DOI QR코드

DOI QR Code

Short-term Effect of Ambient Air Pollution on Emergency Department Visits for Diabetic Coma in Seoul, Korea

  • Kim, Hyunmee (Department of Preventive Medicine, Yonsei University College of Medicine) ;
  • Kim, Woojin (Department of Preventive Medicine, Yonsei University College of Medicine) ;
  • Choi, Jee Eun (Department of Public Health, Yonsei University Graduate School) ;
  • Kim, Changsoo (Department of Preventive Medicine, Yonsei University College of Medicine) ;
  • Sohn, Jungwoo (Institute of Human Complexity and Systems Science, Yonsei University)
  • Received : 2018.07.05
  • Accepted : 2018.10.05
  • Published : 2018.11.30

Abstract

Objectives: A positive association between air pollution and both the incidence and prevalence of diabetes mellitus (DM) has been reported in some epidemiologic and animal studies, but little research has evaluated the relationship between air pollution and diabetic coma. Diabetic coma is an acute complication of DM caused by diabetic ketoacidosis or hyperosmolar hyperglycemic state, which is characterized by extreme hyperglycemia accompanied by coma. We conducted a time-series study with a generalized additive model using a distributed-lag non-linear model to assess the association between ambient air pollution (particulate matter less than $10{\mu}m$ in aerodynamic diameter, nitrogen dioxide [$NO_2$], sulfur dioxide, carbon monoxide, and ozone) and emergency department (ED) visits for DM with coma in Seoul, Korea from 2005 to 2009. Methods: The ED data and medical records from the 3 years previous to each diabetic coma event were obtained from the Health Insurance Review and Assessment Service to examine the relationship with air pollutants. Results: Overall, the adjusted relative risks (RRs) for an interquartile range (IQR) increment of $NO_2$ was statistically significant at lag 1 (RR, 1.125; 95% confidence interval [CI], 1.039 to 1.219) in a single-lag model and both lag 0-1 (RR, 1.120; 95% CI, 1.028 to 1.219) and lag 0-3 (RR, 1.092; 95% CI, 1.005 to 1.186) in a cumulative-lag model. In a subgroup analysis, significant positive RRs were found for females for per-IQR increments of $NO_2$ at cumulative lag 0-3 (RR, 1.149; 95% CI, 1.022 to 1.291). Conclusions: The results of our study suggest that ambient air pollution, specifically $NO_2$, is associated with ED visits for diabetic coma.

Keywords

References

  1. Alderete TL, Chen Z, Toledo-Corral CM, Contreras ZA, Kim JS, Habre R, et al. Ambient and traffic-related air pollution exposures as novel risk factors for metabolic dysfunction and type 2 diabetes. Curr Epidemiol Rep 2018;5(2):79-91. https://doi.org/10.1007/s40471-018-0140-5
  2. Renzi M, Cerza F, Gariazzo C, Agabiti N, Cascini S, Di Domenicantonio R, et al. Air pollution and occurrence of type 2 diabetes in a large cohort study. Environ Int 2018;112:68-76. https://doi.org/10.1016/j.envint.2017.12.007
  3. Dales RE, Cakmak S, Vidal CB, Rubio MA. Air pollution and hospitalization for acute complications of diabetes in Chile. Environ Int 2012;46:1-5. https://doi.org/10.1016/j.envint.2012.05.002
  4. Eze IC, Hemkens LG, Bucher HC, Hoffmann B, Schindler C, Kunzli N, et al. Association between ambient air pollution and diabetes mellitus in Europe and North America: systematic review and meta-analysis. Environ Health Perspect 2015;123(5): 381-389. https://doi.org/10.1289/ehp.1307823
  5. Misra S, Oliver NS. Diabetic ketoacidosis in adults. BMJ 2015; 351:h5660.
  6. Pasquel FJ, Umpierrez GE. Hyperosmolar hyperglycemic state: a historic review of the clinical presentation, diagnosis, and treatment. Diabetes Care 2014;37(11):3124-3131. https://doi.org/10.2337/dc14-0984
  7. Gasparrini A, Armstrong B, Kenward MG. Distributed lag nonlinear models. Stat Med 2010;29(21):2224-2234. https://doi.org/10.1002/sim.3940
  8. Hastie T, Tibshirani R. Generalized additive models for medical research. Stat Methods Med Res 1995;4(3):187-196. https://doi.org/10.1177/096228029500400302
  9. Gasparrini A. Distributed lag linear and non-linear models in R: the package dlnm. J Stat Softw 2011;43(8):1-20.
  10. Sun S, Qiu H, Ho KF, Tian L. Chemical components of respirable particulate matter associated with emergency hospital admissions for type 2 diabetes mellitus in Hong Kong. Environ Int 2016;97:93-99. https://doi.org/10.1016/j.envint.2016.10.022
  11. Husain D, Norrish RG. The production of NO3 in the photolysis of nitrogen dioxide and of nitric acid vapour under isothermal conditions. Proc R Soc Lond A Math Phys Sci 1963;273(1353): 165-179. https://doi.org/10.1098/rspa.1963.0081
  12. Andersen ZJ, Raaschou-Nielsen O, Ketzel M, Jensen SS, Hvidberg M, Loft S, et al. Diabetes incidence and long-term exposure to air pollution: a cohort study. Diabetes Care 2012;35(1): 92-98. https://doi.org/10.2337/dc11-1155
  13. Balti EV, Echouffo-Tcheugui JB, Yako YY, Kengne AP. Air pollution and risk of type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Res Clin Pract 2014;106(2):161-172. https://doi.org/10.1016/j.diabres.2014.08.010
  14. Sade MY, Kloog I, Liberty IF, Katra I, Novack L, Novack V. Air pollution and serum glucose levels: a population-based study. Medicine (Baltimore) 2015;94(27):e1093. https://doi.org/10.1097/MD.0000000000001093
  15. Liu C, Ying Z, Harkema J, Sun Q, Rajagopalan S. Epidemiological and experimental links between air pollution and type 2 diabetes. Toxicol Pathol 2013;41(2):361-373. https://doi.org/10.1177/0192623312464531
  16. Chen Z, Salam MT, Toledo-Corral C, Watanabe RM, Xiang AH, Buchanan TA, et al. Ambient air pollutants have adverse effects on insulin and glucose homeostasis in Mexican Americans. Diabetes Care 2016;39(4):547-554. https://doi.org/10.2337/dc15-1795
  17. Dijkema MB, Mallant SF, Gehring U, van den Hurk K, Alssema M, van Strien RT, et al. Long-term exposure to traffic-related air pollution and type 2 diabetes prevalence in a cross-sectional screening-study in the Netherlands. Environ Health 2011;10:76. https://doi.org/10.1186/1476-069X-10-76
  18. Brook RD, Jerrett M, Brook JR, Bard RL, Finkelstein MM. The relationship between diabetes mellitus and traffic-related air pollution. J Occup Environ Med 2008;50(1):32-38. https://doi.org/10.1097/JOM.0b013e31815dba70
  19. Kramer U, Herder C, Sugiri D, Strassburger K, Schikowski T, Ranft U, et al. Traffic-related air pollution and incident type 2 diabetes: results from the SALIA cohort study. Environ Health Perspect 2010;118(9):1273-1279. https://doi.org/10.1289/ehp.0901689
  20. Lim YH, Hong YC, Kim H. Effects of diurnal temperature range on cardiovascular and respiratory hospital admissions in Korea. Sci Total Environ 2012;417-418:55-60. https://doi.org/10.1016/j.scitotenv.2011.12.048
  21. Rajagopalan S, Brook RD. Air pollution and type 2 diabetes: mechanistic insights. Diabetes 2012;61(12):3037-3045. https://doi.org/10.2337/db12-0190
  22. Sullivan JH, Hubbard R, Liu SL, Shepherd K, Trenga CA, Koenig JQ, et al. A community study of the effect of particulate matter on blood measures of inflammation and thrombosis in an elderly population. Environ Health 2007;6:3. https://doi.org/10.1186/1476-069X-6-3
  23. Ruckerl R, Phipps RP, Schneider A, Frampton M, Cyrys J, Oberdorster G, et al. Ultrafine particles and platelet activation in patients with coronary heart disease-results from a prospective panel study. Part Fibre Toxicol 2007;4:1. https://doi.org/10.1186/1743-8977-4-1
  24. Simon SA, Liedtke W. How irritating: the role of TRPA1 in sensing cigarette smoke and aerogenic oxidants in the airways. J Clin Invest 2008;118(7):2383-2386. https://doi.org/10.1172/JCI36111
  25. Snow SJ, Henriquez AR, Costa DL, Kodavanti UP. Neuroendocrine regulation of air pollution health effects: emerging insights. Toxicol Sci 2018;164(1):9-20. https://doi.org/10.1093/toxsci/kfy129
  26. Prieto D, Contreras C, Sanchez A. Endothelial dysfunction, obesity and insulin resistance. Curr Vasc Pharmacol 2014; 12(3):412-426. https://doi.org/10.2174/1570161112666140423221008
  27. Zhang Y, Ji X, Ku T, Sang N. Inflammatory response and endothelial dysfunction in the hearts of mice co-exposed to $SO_2$, $NO_2$, and $PM_{2.5}$. Environ Toxicol 2016;31(12):1996-2005. https://doi.org/10.1002/tox.22200
  28. Umpierrez G, Korytkowski M. Diabetic emergencies - ketoacidosis, hyperglycaemic hyperosmolar state and hypoglycaemia. Nat Rev Endocrinol 2016;12(4):222-232. https://doi.org/10.1038/nrendo.2016.15
  29. Azam M, Gupta G, Baquer NZ. Modulation of insulin receptors and catecholamines in rat brain in hyperglycemia and hyperinsulinemia. Biochem Int 1990;22(1):1-9. https://doi.org/10.1016/0020-711X(90)90068-E
  30. Barth E, Albuszies G, Baumgart K, Matejovic M, Wachter U, Vogt J, et al. Glucose metabolism and catecholamines. Crit Care Med 2007;35(9 Suppl):S508-S518. https://doi.org/10.1097/01.CCM.0000278047.06965.20
  31. Kesavadev JD, Short KR, Nair KS. Diabetes in old age: an emerging epidemic. J Assoc Physicians India 2003;51:1083-1094.
  32. Rathmann W, Haastert B, Giani G, Koenig W, Imhof A, Herder C, et al. Is inflammation a causal chain between low socioeconomic status and type 2 diabetes? Results from the KORA Survey 2000. Eur J Epidemiol 2006;21(1):55-60. https://doi.org/10.1007/s10654-005-5085-6
  33. Unger RH, Orci L. Glucagon and the A cell: physiology and pathophysiology (first two parts). N Engl J Med 1981;304(25): 1518-1524. https://doi.org/10.1056/NEJM198106183042504
  34. Diamond MP, Hallarman L, Starick-Zych K, Jones TW, Connolly- Howard M, Tamborlane WV, et al. Suppression of counterregulatory hormone response to hypoglycemia by insulin per se. J Clin Endocrinol Metab 1991;72(6):1388-1390. https://doi.org/10.1210/jcem-72-6-1388
  35. Zeger SL, Thomas D, Dominici F, Samet JM, Schwartz J, Dockery D, et al. Exposure measurement error in time-series studies of air pollution: concepts and consequences. Environ Health Perspect 2000;108(5):419-426. https://doi.org/10.1289/ehp.00108419
  36. Bell ML, Samet JM, Dominici F. Time-series studies of particulate matter. Annu Rev Public Health 2004;25:247-280. https://doi.org/10.1146/annurev.publhealth.25.102802.124329

Cited by

  1. Does ozone inhalation cause adverse metabolic effects in humans? A systematic review vol.51, pp.6, 2018, https://doi.org/10.1080/10408444.2021.1965086
  2. Short-term effect of NO2 on outpatient visits for dermatologic diseases in Xinxiang, China: a time-series study vol.43, pp.9, 2021, https://doi.org/10.1007/s10653-021-00831-3