,

which proves the statement (ii.2) of Theorem 1.2.

5. Proof of Theorem 1.3

Assume that a factorable surface of type 2 in I3 fulfills the condition H +
λK = 0, λHK 6= 0, λ ∈ R. Then (3.1) and (4.1) give rise to
(5.1)(

1 + (f ′g)
2
)
f2g′g′′ +

(
ff ′′ − 2 (f ′)

2
)
f2g (g′)

3
+ 2λ

(
ff ′′gg′′ − (f ′g′)

2
)

= 0.

Due to K 6= 0, f must be a non-constant function and therefore dividing (5.1)

with (ff ′)
2

leads to
(5.2)(

1

(f ′)
2 + g2

)
g′g′′ +

(
ff ′′

(f ′)
2 − 2

)
g (g′)

3
+ 2λ

[(
f ′′

f (f ′)
2

)
gg′′ − (g′)

2

f2

]
= 0.

If g′′ = 0, namely g = c1z + c2, c1, c2 ∈ R, c1 6= 0, then (5.2) reduces to the
following polynomial equation on z:

(5.3) c21

(
ff ′′

(f ′)
2 − 2

)
z + c1c2

(
ff ′′

(f ′)
2 − 2

)
− 2λ

f2
= 0.

All coefficients in (5.3) must be zero and this fact yields the contradiction λ = 0.
Then g′′ 6= 0 and, by dividing (5.2) with the product g′g′′, we get
(5.4)

1

(f ′)
2 + g2− 2

g (g′)
2

g′′
+

(
ff ′′

(f ′)
2

)
g (g′)

2

g′′
+ 2λ

[(
f ′′

f (f ′)
2

)
g

g′
−
(

1

f2

)
g′

g′′

]
= 0.

Putting p = f ′, ṗ = dp
df = f ′′

f ′ and r = g′, ṙ = dr
dg = g′′

g′ , (5.4) turns to

(5.5)
1

p2
+ g2 − 2

gr

ṙ
+

(
fṗ

p

)
gr

ṙ
+ 2λ

[(
ṗ

fp

)
g

r
−
(

1

f2

)
1

ṙ

]
= 0.
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Taking partial derivatives of (5.5) with respect to f and g implies an equation
in the following form:

(5.6) A1 (f)B1 (g) + 2λ (A2 (f)B2 (g)−A3 (f)B3 (g)) = 0,

where

(5.7)


A1 (f) =

d

df

(
fṗ

p

)
, A2 (f) =

d

df

(
ṗ

fp

)
, A3 (f) =

d

df

(
1

f2

)
,

B1 (g) =
d

dg

(gr
ṙ

)
, B2 (g) =

d

dg

(g
r

)
, B3 (g) =

d

dg

(
1

ṙ

)
.

If B2 = 0, i.e., r = c1g, c1 ∈ R, c1 6= 0, then (5.5) yields the following
polynomial equation g:

(5.8)

(
fṗ

p
− 1

)
g2 +

2λ

c1f2

(
fṗ

p
− 1

)
+

1

p2
= 0.

The fact that the coefficient of the term g2 in (5.8) must vanish leads to the
contradiction 1

p2 = 0 and so we deduce B2 6= 0. Nevertheless, due to A3 6= 0,

(5.6) can be divided by the product A3B2 as follows:

(5.9)

(
A1 (f)

A3 (f)

)
︸ ︷︷ ︸

A4(f)

(
B1 (g)

B2 (g)

)
︸ ︷︷ ︸

B4(g)

+ 2λ

A2 (f)

A3 (f)︸ ︷︷ ︸
A5(f)

− B3 (g)

B2 (g)︸ ︷︷ ︸
B5(g)

 = 0,

where the terms A4, A5, B4, B5 must be constant for every f and g. Since
A4 = c1 and A5 = c2, by (5.7), we derive

(5.10)
fṗ

p
=
c1
f2

+ c3

and

(5.11)
ṗ

fp
=
c2
f2

+ c4, c1, . . . , c4 ∈ R.

After equalizing (5.10) and (5.11), we find

(5.12)
ṗ

p
=
c2
f
, c2 = c3,

where c2 must be non-vanishing. Otherwise, considering the situation that
ṗ = 0, p (f) = c5 ∈ R, c5 6= 0, into (5.5) gives

(5.13)
1

c25
+ g2 − 2

gr

ṙ
−
(

2λ

ṙ

)
1

f2
= 0.

The coefficient of the term 1
f2 in (5.13) cannot vanish and this leads to a

contradiction. So, by (5.12), we derive A1 = 0 and (5.9) reduces to

(5.14) c2B2 (g)−B3 (g) = 0.
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An integration of (5.14) yields

(5.15) c2
g

r
− 1

ṙ
= c6, c6 ∈ R.

Substituting (5.12) and (5.15) into (5.5) leads to

(5.16)
1

p2
+

2λc6
f2

+ g2 + (c2 − 2)
gr

ṙ
= 0.

By revisiting (5.12), we obtain p = c7f
c2 , c7 ∈ R, c7 6= 0 and considering this

one into (5.16)

(5.17)
1

c27f
2c2

+
2λc6
f2

+ g2 + (c2 − 2)
gr

ṙ
= 0.

Due to the fact that f is an independent variable in (5.17), we conclude

(5.18) c2 = 1 and
1

c27
+ 2λc6 = 0.

Thereby, (5.17) reduces to

(5.19) g2 − gr

ṙ
= 0.

Comparing (5.19) with (5.15) yields c6 = 0 which contradicts with (5.18).

6. Some examples

We illustrate several examples relating to the factorable surfaces of type 2
in I3 with K,H constants.

Example 6.1. Consider the factorable surfaces of type 2 in I3 given by

(1) Φ3 : x (y, z) = y tan z, (y, z) ∈
[
0, π3

]
, (isotropic minimal),

(2) Φ3 : x (y, z) = −
√
z, (y, z) ∈ [0, 2π] , (H = −1),

(3) Φ3 : x (y, z) = −y
2

4z , (y, z) ∈ [1, 1.4]× [1, 2π] , (isotropic flat),
(4) Φ3 : x (y, z) = z

y , (y, z) ∈ [1, π]× [1, 2π] , (K = −1).

These surfaces can be respectively drawn by as in Figs. 1-4.

Figure 1. An isotropic minimal factorable surface of type 2.
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Figure 2. A factorable surface of type 2 with H = −1.

Figure 3. An isotropic flat factorable surface of type 2.

Figure 4. A factorable surface of type 2 with K = −1.
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